• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photothermal Anti/De-icing Performances of Superhydrophobic Surfaces with Various Micropatterns

    2023-05-21 02:37:04,,,,,,3*

    ,,,,,,3*

    1.School of Aerospace Engineering,Tsinghua University,Beijing 100084,P.R.China;

    2.AVIC Aerodynamics Research Institute,Shenyang 110034,P.R.China;

    3.Tsinghua University(School of Materials Science and Engineering)-AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and Anti/De-icing,Beijing 100084,P.R.China

    Abstract: Superhydrophobic photothermal surface shows significant potential in the anti/de-icing field.In this work,we focus on the photothermal anti/de-icing performances of superhydrophobic surfaces with various micropatterns.A finite element simulation,coupling the wave optics and heat transfer models,is employed to illuminate the enhanced photothermal efficiency achieved by the reasonable design of surface micro/nano-structures.The effects of nanoparticle size,volume fraction,and coating thickness on the absorptivity and temperature rise of the photothermal coatings are discussed in detail.Furthermore,two hierarchical textures,including micropillars and microcones,are considered to expound the contribution of micro-scale structures on photothermal performances.Numerical results show that the surface with hierarchical textures has a better absorption efficiency of long waves than the single-scale surface,and the microcones topology presents the best photothermal efficiency.Moreover,the effects of geometric micropattern parameters,e.g.characteristic length and aspect ratio,are also discussed in detail.The illumination and ice melting test demonstrates the efficient anti/de-icing abilities of the superhydrophobic photothermal surfaces prepared in this study.The temperature rise of the optimal structure in this work can reach 45 ℃ under the 1 sun illumination.This work could shed new light on the design optimization of anti/de-icing materials.

    Key words:superhydrophobic surface;photothermal;micro patterns;absorptivity;anti/de-icing

    0 Introduction

    Freezing on solid surfaces is a common natural phenomenon,which may cause severe safety and economic issues in numerous engineering fields,e.g.aircraft,power transmission lines,cool equipment,wind power generator,etc[1-6].Hence,significant efforts have been invested in designing active and passive high-efficient anti/de-icing surfaces.Superhydrophobic surfaces(SHSs)have received significant attention thanks to their excellent water repellency and potential icephobic characteristics[7-16].

    Numerous studies have demonstrated that SHSs could reduce the liquid-solid contact area and the contact time,and contribute to high-efficiency anti-icing for sessile and impinging drops in supercooled environments due to the micro/nanoscale structures of the SHSs[17-20].In general,the preferential surface microstructure is regarded as a class of hierarchical textures,including dual-scale and/or triple-scale micro/nanostructures.However,the hierarchical structures can be easily damaged during the ice detachment process,resulting in the decline of hydrophobicity.In addition,once nucleation occurs,SHSs would lose their anti-icing ability due to ice accretion.Hence,fully passive anti-icing has not been realized,and the durable anti-icing surfaces need to be further studied.

    Compared with other active anti/de-icing technologies,e.g.electrothermal technologies,ultrasonic technologies,etc.,the photothermal technology uses sunlight without additional power input[21-23].Therefore,superhydrophobic photothermal surfaces(SPSs)show significant potential in the anti/de-icing field.The combination of the photothermal effect and SHS can simultaneously achieve anti-icing and de-icing abilities[24-26].Under light conditions,the SHSs can absorb the incident light and transform it into heat energy,resulting in the temperature rise of the photothermal surfaces,which significantly enhances the anti-icing effect of the superhydrophobic surface at low temperatures[27].Meanwhile,it is possible to spontaneously melt and detach ice without damaging the microstructures under the synergistic action of the photothermal effect and superhydrophobicity.

    Inspired by photothermal technology,scholars have performed numerical and experimental studies on the photothermal and anti/de-icing performances of SPSs[27-35].Wu et al.[36]fabricated hierarchical polydimethylsiloxane(PDMS)/reduced graphene oxide film with high solar energy transfer efficiency and all the frost and glaze could be removed within 300 s under sunlight.Chen et al.[37]produced a durable cauliflower-like micro-nano structured SHS,and the surface exhibits a high absorption rate of 97.3% and a temperature rise of 48.5 ℃ under 1 sun illumination for 300 s.Wang et al.[38-41]employed a multiphysics model that couples electromagnetics and heat transfer to simulate the TiN absorbers using the COMSOL software to better understand the light absorption and light-to-heat conversion mechanisms.Wang et al.[42]adopted a finite difference time domain(FDTD)simulation to illuminate that SiO2nanospheres in superhydrophobic layers could enhance the light absorption capacity and guide the designing of SPSs.

    In summary,many studies have demonstrated that SPSs show significant potential in the anti/deicing field and focused on the light-to-heat conversion mechanisms of the nanocoatings.As mentioned above,the hydrophobicity of SHSs usually relies on hierarchical structures,but the effects of the micro/nanostructures on the light-to-heat conversion mechanisms have not been revealed sufficiently.To obtain deeper insights,we investigate the photothermal performances of superhydrophobic surfaces with various micropatterns and focus on the effects of microstructures on light absorption and light-to-heat conversion mechanisms.First,we introduce the numerical and experimental methods in brief.Second,the photothermal properties of nanocoating are discussed in detail.Third,we focus on the effects of hierarchical textures on the photothermal anti/de-icing performances of SHSs and put forward the optimal design of icephobic SPSs.

    1 Theory and Method

    1.1 Principles of light absorption and heat transfer calculation

    We employ COMSOL Multiphysics software to simulate the coupling of electromagnetics and heat transfer and investigate the light absorption and light-to-heat conversion mechanisms[38-39].The electromagnetic wave and heat transfer in solid and liquid modules are used to represent the electric field and thermal field.The electric field is obtained by solving the time-independent electromagnetic wave equation

    whereEis the electric field;k0the free space wavenumber;εrcthe space-and wavelength-dependent relative permittivity of the material.The conversion of optical energy to thermal energy can be described as

    whereTis the temperature andtthe time.ρ,Cp,andkare the density,the specific heat capacity,and the thermal conductivity of the considered material,respectively.The generated heat powerQrcan be obtained from

    whereωis the angular frequency of the incident light;ε0the vacuum permittivity and Im(εr)the imaginary part of the permittivity.

    1.2 Preparation of superhydrophobic photothermal coating

    The superhydrophobic photothermal coating can be fabricated via three steps[38].First,TiN nanoparticles and PDMS in a certain ratio are added into the ethyl acetate,and the miscible liquids through ultrasonic agitation form a homogeneous solution.Second,the obtained solution is sprayed uniformly onto the substrate using a spray gun.Third,the samples are dried in a draught drying cabinet at 100 ℃ for 2 h.TiN nanoparticles are used here because of their excellent plasmonic properties and photothermal response at visible and near infrared(NIR)regions.The introduction of PDMS could lock the heat transfer near the surface due to its low thermal conductivity and reduce the surface energy of the coating,i.e.render the surface hydrophobic.

    1.3 Preparation of hierarchical SPSs

    In this work,two kinds of microstructures,micropillars and microcones,are prepared to investigate the photothermal performances on hierarchical SHSs.We fabricate micropillars on silicon surfaces using the standard photolithography technology and etching of inductively coupled plasma(ICP)[43].The microconed surface is fabricated by the ultrafast laser ablation[44].The hierarchical SPSs are obtained by spraying the nanocoating on surfaces with microstructures and being dried in a drying chamber for 1 h.

    1.4 Illumination,delaying icing and melting ice tests

    To investigate their photothermal anti-icing capability,the surfaces are illuminated with a light source that simulates sunlight with light intensity 1 sun=0.1 W/cm2.The surface is irradiated with simulated sunlight for 5 min to test intrinsic light-toheat conversion performance under sunlight.The temperature curves and surface temperature distribution are recorded before and after illumination by a thermal imager.The delaying icing test is also performed.The water drops are placed on the prepared surfaces whose temperature is ranged from 0 ℃ to-20 ℃ by a cold plate,and the delay time of nucleation and icing time of drops on various surfaces are recorded to verify the anti-icing performances of the prepared coatings.Finally,the melting test of prefrozen ice on the surfaces is performed.The water drops are placed on a cold plate and frozen.Then,the surface is irradiated under the simulated sunlight with light intensities of 0.5,0.8,and 1 sun.The melting test is conducted in a refrigerator,and the ambient humidity and environment temperature are 20% and 0 ℃,respectively.The melting processes are recorded by a thermal imager and a camera.

    2 Results and Discussion

    2.1 Photothermal properties of nanocoatings

    We focus on the photothermal performances of nanocoatings with various particle types,sizes,and volume fractions.The effects of nanoparticle type,size,volume fraction,and coating thickness on the absorptivity and temperature rise of the photothermal coatings are discussed in detail.

    2.1.1 Computational models

    Fig.1 shows the geometry and boundary conditions of the photothermal performances of nanocoatings.A plane electromagnetic wave,with a wavelength range from 300—2 500 nm,vertically illumines the substrate with a photothermal nanocoating layer,through the air.The perfect-matched layers(PMLs)are set at the top and bottom of the model to eliminate the effects of boundary reflection.The periodic boundary condition is imposed on the surrounding sides to simulate a nanocoating layer.The particle diameter isdp,the spacing between two neighboring particles issp,and the nanocoating thicknessdn.The intensity of the incident light is 1 sun(0.1 W/cm2),and the outside temperature is set asT0=293 K.The material parameters,including the optical and the thermal parameters,are shown in Table 1.

    Fig.1 Modeled geometry and boundary conditions

    Table 1 Optical and thermal parameters of the used materials

    2.1.2 Light absorption and light-to-heat conversion

    Figs.2(a,b)illustrate the distribution of electric field intensity and power dissipation density under different illumination wavelengths.It is observed that the wavelength has a great influence on the dissipation of light waves inner the coating.The electric field intensity gradually decreases in the upper layers of the coatings under high-frequency waves(λ=300 and 500 nm),i.e.the photothermal conversion process occurs.The distribution of electric power dissipation density also indicates that the top layer of the TiN nanoparticles actively absorbs the incident optical power under high-frequency waves.

    Fig.2(b)shows the absorption and reflection spectra of the simulated model.The absorption(A)can be calculated byA=1-T-R,whereTandRare the transmission and the reflection,respectively(hereT=0)[39,41].It can be seen from Fig.2(c)that the simulated coating is good at absorbing optical radiation for short-wavelength waves(A>50% whenλ<1 000 nm)but holds a terrible absorbing ability for long-wavelength waves(A>50% whenλ>1 000 nm).Besides,the corresponding curve of generated heat power is consistent with the absorption curve,as shown in Fig.2(d),indicating that high light absorption is an essential step for efficient photothermal conversion and further be used for anti/de-icing.

    Fig.2 Optical and light-to-heat conversion properties of the simulated coating model

    The temperature distribution inner the coating layer and the temperature rise on the coating surface after 300 s are shown in Figs.2(e)and(f),respectively.Similarly,the temperature rise is also consistent with the absorption rate,and the surface temperature can be raised to 53 ℃ when the wavelengthλ=500 nm.In particular,the temperature increase of the coating is not only related to the light absorption but also depends on the thermal properties of the surrounding medium.Due to the adiabatic properties of the PDMS medium,the generated heat power can be locked inner the coating layer,which is helpful for anti/de-icing.

    2.1.3 Effects of nanocoating parameters

    In this part,we focus on the effects of nanocoating parameters on light absorption and light-to-heat conversion,and the results could guide the design of photothermal nanocoatings.Fig.3 shows the absorption spectra and surface temperature statistics of nanocoating models with various layer thicknessesdn(Figs.3(a,b)),nanoparticle volume fractions(Figs.3(c,d)),and nanoparticle diametersdp(Figs.3(e,f)).

    Comparing Fig.3(a)with Fig.3(b),we find that although the absorption rate remains nearly constant,the surface temperature increases with the coating thickness.As mentioned above,the light-toheat conversion is not only related to light absorption but also to the heat transfer characteristics of the surrounding medium.Due to the low thermal conductivity of the PDMS medium,the increase in coating thickness results in the excellent ability of thermal isolation of the coating.

    Fig.3 Influences of nanocoating parameters on light absorption and surface temperature

    The proportion of nanoparticles in the coating significantly affects light absorption and light-to-heat conversion.In the visible spectrum,with the increase in nanoparticle volume fraction,the surface temperature rises at first and then tends to a stable value.Fig.3(d)shows that the surface temperature is almost the same when the volume fraction is 6% and 30% for wavelengthλ=300 and 500 nm.However,for the long-wavelength band,increasing the volume fraction of nanoparticles can effectively improve the absorption rate and light-to-heat conversion(Fig.3(d)when the wavelengthλ=800 and 1 500 nm).Furthermore,we investigate the effects of particle diameter on photothermal performances.Comparing the three particle sizes used in the numerical simulation(dp=50,70,and 100 nm),one can find that the particle size has a slight influence on light absorption and light-to-heat conversion.The smaller particle size shows slightly better photothermal performances.

    2.2 Photothermal properties of hierarchical textures

    2.2.1 Computational models

    We consider two hierarchical structures,i.e.micropillars,and microcones,to investigate the effect of micropatterns on photothermal performances.Because of the increase in the physical model size,a two-dimensional model is used to save computing resources.Fig.4 shows the geometric models and boundary conditions of the two hierarchical structures.Similar to the boundary conditions in Fig.1,a plane electromagnetic wave,with a wavelength range from 300—2 000 nm,vertically illumines the substrate with hierarchical structures and nanocoating.The PMLs are set at the top and bottom of the model to eliminate the effects of boundary reflection.The periodic boundary condition is imposed on the surrounding sides to simulate microstructure arrays.The thickness of the nanocoatings is set as 0.5 μm,and the length and the height of the microstructures areDandH,respectively.The intensity of the incident light is 1 sun(0.1 W/cm2),and the outside temperature is set asT0=293 K.The material parameters,including optical and thermal parameters,are shown in Table 1.

    Fig.4 Geometric models and boundary conditions of two hierarchical structures: Microcone and Micropillar

    2.2.2 Effects of micro-pattern parameters

    In this part,we discuss the influence of the geometric parameters of the microstructures on the photothermal properties.Figs.5(a,b)show the absorption and reflection spectrograms of the involved two models,respectively.The addition of hierarchical structures can promote the light absorption of the long-wavelength wave.Besides,the microcone structure presents the best light absorption characteristics.

    The insets in Fig.5 show the distribution of electric field intensity whenλ=500 nm.The electromagnetic waves are confined to the gaps of the microcone structures.Light absorption is mainly related to light capture and light limitation,when the electromagnetic wave reaches the inside of the microstructures.The electromagnetic waves are confined to resonating within the structure and are consumed to generate heat power.

    Fig.5 Absorption and reflection spectrograms of the involved two models: Microcone and Micropillar

    Fig.6(a)shows the influence of the characteristic size of the micropillars on the light absorption rate and temperature rise of the substrate for the wavelengthλ=500 nm.Here,we define the dimensionless parameterD/λ,representing the ratio of microstructure characteristic length to wavelength.With the increase of the dimensionless parameterD/λ,the absorption and temperature rise approach a constant value.When the microstructure characteristic length is on the same order of magnitude as wavelength,the light absorption,and temperature can reach the maximum value,which is significantly meaningful for designing photothermal surfaces.Fig.6(b)shows the surface temperature statics under different aspect ratios of the microcones for the wavelengthλ=500 nm,and the surface temperature increases with the aspect ratio of the microcones.In other words,the rough structures help to capture and limit electromagnetic waves and lead to higher absorption.This result provides a guiding idea for designing efficient photothermal surfaces.

    Fig.6 Influences of geometrical parameters on light absorption and light-to-heat conversion with the wavelength λ=500 nm

    2.3 Experimental results

    Based on the simulation results in Section 2.1,we prepare the photothermal coating and conduct the illumination test on different substrates and the ice melting experiment.Detailed experimental procedures have been introduced in Sections 1.3 and 1.4.The microscopic morphologies of superhydrophobic photothermal surfaces prepared in this study are shown in Fig.7.The apparent contact angle and the contact angle hysteresis on these substrates are measured from water drops of 5 μL using a standard contact angle goniometer(JC2000CD1,POWEREACH)and shown in Table 2.

    Fig.7 SEM images of SPSs prepared in this study

    Table 2 Wetting properties of SPSs in this study

    2.3.1 Illumination test

    Three kinds of substrates,including a smooth aluminum base,a silicon wafer with micropillars,and an aluminum base with microcones,are selected to conduct the illumination test.The intensity of the incident light is 1 sun(0.1 W/cm2).Fig.8 shows the surface temperature versus time(Fig.8(a))and the distribution of surface temperature(Fig.8(b))of the three substrates within 5 min at 1 sun incident light at the room temperature.For the smooth aluminum substrate without microstructures,the surface temperature can rise to 53 ℃ only relying on the nanocoatings.For the micropillar structures,the photothermal effect is slightly increased,and the surface temperature can rise to 58 ℃.In particular,the surface temperature can reach 64 ℃(the temperature increase is about 45 ℃)on the aluminum base with microcones.The experimental results show that the microcone structure has stronger light absorption and photothermal conversion ability.

    Fig.8 Photothermal properties of different substrates

    2.3.2 Delaying icing test

    As described in Section 1.4,we also perform the delaying icing test to verify the anti-icing performances of the prepared surfaces.The delay time of nucleationtdelayand icing time of dropsticingon various surfaces are listed in Table 3.The delay time of nucleation refers to the duration from cooling to nucleation,and the icing time refers to the duration during the freezing process.

    Table 3 tdelay and ticing on various surfaces s

    Here,a smooth aluminum base is employed as a contrastive surface to compare the delaying icing effects of the prepared surfaces in this study.As shown in Table 3,the surface with nanocoating in this work has an excellent anti-icing performance.The delay time of nucleation on the nanocoating surface can be delayed to be two times compared with the smooth aluminum base.Especially,the microconed surface can delay the nucleation time to 600 s.The icing time of drops on SPSs can be delayed eight times compared with the smooth aluminum base.

    2.3.3 Ice melting test

    In addition,the ice melting test is also conducted on micropillar substrates under a supercooled environment.Figs.9(a,b)show the images and corresponding temperature distribution of the ice melting process.In the ice melting experiment,the ice particle is priorly frozen by putting a water drop on a clod substrate at -20 ℃.Then the temperature of the cold plate is kept at -5 ℃,and an incident light with an intensity of 0.5,0.8 and 1 sun illuminates the substrate.The ambient humidity and the environment temperature are kept at 20% and 0 ℃,respectively.

    As shown in Fig.9,with the passage of illumination time,the surface temperature gradually increases accompanied by the ice melting.It takes 180 s for the ice particle to melt,and the surface temperature can rise to 10 ℃.The ice-melting experiment also verified the practicability of the photothermal surface prepared in this study.

    Fig.9 Ice melting process on a SPSs with micropillar structures under 1 sun condition

    Since the sunlight intensity in winter is far less than 1 sun,the effects of light intensity on ice melting are also investigated.The melting time of the ice particle under different light intensities is shown in Fig.10.The melting time increases with the reduction of the inclined light intensity.The ice particle can be effectively melted just under a light intensity of 0.5 sun.

    Fig.10 Melting time under different light intensities

    3 Conclusions

    We investigate the photothermal anti/de-icing performances of SHSs with various micropatterns.The effects of nanoparticle size,volume fraction,and coating thickness on the absorptivity and temperature rise of the photothermal coatings are discussed in detail.The increase of nanocoating thickness and nanoparticle volume fraction can effectively promote light absorption and light-to-heat conversion.Especially,for the long-wavelength band,increasing the volume fraction of nanoparticles can effectively improve the absorption rate and the light-to-heat conversion.Two hierarchical textures,micropillars and microcones,are considered to expound the contribution of micro-scale structures on photothermal performances.The addition of hierarchical structures can promote the light absorption of the long-wavelength wave,and the microcone structure presents the best light absorption characteristics.Moreover,the effects of geometric micropattern parameters,e.g.characteristic length and aspect ratio,are also discussed in detail.It is found that when the microstructure characteristic length is on the same order with the wavelength,the light absorption and temperature can reach the maximum value,which is significantly meaningful for designing photothermal surfaces.Besides,the increase of surface roughness also helps to capture and limit electromagnetic waves and leads to higher absorption.The illumination test demonstrates the microcone substrates hold on the best photothermal performances,which is consistent with the numerical results.The temperature rise of the microcone substrates in this work can reach 45 ℃under the 1 sun illumination.The experimental results show the surfaces prepared in this work present an excellent anti/de-icing performances.We believe that this work helps to provide feasible strategies for photothermal SHSs fabrication.Furthermore,based on this study,there are still a lot of tasks to explore,e.g.the ice-melting efficiency of photothermal SHSs on different microstructural surfaces and coating stability.We will continue to do further in-depth studies in future.

    日韩欧美三级三区| 九九爱精品视频在线观看| 国产精品野战在线观看| 国产熟女欧美一区二区| 99热网站在线观看| av卡一久久| 国产精品伦人一区二区| 久久久欧美国产精品| 人妻夜夜爽99麻豆av| 午夜a级毛片| 校园人妻丝袜中文字幕| 女人被狂操c到高潮| 国产成人午夜福利电影在线观看| ponron亚洲| 国产精品久久久久久精品电影| 少妇猛男粗大的猛烈进出视频 | 26uuu在线亚洲综合色| 欧美一区二区亚洲| 国产精品伦人一区二区| 搞女人的毛片| 哪个播放器可以免费观看大片| 黄色视频,在线免费观看| 久久国内精品自在自线图片| 日韩视频在线欧美| 插逼视频在线观看| 黑人高潮一二区| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 三级男女做爰猛烈吃奶摸视频| 国内少妇人妻偷人精品xxx网站| 五月伊人婷婷丁香| 3wmmmm亚洲av在线观看| 国产成年人精品一区二区| 综合色av麻豆| 好男人视频免费观看在线| 成人av在线播放网站| 成年免费大片在线观看| 国内精品久久久久精免费| 看免费成人av毛片| 日本黄大片高清| 91午夜精品亚洲一区二区三区| 波多野结衣高清无吗| 午夜a级毛片| 97在线视频观看| 亚洲va在线va天堂va国产| 国内精品宾馆在线| 国产片特级美女逼逼视频| 美女 人体艺术 gogo| 91精品国产九色| 日本一本二区三区精品| 97超碰精品成人国产| 不卡视频在线观看欧美| 天堂中文最新版在线下载 | 午夜福利在线在线| 久久这里只有精品中国| 亚洲无线在线观看| 97热精品久久久久久| 熟女人妻精品中文字幕| 99久国产av精品| 天堂网av新在线| 黄色配什么色好看| 成年女人看的毛片在线观看| 人人妻人人澡欧美一区二区| 免费av毛片视频| 久久久久久大精品| 好男人视频免费观看在线| 免费在线观看成人毛片| 日本在线视频免费播放| 麻豆一二三区av精品| 国产精品国产高清国产av| 美女大奶头视频| 国产黄色小视频在线观看| 国产v大片淫在线免费观看| 日本熟妇午夜| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| 最好的美女福利视频网| 男女视频在线观看网站免费| 国产成人a区在线观看| 午夜福利在线观看免费完整高清在 | 99久久精品一区二区三区| 久久久久久久久久久免费av| 国产成年人精品一区二区| 久久国内精品自在自线图片| 亚洲丝袜综合中文字幕| 精品人妻视频免费看| 亚洲av第一区精品v没综合| 一级av片app| 不卡视频在线观看欧美| 一区福利在线观看| 男插女下体视频免费在线播放| 男女那种视频在线观看| 国产乱人视频| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 一边亲一边摸免费视频| 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| 日本色播在线视频| 夜夜爽天天搞| 真实男女啪啪啪动态图| 波多野结衣高清无吗| 在线观看美女被高潮喷水网站| 国产v大片淫在线免费观看| 99久久九九国产精品国产免费| 国产伦精品一区二区三区视频9| 国产精品久久视频播放| 国产伦精品一区二区三区四那| 亚洲精品乱码久久久久久按摩| 乱人视频在线观看| 精品99又大又爽又粗少妇毛片| 国语自产精品视频在线第100页| 免费av毛片视频| 精品欧美国产一区二区三| 国产av麻豆久久久久久久| 亚洲av中文av极速乱| 一级毛片久久久久久久久女| 国产又黄又爽又无遮挡在线| 久久久午夜欧美精品| 综合色丁香网| 国产色爽女视频免费观看| 成人毛片60女人毛片免费| 亚洲无线在线观看| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线 | 少妇裸体淫交视频免费看高清| 精品日产1卡2卡| 人人妻人人澡人人爽人人夜夜 | 亚洲一区二区三区色噜噜| 97在线视频观看| 一级av片app| 欧美最新免费一区二区三区| 国产精品日韩av在线免费观看| 免费看av在线观看网站| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 黄色日韩在线| 一级毛片电影观看 | 老师上课跳d突然被开到最大视频| 日本黄大片高清| 国产一区二区三区在线臀色熟女| 精品久久久久久成人av| 久久精品人妻少妇| 搡老妇女老女人老熟妇| 日韩大尺度精品在线看网址| 亚洲精品成人久久久久久| 亚洲精品久久国产高清桃花| 亚洲成av人片在线播放无| eeuss影院久久| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 男人舔女人下体高潮全视频| 人妻少妇偷人精品九色| 老熟妇乱子伦视频在线观看| 男女边吃奶边做爰视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久午夜欧美精品| 免费搜索国产男女视频| 国产在线男女| 免费av毛片视频| 国产黄色视频一区二区在线观看 | 精华霜和精华液先用哪个| 99riav亚洲国产免费| 欧美最黄视频在线播放免费| avwww免费| 亚洲av免费高清在线观看| 欧美日本视频| 亚洲精品色激情综合| 一级黄片播放器| 岛国毛片在线播放| 九九热线精品视视频播放| 成熟少妇高潮喷水视频| 国产乱人视频| 最后的刺客免费高清国语| 少妇的逼水好多| 亚洲成人中文字幕在线播放| 能在线免费观看的黄片| 一级黄色大片毛片| 久久综合国产亚洲精品| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 一本久久精品| 国产精品乱码一区二三区的特点| 在线免费观看的www视频| 非洲黑人性xxxx精品又粗又长| 看免费成人av毛片| 99在线人妻在线中文字幕| 免费看av在线观看网站| 天天躁夜夜躁狠狠久久av| 亚洲aⅴ乱码一区二区在线播放| 国内精品久久久久精免费| 日韩欧美精品v在线| 亚洲精品国产av成人精品| 97超碰精品成人国产| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品456在线播放app| 免费观看在线日韩| 亚洲av熟女| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 亚洲精品456在线播放app| 免费观看在线日韩| 毛片一级片免费看久久久久| 久久久久久久久久成人| 色哟哟·www| 内地一区二区视频在线| 亚洲成人精品中文字幕电影| 精品人妻熟女av久视频| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 国产色爽女视频免费观看| 中文欧美无线码| 能在线免费看毛片的网站| 欧美高清成人免费视频www| 亚洲综合色惰| 国产91av在线免费观看| 国产午夜精品久久久久久一区二区三区| 最近手机中文字幕大全| 99久久九九国产精品国产免费| 久久精品综合一区二区三区| 一本精品99久久精品77| 欧美bdsm另类| 美女cb高潮喷水在线观看| 亚洲成av人片在线播放无| 亚洲一级一片aⅴ在线观看| 国产亚洲欧美98| 亚洲中文字幕日韩| 丝袜美腿在线中文| 熟妇人妻久久中文字幕3abv| 国产亚洲91精品色在线| 国产综合懂色| 日韩精品有码人妻一区| 久久久国产成人精品二区| 亚洲第一区二区三区不卡| 69人妻影院| 可以在线观看毛片的网站| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| 亚洲精品日韩在线中文字幕 | 此物有八面人人有两片| 插阴视频在线观看视频| 不卡视频在线观看欧美| 丰满乱子伦码专区| 亚洲三级黄色毛片| 色吧在线观看| 午夜福利成人在线免费观看| 久久99蜜桃精品久久| 一本一本综合久久| 一级黄色大片毛片| 免费搜索国产男女视频| 久久鲁丝午夜福利片| 哪里可以看免费的av片| 老师上课跳d突然被开到最大视频| 深夜a级毛片| 国产精品一区www在线观看| 免费无遮挡裸体视频| 久久久久久大精品| 女的被弄到高潮叫床怎么办| 日韩精品青青久久久久久| 久久久久九九精品影院| 一个人看的www免费观看视频| 国产精品爽爽va在线观看网站| 国产亚洲av片在线观看秒播厂 | 国产免费男女视频| 嫩草影院精品99| 国内精品久久久久精免费| 国产精品av视频在线免费观看| 少妇熟女欧美另类| 国产乱人视频| 亚洲欧美中文字幕日韩二区| 永久网站在线| 男人的好看免费观看在线视频| 国产成人freesex在线| 国产一区二区亚洲精品在线观看| 欧美最黄视频在线播放免费| 国产精品免费一区二区三区在线| 欧美另类亚洲清纯唯美| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 久久韩国三级中文字幕| 黄色配什么色好看| 日日干狠狠操夜夜爽| 91精品一卡2卡3卡4卡| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 美女国产视频在线观看| 欧美高清性xxxxhd video| 自拍偷自拍亚洲精品老妇| 精品一区二区三区视频在线| 我的老师免费观看完整版| 六月丁香七月| 大香蕉久久网| av在线播放精品| 色5月婷婷丁香| 国产一区二区在线av高清观看| 国产综合懂色| 国产精品免费一区二区三区在线| 内地一区二区视频在线| 久久这里只有精品中国| 久久精品国产亚洲av天美| 91av网一区二区| 麻豆精品久久久久久蜜桃| av在线蜜桃| 能在线免费看毛片的网站| 99久久九九国产精品国产免费| 少妇裸体淫交视频免费看高清| 国产午夜精品一二区理论片| 亚洲无线在线观看| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 国产午夜精品一二区理论片| 日韩强制内射视频| 日韩欧美在线乱码| 天堂√8在线中文| 观看免费一级毛片| 久久中文看片网| 亚洲第一电影网av| 99久久精品热视频| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 日日摸夜夜添夜夜爱| 国产精品电影一区二区三区| av又黄又爽大尺度在线免费看 | 亚洲人成网站在线观看播放| 久久久久久国产a免费观看| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频 | 久久精品久久久久久噜噜老黄 | 岛国毛片在线播放| 日本免费a在线| 在线播放无遮挡| 亚洲无线在线观看| 91精品一卡2卡3卡4卡| 色综合站精品国产| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 久久久久久大精品| 午夜视频国产福利| 最近视频中文字幕2019在线8| 看黄色毛片网站| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| 丰满人妻一区二区三区视频av| 国内久久婷婷六月综合欲色啪| 美女大奶头视频| 男人狂女人下面高潮的视频| 久久精品国产自在天天线| 中出人妻视频一区二区| 一进一出抽搐gif免费好疼| 久久综合国产亚洲精品| 尤物成人国产欧美一区二区三区| 日韩一本色道免费dvd| 嫩草影院精品99| 免费黄网站久久成人精品| 午夜福利在线观看免费完整高清在 | 1024手机看黄色片| 三级国产精品欧美在线观看| 成人av在线播放网站| 欧美精品一区二区大全| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看 | 国产91av在线免费观看| 久久99热这里只有精品18| 国产精品永久免费网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品综合久久久久久久免费| 国产淫片久久久久久久久| 成年女人看的毛片在线观看| 亚洲欧美中文字幕日韩二区| 久久久午夜欧美精品| 简卡轻食公司| 国产av在哪里看| 成年免费大片在线观看| www日本黄色视频网| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 中文字幕制服av| 国产不卡一卡二| 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 国产av一区在线观看免费| 色吧在线观看| 成人欧美大片| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 久久综合国产亚洲精品| 婷婷亚洲欧美| 插阴视频在线观看视频| 一区二区三区高清视频在线| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久亚洲av鲁大| 久久精品国产99精品国产亚洲性色| av免费观看日本| 中文字幕免费在线视频6| 亚洲成人久久爱视频| 久久精品人妻少妇| 免费看av在线观看网站| 国产高清激情床上av| 午夜久久久久精精品| 亚洲一级一片aⅴ在线观看| 久久久精品大字幕| 国国产精品蜜臀av免费| 国产午夜精品论理片| 69人妻影院| 亚洲经典国产精华液单| 春色校园在线视频观看| 在线观看av片永久免费下载| 51国产日韩欧美| 欧美又色又爽又黄视频| 国产精品久久久久久久久免| 色噜噜av男人的天堂激情| 女的被弄到高潮叫床怎么办| 免费av毛片视频| 99热这里只有是精品50| 综合色av麻豆| 久久久久国产网址| 校园人妻丝袜中文字幕| 三级经典国产精品| 97热精品久久久久久| 午夜福利在线观看免费完整高清在 | kizo精华| 99九九线精品视频在线观看视频| 国产毛片a区久久久久| 中国美女看黄片| 国产午夜福利久久久久久| 成人性生交大片免费视频hd| 最好的美女福利视频网| 精品99又大又爽又粗少妇毛片| 久久久成人免费电影| 亚洲在线自拍视频| 欧美一区二区国产精品久久精品| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| av福利片在线观看| 麻豆成人午夜福利视频| 人人妻人人澡欧美一区二区| 亚洲不卡免费看| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 九九热线精品视视频播放| 内射极品少妇av片p| 免费搜索国产男女视频| 国内精品美女久久久久久| 美女 人体艺术 gogo| 91av网一区二区| 精品久久久久久久久久久久久| 国产成年人精品一区二区| 午夜视频国产福利| 岛国在线免费视频观看| 欧美区成人在线视频| 成人性生交大片免费视频hd| 美女大奶头视频| 国产精品永久免费网站| 色哟哟·www| 亚洲av成人精品一区久久| 日本五十路高清| 三级毛片av免费| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 69人妻影院| 亚洲在久久综合| 久久久精品94久久精品| 精品国内亚洲2022精品成人| 亚洲av.av天堂| 亚洲图色成人| 五月伊人婷婷丁香| 麻豆精品久久久久久蜜桃| 国产乱人视频| 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜 | 赤兔流量卡办理| 亚洲熟妇中文字幕五十中出| 国产乱人偷精品视频| 18禁黄网站禁片免费观看直播| 99热全是精品| 日韩一本色道免费dvd| 蜜桃亚洲精品一区二区三区| 日韩欧美三级三区| kizo精华| 欧美成人一区二区免费高清观看| 男女啪啪激烈高潮av片| 中文字幕制服av| 亚洲18禁久久av| 亚洲无线观看免费| videossex国产| 大型黄色视频在线免费观看| 欧美另类亚洲清纯唯美| 国产国拍精品亚洲av在线观看| 欧美日本视频| 一级毛片我不卡| 久久精品人妻少妇| 高清毛片免费看| 久久精品影院6| 搞女人的毛片| 国内精品宾馆在线| 深夜a级毛片| 国产色爽女视频免费观看| 色哟哟·www| 午夜免费男女啪啪视频观看| 亚洲最大成人av| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院新地址| 不卡视频在线观看欧美| 成人午夜高清在线视频| 色综合色国产| 毛片一级片免费看久久久久| 高清午夜精品一区二区三区 | 国内揄拍国产精品人妻在线| 国产精品电影一区二区三区| 欧美zozozo另类| 两个人的视频大全免费| 精品日产1卡2卡| 久久精品影院6| 亚洲欧美日韩东京热| 一本一本综合久久| 18禁黄网站禁片免费观看直播| 精品久久久久久久久久免费视频| 观看美女的网站| 午夜福利在线观看免费完整高清在 | 免费无遮挡裸体视频| 麻豆国产av国片精品| 日本色播在线视频| 国内精品久久久久精免费| 精品免费久久久久久久清纯| av在线蜜桃| 特大巨黑吊av在线直播| 九色成人免费人妻av| 免费看光身美女| 在现免费观看毛片| 日韩欧美精品v在线| 99热这里只有是精品50| 国产黄片视频在线免费观看| 国产女主播在线喷水免费视频网站 | 精品久久国产蜜桃| 三级经典国产精品| 少妇人妻精品综合一区二区 | 蜜桃亚洲精品一区二区三区| 又粗又硬又长又爽又黄的视频 | 乱人视频在线观看| 夜夜看夜夜爽夜夜摸| 欧美3d第一页| 欧美精品国产亚洲| 少妇高潮的动态图| 国产美女午夜福利| 国产成人91sexporn| 中文资源天堂在线| 免费观看的影片在线观看| 精品人妻视频免费看| 国产精品麻豆人妻色哟哟久久 | 丰满人妻一区二区三区视频av| 色5月婷婷丁香| 亚洲四区av| 日韩中字成人| 赤兔流量卡办理| 一级毛片我不卡| 亚洲乱码一区二区免费版| 中文字幕人妻熟人妻熟丝袜美| 九九热线精品视视频播放| 日本成人三级电影网站| 日本撒尿小便嘘嘘汇集6| 免费电影在线观看免费观看| av在线亚洲专区| 男人和女人高潮做爰伦理| 看非洲黑人一级黄片| 国产探花在线观看一区二区| 久久韩国三级中文字幕| 亚洲精品久久久久久婷婷小说 | av在线亚洲专区| 男人和女人高潮做爰伦理| 色噜噜av男人的天堂激情| 赤兔流量卡办理| 最近手机中文字幕大全| 五月伊人婷婷丁香| 99久久精品一区二区三区| 中国美女看黄片| 亚洲成人精品中文字幕电影| 啦啦啦韩国在线观看视频| 性插视频无遮挡在线免费观看| 亚洲真实伦在线观看| 国产在线精品亚洲第一网站| 最近中文字幕高清免费大全6| 99久久久亚洲精品蜜臀av| 色尼玛亚洲综合影院| 久久综合国产亚洲精品| 99久久久亚洲精品蜜臀av| 国内久久婷婷六月综合欲色啪| 免费大片18禁| 国产免费一级a男人的天堂| 99热这里只有精品一区| 99在线人妻在线中文字幕| 久久久久国产网址| 国产中年淑女户外野战色| av免费在线看不卡| 国产探花极品一区二区| 日本欧美国产在线视频| 看非洲黑人一级黄片| kizo精华| 1024手机看黄色片| av国产免费在线观看| 国产乱人偷精品视频| 深爱激情五月婷婷| 亚洲国产高清在线一区二区三| 午夜精品国产一区二区电影 | 亚洲在线观看片| 六月丁香七月| 国产 一区精品| 天堂网av新在线|