• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Different Cloud Microphysics Schemes on the Meteorological Condition Prediction of Aircraft Icing

    2023-05-21 02:37:00,,,,,

    ,,,,,

    1.Engineering Techniques Training Center,Civil Aviation Flight University of China,Guanghan 618307,P.R.China;

    2.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,P.R.China;

    3.China Academy of Aerospace Aerodynamics,Beijing 100074,P.R.China

    Abstract: Flight safety is at risk due to complex icing meteorological conditions,highlighting the need for accurate prediction models that integrate geographical features.The mesoscale weather research and forecasting(WRF)model is utilized to simulate two icing events on Mt.Washington in the United States with four cloud microphysics configurations.Results indicate that the predicted liquid water content(LWC)and temperature are well matching results in the existing literature,and the Morrison configuration provides the most significant performance in the error analysis.Additionally,the sensitivity of horizontal resolution and cloud microphysics scheme for LWC and the mean effective diameter of cloud droplet(MVD)prediction is discussed,with higher horizontal resolution demonstrating greater accurate performance due to terrain-induced vertical motions.The study concludes with an analysis of icing intensity using the IC index,showing pronounced spatiotemporal variability and sensitivity to cloud microphysics schemes.Overall,this work enhances our understanding of cloud microphysics schemes and provides a base for selecting appropriate cloud microphysical solutions for icing weather prediction.

    Key words:aircraft icing;numerical prediction;cloud microphysics schemes;meteorological environment;weather research and forecasting(WRF)model

    0 Introduction

    When aircraft fly through high-altitude clouds,supercooled liquid droplets impact the aircraft surface,resulting in icing accretion,which perhaps causes severe aerodynamic and flight mechanical effects[1-2].Hence,aircraft icing is an essential hazard to flight safety.With the increase in flight density,there were 380 icing-related accidents from 2003 to 2008[3].Therefore,it is of urgent practical significance to develop reliable methods for predicting the regions of icing risk and its severity.The Federal Aviation Regulations(FAR)Part 25 Appendix C[4]has defined atmospheric icing conditions,stating that aircraft icing mainly depends on the icing meteorological environment,such as the cloud liquid water content(LWC),the mean effective diameter of cloud droplet(MVD),the relative humidity(RH),the ambient air temperature,pressure,and cloud extent,etc[4].

    Icing prediction algorithms are crucial to diagnos is of aircraft icing conditions.Over the years,various algorithms have been developed based on evolutionary forecasts and calculations of parameters related to icing.The first icing algorithm,developed by Schultz et al.[5],used temperature and RH to predict icing probability with thresholds derived from pilot reports.The National Center for Atmospheric Research(NCAR)proposed an icing severity index,which considered the atmosphere temperature,LWC,and MVD[6].Subsequently,three improved icing algorithms,known as T-RH algorithms,were developed by the Research Application Program(RAP),NCAR,and the National Aviation Weather Advisory Unit(NAWAU),respectively,based on combinations of the numerical weather prediction(NWP)model’s temperature,and RH and the vertical thermodynamic structure[7].The forecast icing potential(FIP)and current icing potential(CIP)techniques,based on decision trees and a fuzzy logic approach,were then introduced by NCAR to integrate various model variables,such as temperature,LWC,RH,and cloud top temperature[8-9].Subsequently,the improved CIP algorithm was proposed,which combined ground-based observations and sounding data to calculate the climate distributions of icing and supercooled large droplets[9-11].Overall,these algorithms have significantly contributed to the safety of aviation by enabling pilots to predict and avoid hazardous icing conditions.

    However,there are significant differences in the description of distinct cloud microphysics schemes used in NWP models.These differences include the number of particle classifications,densities,distribution spectra,and end-of-fall velocities,as well as the physical description and treatment of specific cloud microphysical processes.Nygaard et al.[12]compared the accuracy of explicit predictions with different cloud microphysics schemes at different horizontal resolutions and discussed how well the MVD can be diagnosed based on the optimal cloud microphysics scheme.Podolskiy et al.[13]conducted a series of quantitative comparisons of various numerical predictions with three different cloud microphysics schemes and concluded that the finer spatial resolution had a more accurate performance.Davis et al.[14]evaluated the icing model’s effects with a combination of nine parameterizations on icing events in the Swedish wind field.Merino et al.[15]used four microphysics and two planetary boundary layer schemes to investigate the capability of the weather research and forecasting(WRF)model to detect regions containing supercooled cloud drops.Diaz-Fernandez et al.[16]evaluated twenty different WRF model configurations in an initial analysis and used the best combination to diagnose the characteristic variables of the mountain wave associated with icing.

    Although the aforementioned studies highlight the understanding importance of cloud microphysics schemes on NWP models for atmosphere icing,the effect of different cloud microphysics schemes on the icing severity has not been further evaluated.In this paper,first,two icing events on Mt.Washington in the United State are simulated with four cloud microphysics configurations,and the predicted LWC and temperature are well matching with results from the literature.Second,the sensitivity of horizontal resolution and cloud microphysics scheme for LWC and MVD prediction is discussed.The IC index is employed for the analysis of icing intensity.Third,the spatiotemporal variability of icing severity under simulations with different microphysics schemes is evaluated,and the differences in the corresponding IC index distribution are revealed.Through this work,a better understanding of cloud microphysics schemes can be enhanced,and a basis for selecting appropriate cloud microphysical solutions for icing weather prediction can be provided.

    1 Numerical Model Setup

    The mesoscale numerical weather prediction model used in this study is the advanced research WRF(ARW)modeling system,version 4.2,which was jointly developed by the National Centers for Environmental Prediction(NCEP)and NCAR,among others.The WRF model is based on a compressible non-hydrostatic dynamical framework and a terrain-following coordinate system.It employs an Arakawa-C type grid to divide the computational domain in the horizontal direction,with multiple grid nesting capabilities and various parameterization schemes for atmospheric physical processes.Combined with global meteorological data and assimilation techniques,the WRF model is widely used in simulating of weather phenomena at air quality modeling,different temporal/spatial scales,atmospheric oceanic and idealized simulations[17],and it also has excellent performance for icing meteorological analysis[15-16].

    This study intends to analyze and evaluate the sensitivity of cloud microphysics schemes on icing meteorological condition prediction using two threeday cases.The first dataset(Case 1)was from April 1st to 3rd in 2013 and the second(Case 2)from March 10th to 13th in 2011.The Simulations take the geographic location of Mt.Washington(44.267 °N,71.3 °W,1 917 m),the tallest peak in the northwestern United States,as the center point of the simulated area.Initial and boundary conditions are furnished by NCEP reanalysis with 1° horizontal grid spacing resolution and a temporal resolution of 6 h.

    Numerical simulations are carried out by three levels of nested domains,with the inner model domain embedded into the outer model domain,to analyze the characteristics in detail that influences the formation of icing conditions,as shown in Fig.1.The horizontal resolutions of the domains are 9,3,and 1 km,and the vertical resolution is set to 27 linear levels.Besides,the real elevation of Mt.Washington is approximately 1 917 m,but the model height in the innermost domain is only 1 656 m,reduced by 261 m.More detailed domain configuration and topography are shown in Table 1.

    Fig.1 Schematic diagram of the nested domains

    Table 1 Domain configuration and Mt.Washington elevation in the WRF simulations

    The selected parameterization schemes include the Dudhia scheme,the Rapid Radiative Transfer Model(RRTM)scheme for shortwave and longwave radiation,and the Yonsei University(YSU)scheme for planetary boundary layer.The MM5 similarity surface layer scheme described by Fairall,and Noah Land Surface Model,are considered.The Kain-Fritsch(K-F)cumulus scheme is employed for nested domains.

    To optimize the parameterization schemes,four microphysics schemes that are essential in forecasting various types of hydrometeors,are evaluated:WRF single-moment six-class(WSM6)scheme[18],Thompson six-class microphysics scheme[19],Morrison six-class double-moment scheme[20],and the double-moment Milbrandt-Yau scheme[21].

    The scheme[18]considers the treatment of six types of hydrometeors including rain,water vapor,cloud water,snow,cloud ice,and graupel.This scheme is capable of modeling mixed-phase change processes and supercooled water,and treats the saturation adjustment processes of ice and water separately.It is particularly suitable for grid point studies where the grid distance is between cloud scale and mesoscale.

    The Thompson six-class microphysics scheme[19]incorporates prognostic equations for the mass concentration of five hydrometeors:Cloud water,cloud ice,rain,snow,and graupel.It has a great performance in the prediction of LWC,as special attention is paid to the formulation of the snow category.

    The Morrison six-class double-moment scheme[20],based on the full two-moment scheme,predicts the mass concentration of five hydrometeors in consistence with the Thompson scheme,as well as the number concentration of four species:Cloud ice,snow,rain,and graupel.The prediction of both the mass mixing ratio and number concentration of these four water species allows a more robust description of size distributions.

    The Milbrandt-Yau scheme[21]is also a full double-moment scheme,which shares many features with the Morrison two-moment scheme.However,one major difference is the calculation of the droplet action.The Milbrandt scheme allows the cloud number concentration to evolve.

    Three indicators are employed to evaluate the four microphysics schemes in this work:(1)Mean absolute error(MAE),(2)root mean squared error(RMAE),(3)mean absolute percentage error(MAPE).The indicator expressions are demonstrated as

    whereymeasandypredare the observed and the predicted values,respectively;Nis the quantity of samples.

    2 Validation of Numerical Model

    2.1 Validation of predicted temperature and LWC

    The icing meteorological conditions in the targeted domain is simulated by means of the four microphysics schemes,and the optimal parameterization scheme is determined through error analysis among the four schemes.The comparison between the observed and the predicted values of the temperature at 2 m and LWC at the domain’s center point for Case 1 is demonstrated in Figs.2,3,respectively,from 6:00 on April 1st to 18:00 on April 3rd in 2013,where the black dot represents the observed values,the red line represents the results in Ref.[22],and the purple,magenta,blue,and olive lines represent the WSM6,Milbrandt,Morrison,and Thompson schemes,respectively.

    It is evident that although there are deviations between the predicted values of the four microphysical process schemes and the observed values at certain individual time points,all the four schemes accurately predicted the temporal trends of temperature and LWC in Case 1,consistent with the literature.

    The error analysis of temperature and LWC prediction with four microphysics schemes is shown in Table 2.It demonstrates that each parameterization combination has an outstanding performance in temperature and LWC prediction,with a MAE of only about 0.75 ℃ and 0.12 g/m3.The RMSEs for the schemes are less than 0.970 and 0.18,and the MAPEs are less than 0.100 and 0.58,respectively,indicating that all parameterization combinations have sufficient numerical accuracy in temperature and LWC prediction.Continuous time series are depicted in the line graphs in Fig.3,however,the MAE,RMSE,and MAPE values are only based on the sporadic times when there are measurements available in the literature.In particular,the MAE,RMSE and MAPE of LWC in the literature are 0.116 g/m3,0.146,and 0.478,respectively,whereas the corresponding errors of the prediction with the Morrison scheme are only 0.120 g/m3,0.146,and 0.470.

    Fig.3 Comparison of LWC in different microphysics schemes in Case 1

    Table 2 Error analysis of temperature and LWC prediction

    As shown in Fig.4,there is a general improvement in MAE when increasing the resolution,as the finer horizontal resolution allows better prediction of cloud water due to terrain-induced vertical motions.Meanwhile,the choice of microphysics scheme is also verified to be quite sensitive in Fig.4.The Morrison microphysics scheme results in the best match between observations and simulations,with an MAE of 0.120 g/m3,compared to 0.123,0.134 and 0.141 g/m3for the Thompson,WSM6,and Milbrandt schemes,respectively.

    Fig.4 MAE of predicted LWC for simulations with various cloud microphysics schemes

    2.2 Prediction of MVD

    The particle spectra of hydrometeors can be described by different functions,resulting in major differences in the particle distribution and the treatment of particle spectral parameters.Observational studies show that the Gamma function can better describe the particle spectrum of hydrometeors in clouds[23].A generalized gamma distribution for the cloud liquid water can be described as follow[19]

    whereN(D) is the number of droplets per unit volume;N0the intercept parameter;andDthe particle diameter.μandλare the size distribution shape parameter and the slope parameter,respectively,given bywhereNcis the droplet concentration given as droplets per cubic centimeter;ρwthe density of water;andΓ( ) the gamma function.

    By solving the above equations,a diagnostic of MVD can be obtained[24]

    Based on the droplet concentration and the assumed size distribution,characteristic droplet sizes can be diagnosed,such as MVD,which is one of the largest uncertainties in the prediction of atmospheric icing.Among the four cloud microphysics schemes used,the Morrison and Thompson schemes apply only a fixed droplet number concentration,which is respectively set to 250 and 100 per cubic centimeter by default throughout the simulations[12,22].The Milbrandt configuration,on the other hand,could obtain the droplet concentration as output variables,while the WSM6 scheme cannot directly forecast the number concentration.Comparing the predicted MVD at the domain’s center point with the observed values from the literature,F(xiàn)ig.5 shows the results for simulations with the Morrison,Thompson,and Milbrandt microphysics schemes.Although some data points for these configurations are lost in the innermost model domain due to the lack of clouds,it is enough to evaluate three microphysics schemes.The simulations exhibit a systematic high bias,especially in results from Ref.[22]and the predictions by the Thompson scheme.

    Fig.5 Comparison of MVD with three different microphysics schemes in Case 1

    Fig.6 shows that predicted versus observed MVD using the above-mentioned three microphysics scheme.Compared to the Morrison configuration,MVD is more overestimated when the Thompson scheme is adapted.MAEs of the predicted MVD of three microphysics schemes are 4.131,5.786,and 4.493 μm,respectively,and the Morrison scheme also achieves the best performance among three schemes,with RMSE and MAPE of 4.690 and 0.346,respectively.It demonstrates that the Morrison scheme is capable of capturing the evolution of MVD changes more accurately.

    Fig.6 Predicted versus observed MVD using the Morrison,Thompson and Milbrandt microphysics schemes

    3 Analysis of Aircraft Icing Intensity

    The IC index recommended by International Civil Aviation Organization(ICAO),is employed to diagnose the icing severity in this study.The IC index as an initial diagnostic algorithm indeed has many drawbacks,such as ignoring the role of vertical thermodynamic structure and liquid water content,and generally overestimating the extent of icing areas,even indicating it in cloud-free areas.However,the IC index also has the advantages of being a simple diagnostic algorithm with high detection probability.Compared to others algorithm,the IC index can quickly diagnose the icing intensity.Thus,it is a good exploration to evaluate the sensitivity of micro-physical schemes to icing environment prediction using the IC index.Studies indicate that aircraft are most susceptible to ice accretion when flying in a temperature ranging from 0 ℃ to-14 ℃ or encountering large supercooled water droplets.The most severe ice accretion typically occurs between -5 ℃ and -9 ℃.The IC index can be determined based on the temperature and humidity range where ice is likely to accumulate[25-26]

    where RH is relative humidity with the unit of %,andtthe temperature with the unit of ℃.In Eq.(8),RH is used to linearly match the growth process of the number and size of water droplets in clouds,and the quadratic of temperature is utilized to fit the growth of water droplets.When RH is less than 50% ortexceeds the range from 0 ℃ to -14 ℃,the droplet growth rate is assumed to be 0,and no ice accretion is considered to occur.

    According to FAR Part 25 Appendix C[4],aircraft icing is primarily influenced by meteorological factors and flight status.Predicting the icing meteorological environments based on the WRF model can obtain the spatiotemporal distributions of meteorological parameters,such as atmospheric temperature,air pressure,LWC,and MVD.Furthermore,the IC index in the target region can be calculated based on Eq.(8).Specified configurations of the WRF model are discussed in Section 1.

    The predicted IC index from the Morrison configuration in Case 1 is taken as an example,and Figs.7,8 exhibit the IC index contours of altitude layerη=6 at different times on April 1st and of altitude layerη=6,10,14 at 06:00 on April 1st.Figs.7,8 demonstrate that the IC index varies significantly with both time and elevation.

    Fig.7 IC index contours of layer η=6 at different time on April 1st in Case 1

    According to the definition of the IC index,the icing intensity forecast results can be classified into four categories:No icing,light icing,moderate icing,and severe icing.The specific classification criteria are shown in Table 3.During moderate icing,high rates of accretion on the airframe may cause airspeed loss,which may worsen into severe icing if the aircraft remains exposed to icing for an extended period of time.Therefore,in the case of moderate icing,it is important to activate the aircraft’s anti-icing system or perform evasive maneuvers that may significantly impact the aircraft’s performance[27].

    Fig.8 IC index contours of different altitude layers at 06:00 on April 1st in Case 1

    Table 3 Aircraft icing intensity classification

    To evaluate different cloud microphysical schemes,the IC index threshold of 50 is selected.This means that a region is at moderate/severe icing risk when the IC index exceeds this threshold.Subsequently,the spatial points within the target region,which is the innermost region of the icing weather prediction,are screened.Fig.9 presents a group of comparisons of the number of spatial grid points that satisfy the moderate icing condition at different height layers at 06:00,12:00,and 18:00 on April 1st.As shown in Fig.9,icing risk areas of varying degrees are present at different time as the altitude layer increasing.The icing risk areas at 06:00,12:00,and 18:00 are mainly concentrated in height layers ofη=5—14 and show a trend of increasing and then decreasing.In general,the predictions by the Milbrandt and Thompson schemes show a more exaggerated performance,compared to those of the Morrison configuration.Conversely,the predictions by the WSM6 scheme are more conservative besides at 18:00.

    Fig.9 Comparison of total number of space grid points reaching moderate icing intensity at different altitudes in Case 1

    Meanwhile,to validate four microphysics schemes,ERA5 reanalysis data with 0.25° horizontal grid spacing resolution provided by the European Centre for Medium-Range Weather Forecasts(ECMWF)is utilized.With the WRF preprocessing system.ERA5 reanalysis data is interpolated into the innermost domain,and the spatial points reaching moderate icing risk are screened.Although this method may overlook subtle variations in the local atmosphere and further overestimates the number of spatial points in the risk zone,it is a reliable way to verify the trends of along the altitude in the icing risk area.In Fig.9,the red solid and dash line indicate the number of interpolated spatial points reaching moderate and severe icing intensity,respectively.All four microphysics schemes overestimate the height level of the icing risk zone.

    Further analysis of the IC index contours under four microphysics schemes is shown in Fig.10.Similar to the previously conclusions,the icing intensity predicted by the Milbrandt and Thompson schemes are more serious compared to that by mean of the Morrison scheme,while the results of the WSM6 scheme are milder,particularly in the southern part of the target area.

    Fig.10 IC index contours of layer η=11 at 06:00 on April 1st with four microphysics schemes in Case 1

    To further investigate the reason for the overestimation,the temperature,relative humidity and IC index at the center point of the target area at 06:00 on April 1st in Case 1 are plotted along the altitude in Fig.11.In Case 1,all four microphysics schemes accurately predict the trend of temperature and relative humidity along the altitude,but the predicted values are generally higher than the ERA5 data.For example,the ERA5 data shows a temperature of-14 ℃ at about 730 hPa isobaric surface,while the predicted temperature of all four schemes decreases to this value only at about 600 hPa isobaric surface.Additionally,the numerical accuracy of relative humidity is also underestimated.It is also shown that the sensitivity of each scheme to RH is different,and the reason for this may lie in the description of different cloud microphysics schemes and the treatment of specific cloud microphysics processes.These above-mentioned discrepancies also lead to the overestimation of the height level of the icing area in some extent.

    Fig.11 Variation of temperature,RH,and IC index along the altitude at 06:00 on April 1st in Case 1

    As shown in Figs.12,13,a similar analysis as in Case 1 is carried out for Case 2.Case 2 is different from Case1 in that rime measurements are interrupted mid-campaign by a rain event,and therefore Case 1 provides an opportunity to assess whether or not the simulations can switch gears from riming conditions to rain and back[22].Due to the rainfall,the icing risk area in Case 2 is relatively more concentrated near the ground,with a large icing area at 800—700 hPa at 06:00 on March 10th in particular.Although there is still an overestimation of the height of the icing area,the numerical accuracy in Case 2 is very close to the ERA5 data,especially at 06:00 on March 10th and 12:00 on March 12th.

    Fig.12 Comparison of total number of space grid points reaching moderate icing intensity at different altitudes in Case 2

    In the analysis of temperature,RH,and IC index in the variation along the elevation in Case 2 are shown in Fig.13,and similar conclusions as in Fig.11 can be drawn.Compared to about 690 hPa where the temperature of the ERA5 data reduces to-14 ℃,the predicted temperature by four microphysics schemes decreases to this limitation until 500 hPa isobaric surface,which leads to a wider range of predicted icing risk areas in the altitude direction.Besides,the underestimated but consistent trend of RH predictions also causes deviations between the actual and predicted icing intensity.

    Fig.13 Variation of temperature,RH,and IC index along the altitude at 06:00 on March 10th in Case 2

    4 Conclusions

    The performance of four cloud microphysics schemes is evaluated based on the simulations of two icing events on Mt.Washington in the U.S.,and the spatiotemporal variability of icing severity under simulations with different microphysics schemes is also assessed utilizing the IC icing index.Some conclusions could be drawn as follow:

    (1)LWC and temperature values predicted by the outstanding WRF model are validated and the Morrison configuration obtains the most significant performance in the error analysis.

    (2)In addition to the cloud microphysics scheme,horizontal resolution is also a key element for successful prediction,because terrain-induced vertical motions with the finer horizontal resolution are more beneficial for the prediction of cloud water.

    (3)The icing severity exhibits a very pronounced spatiotemporal variability and sensitivity to cloud microphysics scheme.The reason for deviations of icing intensity between the prediction and ERA5 reanalysis data is initially interpreted.Meanwhile,in view of the various shortcomings of the IC index algorithm,a more accurate icing intensity forecasting algorithm should be investigated in future.

    色5月婷婷丁香| 国内精品美女久久久久久| 99久久成人亚洲精品观看| 免费观看的影片在线观看| 色综合亚洲欧美另类图片| 内射极品少妇av片p| 亚洲久久久久久中文字幕| 久久中文看片网| 两个人的视频大全免费| 国产精品1区2区在线观看.| 日本在线视频免费播放| av女优亚洲男人天堂| 久久亚洲真实| 99在线人妻在线中文字幕| 五月伊人婷婷丁香| 三级男女做爰猛烈吃奶摸视频| 啦啦啦韩国在线观看视频| 一进一出抽搐动态| 亚洲欧美日韩卡通动漫| 中文字幕熟女人妻在线| 国产三级在线视频| 国产午夜福利久久久久久| 亚洲精品在线观看二区| 欧美极品一区二区三区四区| 亚洲人与动物交配视频| 午夜精品在线福利| 麻豆国产97在线/欧美| 日本 av在线| 22中文网久久字幕| 亚洲成人免费电影在线观看| 人人妻人人看人人澡| 亚洲av电影不卡..在线观看| 高清毛片免费观看视频网站| 精品一区二区三区av网在线观看| 国产成年人精品一区二区| 色综合色国产| 大型黄色视频在线免费观看| 午夜影院日韩av| av黄色大香蕉| 亚洲人成伊人成综合网2020| 97热精品久久久久久| 国产高清视频在线观看网站| 色噜噜av男人的天堂激情| 身体一侧抽搐| 欧美日韩瑟瑟在线播放| 一本精品99久久精品77| 色av中文字幕| 国产视频内射| 国产亚洲av嫩草精品影院| 岛国在线免费视频观看| 久久中文看片网| av国产免费在线观看| 成人国产一区最新在线观看| 麻豆成人av在线观看| av专区在线播放| 成人亚洲精品av一区二区| 精品久久久久久成人av| 久久久色成人| 深夜精品福利| 国产高清激情床上av| 色综合色国产| 九色国产91popny在线| 成年免费大片在线观看| 别揉我奶头~嗯~啊~动态视频| 岛国在线免费视频观看| 国产精品三级大全| 精品一区二区免费观看| 国产主播在线观看一区二区| 色在线成人网| 免费看a级黄色片| 亚洲精品亚洲一区二区| 12—13女人毛片做爰片一| 亚洲专区国产一区二区| 免费无遮挡裸体视频| 久久精品国产亚洲av涩爱 | 亚洲第一区二区三区不卡| 天天一区二区日本电影三级| 国产伦在线观看视频一区| 99热精品在线国产| 欧美国产日韩亚洲一区| 国产美女午夜福利| 国产真实乱freesex| 日韩高清综合在线| 在线观看午夜福利视频| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利在线看| 国产精品国产三级国产av玫瑰| 91av网一区二区| 日本与韩国留学比较| 色在线成人网| 最好的美女福利视频网| 日本免费一区二区三区高清不卡| 亚洲第一区二区三区不卡| .国产精品久久| 黄色配什么色好看| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区四那| 国产激情偷乱视频一区二区| 国产综合懂色| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av天美| 狂野欧美白嫩少妇大欣赏| 麻豆成人午夜福利视频| 国产成人影院久久av| 欧美在线一区亚洲| 亚洲五月天丁香| 日韩高清综合在线| 国模一区二区三区四区视频| 亚洲aⅴ乱码一区二区在线播放| 欧美成人性av电影在线观看| 日本 欧美在线| 色精品久久人妻99蜜桃| 一本久久中文字幕| 欧美在线一区亚洲| 精品久久久久久久末码| 日本爱情动作片www.在线观看 | 少妇被粗大猛烈的视频| 在线观看一区二区三区| 少妇被粗大猛烈的视频| 午夜a级毛片| 少妇被粗大猛烈的视频| 久久久成人免费电影| 变态另类丝袜制服| 琪琪午夜伦伦电影理论片6080| 天美传媒精品一区二区| 最近中文字幕高清免费大全6 | 在线观看午夜福利视频| 最近最新中文字幕大全电影3| av女优亚洲男人天堂| 好男人在线观看高清免费视频| 久久精品国产亚洲网站| 成人鲁丝片一二三区免费| 女的被弄到高潮叫床怎么办 | 18禁黄网站禁片免费观看直播| 在线观看一区二区三区| 97超视频在线观看视频| 欧美黑人欧美精品刺激| 十八禁网站免费在线| 少妇丰满av| avwww免费| 国产不卡一卡二| 日韩精品青青久久久久久| 久久久午夜欧美精品| 18禁黄网站禁片免费观看直播| 国国产精品蜜臀av免费| 美女大奶头视频| 国产真实伦视频高清在线观看 | 亚洲av免费高清在线观看| 在线观看美女被高潮喷水网站| 男女边吃奶边做爰视频| 精品久久久久久久久av| 亚洲一级一片aⅴ在线观看| 美女黄网站色视频| 国产精品国产三级国产av玫瑰| 久久精品影院6| 露出奶头的视频| 一级毛片久久久久久久久女| 69av精品久久久久久| 亚洲国产精品成人综合色| 天天躁日日操中文字幕| 亚洲av熟女| 日本 欧美在线| 性色avwww在线观看| 美女 人体艺术 gogo| 欧美成人免费av一区二区三区| 亚洲成a人片在线一区二区| 午夜福利成人在线免费观看| 日本三级黄在线观看| 亚洲美女搞黄在线观看 | 蜜桃亚洲精品一区二区三区| 亚洲欧美精品综合久久99| 日本三级黄在线观看| 啦啦啦韩国在线观看视频| 尾随美女入室| 一个人看的www免费观看视频| 变态另类成人亚洲欧美熟女| 网址你懂的国产日韩在线| 欧美最新免费一区二区三区| 国产毛片a区久久久久| 亚洲国产高清在线一区二区三| 97碰自拍视频| 婷婷色综合大香蕉| 久久精品国产亚洲av香蕉五月| 少妇的逼好多水| 精品乱码久久久久久99久播| 精品久久国产蜜桃| 听说在线观看完整版免费高清| 国产伦人伦偷精品视频| 一本久久中文字幕| 熟女人妻精品中文字幕| 色视频www国产| 国产v大片淫在线免费观看| 男人狂女人下面高潮的视频| 十八禁国产超污无遮挡网站| 日韩在线高清观看一区二区三区 | 国产午夜福利久久久久久| 999久久久精品免费观看国产| 一进一出抽搐gif免费好疼| 成人毛片a级毛片在线播放| 久久精品国产自在天天线| 九九久久精品国产亚洲av麻豆| 少妇的逼好多水| 久久精品影院6| 欧美一区二区亚洲| 麻豆一二三区av精品| 国产中年淑女户外野战色| 亚洲图色成人| 在线播放无遮挡| 三级国产精品欧美在线观看| 色哟哟哟哟哟哟| 2021天堂中文幕一二区在线观| 日韩精品有码人妻一区| 日本精品一区二区三区蜜桃| 国产精品爽爽va在线观看网站| 18禁裸乳无遮挡免费网站照片| 久久久久性生活片| 两个人视频免费观看高清| 桃色一区二区三区在线观看| 赤兔流量卡办理| 国产一区二区三区视频了| 美女黄网站色视频| 18禁裸乳无遮挡免费网站照片| 九色国产91popny在线| 色哟哟哟哟哟哟| 亚洲av一区综合| 老司机午夜福利在线观看视频| 国产精品亚洲美女久久久| 美女免费视频网站| 天美传媒精品一区二区| 又爽又黄无遮挡网站| 日本熟妇午夜| 一级a爱片免费观看的视频| 国产精品爽爽va在线观看网站| 在线免费观看不下载黄p国产 | 精品人妻1区二区| 精品久久国产蜜桃| 俺也久久电影网| 亚洲在线观看片| 搡老岳熟女国产| 简卡轻食公司| 中文亚洲av片在线观看爽| 乱人视频在线观看| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 热99re8久久精品国产| 欧美日韩国产亚洲二区| 国产国拍精品亚洲av在线观看| 99久国产av精品| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 色综合婷婷激情| 日日撸夜夜添| 欧美3d第一页| 午夜福利高清视频| 免费搜索国产男女视频| 国产色婷婷99| 国产免费av片在线观看野外av| 中文字幕精品亚洲无线码一区| 日韩中文字幕欧美一区二区| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 校园人妻丝袜中文字幕| 亚洲性久久影院| 日本精品一区二区三区蜜桃| 国产综合懂色| 国产主播在线观看一区二区| 久久草成人影院| 免费在线观看影片大全网站| 日韩高清综合在线| 欧美最新免费一区二区三区| 91久久精品国产一区二区成人| 欧美高清成人免费视频www| 深夜精品福利| 十八禁国产超污无遮挡网站| 一进一出好大好爽视频| 日本在线视频免费播放| 欧美日韩精品成人综合77777| 99热6这里只有精品| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 日本a在线网址| 精品久久久久久久人妻蜜臀av| 国产精品免费一区二区三区在线| 高清在线国产一区| avwww免费| 国内精品久久久久久久电影| 我的老师免费观看完整版| 欧美xxxx黑人xx丫x性爽| 在线国产一区二区在线| a级毛片免费高清观看在线播放| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 久久99热6这里只有精品| 我的老师免费观看完整版| 欧美成人一区二区免费高清观看| 老熟妇乱子伦视频在线观看| 一夜夜www| 少妇的逼水好多| 久久精品影院6| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 成熟少妇高潮喷水视频| 国产 一区精品| 51国产日韩欧美| 熟女电影av网| 欧美激情在线99| 搞女人的毛片| 日本爱情动作片www.在线观看 | 日韩一本色道免费dvd| 国内精品宾馆在线| 亚洲专区国产一区二区| 欧美成人一区二区免费高清观看| av福利片在线观看| 97热精品久久久久久| 99久久九九国产精品国产免费| a级毛片a级免费在线| 国产色爽女视频免费观看| 久久久成人免费电影| 中文字幕免费在线视频6| 国产精品久久久久久亚洲av鲁大| bbb黄色大片| 一区二区三区高清视频在线| 国产精品一区www在线观看 | 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 国模一区二区三区四区视频| 日本熟妇午夜| 亚洲aⅴ乱码一区二区在线播放| 亚洲va日本ⅴa欧美va伊人久久| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 国产男人的电影天堂91| 国产在线精品亚洲第一网站| 高清日韩中文字幕在线| av黄色大香蕉| 亚州av有码| 国产大屁股一区二区在线视频| 国产女主播在线喷水免费视频网站 | 国产精品女同一区二区软件 | 精品久久久久久久末码| 欧美日韩综合久久久久久 | 一个人看视频在线观看www免费| av在线天堂中文字幕| 99精品在免费线老司机午夜| 久久精品影院6| 午夜精品一区二区三区免费看| 国产精品国产三级国产av玫瑰| 天堂影院成人在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲在线自拍视频| 国产国拍精品亚洲av在线观看| 午夜精品一区二区三区免费看| 亚洲av美国av| 联通29元200g的流量卡| 欧美日韩中文字幕国产精品一区二区三区| 国产精品人妻久久久久久| a级毛片a级免费在线| 少妇的逼水好多| 成人特级av手机在线观看| 成人精品一区二区免费| 91久久精品国产一区二区三区| 波多野结衣巨乳人妻| 亚洲精品粉嫩美女一区| 午夜日韩欧美国产| 最近视频中文字幕2019在线8| 国产精品人妻久久久久久| 日韩强制内射视频| 特级一级黄色大片| 日韩欧美免费精品| 国产精品国产高清国产av| 69av精品久久久久久| 99久久九九国产精品国产免费| 免费人成视频x8x8入口观看| 网址你懂的国产日韩在线| 亚洲精华国产精华精| 又紧又爽又黄一区二区| 亚洲四区av| 成年女人看的毛片在线观看| 精品欧美国产一区二区三| 老司机午夜福利在线观看视频| 亚洲国产精品sss在线观看| 免费看日本二区| 精品久久久久久,| 成年女人毛片免费观看观看9| 少妇人妻一区二区三区视频| 蜜桃久久精品国产亚洲av| 99久久精品热视频| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久,| 成人精品一区二区免费| 超碰av人人做人人爽久久| 老司机深夜福利视频在线观看| 日韩欧美免费精品| 欧美精品啪啪一区二区三区| 一区二区三区免费毛片| 精品一区二区三区人妻视频| 久99久视频精品免费| 嫩草影视91久久| 国产日本99.免费观看| 亚洲精品在线观看二区| 91麻豆av在线| 国产精品久久久久久精品电影| 亚洲第一电影网av| 国产精品一区二区三区四区久久| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 欧美+日韩+精品| 欧美一区二区亚洲| 国产欧美日韩精品一区二区| 日日撸夜夜添| 99热精品在线国产| 成年女人永久免费观看视频| 男女那种视频在线观看| 久久久久久久久大av| 中文在线观看免费www的网站| 久久精品国产清高在天天线| 黄色欧美视频在线观看| 亚洲国产欧洲综合997久久,| 午夜日韩欧美国产| 国产高清有码在线观看视频| 国产精品98久久久久久宅男小说| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 日韩亚洲欧美综合| av在线观看视频网站免费| 国产精品久久久久久久久免| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3| 免费高清视频大片| 波多野结衣巨乳人妻| 一级毛片久久久久久久久女| 婷婷精品国产亚洲av| videossex国产| 日本黄色视频三级网站网址| 热99re8久久精品国产| 国产一区二区三区av在线 | 乱系列少妇在线播放| 悠悠久久av| aaaaa片日本免费| av国产免费在线观看| 亚洲不卡免费看| 国产成年人精品一区二区| 中文字幕久久专区| 亚洲最大成人av| 欧美精品啪啪一区二区三区| 春色校园在线视频观看| 国产乱人视频| 亚洲av不卡在线观看| 91麻豆精品激情在线观看国产| 大又大粗又爽又黄少妇毛片口| 舔av片在线| 日本熟妇午夜| 美女cb高潮喷水在线观看| 成人av一区二区三区在线看| 成人二区视频| 色吧在线观看| 真人做人爱边吃奶动态| 最近视频中文字幕2019在线8| 又黄又爽又免费观看的视频| 18禁裸乳无遮挡免费网站照片| 国产精品综合久久久久久久免费| 美女 人体艺术 gogo| 精品久久久久久久久亚洲 | 国产一区二区三区在线臀色熟女| 99久久九九国产精品国产免费| 99久久精品国产国产毛片| 男人舔奶头视频| 精品午夜福利视频在线观看一区| 91麻豆精品激情在线观看国产| 国产av麻豆久久久久久久| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 国产亚洲精品久久久com| 国产精品久久久久久亚洲av鲁大| 亚洲男人的天堂狠狠| 国产精品一区二区三区四区久久| 国产精品亚洲美女久久久| 精品久久久久久久末码| 国产乱人视频| 亚洲男人的天堂狠狠| 十八禁网站免费在线| 久久久久免费精品人妻一区二区| 欧美成人一区二区免费高清观看| 91午夜精品亚洲一区二区三区 | 精品乱码久久久久久99久播| 看片在线看免费视频| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 精华霜和精华液先用哪个| 男女那种视频在线观看| 深爱激情五月婷婷| 亚洲成人免费电影在线观看| 亚洲成a人片在线一区二区| 国产伦精品一区二区三区视频9| 免费人成在线观看视频色| 校园人妻丝袜中文字幕| 永久网站在线| 免费看日本二区| 免费不卡的大黄色大毛片视频在线观看 | 少妇高潮的动态图| 在线免费十八禁| 亚洲成人精品中文字幕电影| 精品人妻一区二区三区麻豆 | 91久久精品国产一区二区成人| 日本黄大片高清| 久久久国产成人精品二区| 国产精品久久久久久精品电影| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 免费在线观看影片大全网站| 女的被弄到高潮叫床怎么办 | 不卡视频在线观看欧美| 春色校园在线视频观看| 亚洲美女黄片视频| 又黄又爽又刺激的免费视频.| 欧美性猛交╳xxx乱大交人| 日本成人三级电影网站| 欧美xxxx性猛交bbbb| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久噜噜| 91久久精品国产一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 欧美xxxx性猛交bbbb| 国产高清激情床上av| 国产精品野战在线观看| 夜夜爽天天搞| 欧美+亚洲+日韩+国产| 别揉我奶头 嗯啊视频| 色哟哟·www| 黄色配什么色好看| 人妻少妇偷人精品九色| 欧美日韩精品成人综合77777| 亚洲三级黄色毛片| 日本a在线网址| 免费在线观看影片大全网站| 欧美极品一区二区三区四区| 亚洲18禁久久av| 欧美+日韩+精品| 男人和女人高潮做爰伦理| 亚洲成人精品中文字幕电影| 亚洲在线观看片| 91在线精品国自产拍蜜月| 12—13女人毛片做爰片一| 欧美另类亚洲清纯唯美| 国产黄a三级三级三级人| 国产精品乱码一区二三区的特点| 在线免费十八禁| 午夜a级毛片| 可以在线观看毛片的网站| 夜夜爽天天搞| 午夜免费成人在线视频| 一本精品99久久精品77| 欧美日韩乱码在线| 99久久久亚洲精品蜜臀av| 国产精品久久电影中文字幕| 国产一区二区亚洲精品在线观看| av福利片在线观看| 日本黄色片子视频| 亚洲熟妇中文字幕五十中出| 婷婷亚洲欧美| 少妇人妻精品综合一区二区 | 日本黄大片高清| 成人亚洲精品av一区二区| 久久久久久久午夜电影| 亚洲精品一卡2卡三卡4卡5卡| 日本撒尿小便嘘嘘汇集6| 亚洲av美国av| 又黄又爽又免费观看的视频| 狂野欧美白嫩少妇大欣赏| 高清日韩中文字幕在线| 久久精品国产亚洲av涩爱 | 午夜免费激情av| 日本色播在线视频| 99精品在免费线老司机午夜| 男人舔奶头视频| 老师上课跳d突然被开到最大视频| 欧美日韩乱码在线| 欧美一区二区精品小视频在线| 国内久久婷婷六月综合欲色啪| or卡值多少钱| 国产午夜福利久久久久久| 亚洲av电影不卡..在线观看| 九九热线精品视视频播放| 国产白丝娇喘喷水9色精品| aaaaa片日本免费| 五月玫瑰六月丁香| 看十八女毛片水多多多| 久久99热6这里只有精品| 国产亚洲91精品色在线| h日本视频在线播放| 两人在一起打扑克的视频| 美女高潮喷水抽搐中文字幕| 免费看光身美女| 成人性生交大片免费视频hd| 日韩精品有码人妻一区| 日日摸夜夜添夜夜添av毛片 | 深夜a级毛片| 看片在线看免费视频| 桃红色精品国产亚洲av| 国产不卡一卡二| 韩国av一区二区三区四区| 精品一区二区三区视频在线| 他把我摸到了高潮在线观看| 伊人久久精品亚洲午夜| 能在线免费观看的黄片| 丰满的人妻完整版| 久久久久久久久久成人| 可以在线观看的亚洲视频| 国产免费av片在线观看野外av| 欧美绝顶高潮抽搐喷水| 三级毛片av免费| 91麻豆精品激情在线观看国产|