• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-icing Skin with Micro-nano Structure Inspired byFargesia Qinlingensis

    2023-05-21 02:36:58,*,*

    ,*,*

    1.Key Lab of Micro/Nano Systems for Aerospace,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,P.R.China;

    2.Shaan'xi Key Lab of MEMS/NEMS,Northwestern Polytechnical University,Xi’an 710072,P.R.China

    Abstract: Aircraft icing has a significant impact on flight safety,as ice accumulation on airfoils and engines can cause aircraft stalls.Developing anti-icing technology that can adapt to harsh and cold environment presents a challenge.Here,we propose a new anti-icing skin with micro-nano structure inspired by the bamboo leaf called Fargesia qinlingensis.A multilayer non-uniform height(MNH)micro-nano structure is proposed based on the Fargesia qinlingensis surface structure.The anti-icing mechanism of the MNH micro-nano structure is revealed.The flexible large-area MNH micro-nano structure is fabricated based on hierarchical assembly method.Compared with the smooth surface,the ice adhesion strength of the prepared bio-inspired surface is reduced by 80%,indicating that the MNH micro-nano structure inspired by Fargesia qinlingensis has ice-phobic effect.Based on this,an anti-icing hybrid skin based on bionics and electric heating is developed.The anti-icing hybrid skin has successfully completed the anti-icing function flight test on the UAV.To realize the effective anti-icing function under super cold conditions,the anti-icing hybrid skin has been applied on a certain type of UAVs.The bio-inspired anti-icing skin has broad application prospects in large transport aircraft,helicopters,wind power generation,and high-speed trains.

    Key words:aircraft anti-icing;bio-mimic surface;micro-nano structure;functional aircraft skin

    0 Introduction

    Aircraft icing has great impact on the flight safety,and the anti-icing technology for aircraft in harsh and cold environment is a challenge[1-2].According to the International Civil Aviation Organization’s “2020—2022 Global Aviation Safety Plan”,aircraft icing is still one of the important issues for the global aviation industry.However,the existing anti-icing technologies for aircraft such as liquid,pneumatic,gas-thermal,and electric-thermal methods[3-6]generally have the problems of large load and high energy consumption,so they cannot be used for aircraft with small load and low power,such as unmanned aerial vehicles(UAVs)[7-8].

    The biomimetic micro-nano structure surface provides a promising direction for anti-icing research[9].Since Barthlott et al.[10]proposed the “l(fā)otus effect” in 1997,the anti-icing effect achieved by the superhydrophobic surface has become a popular research topic[11].Superhydrophobicity generally refers to a surface where the three-phase contact angle is greater than 150°,and the contact angle hysteresis is less than 10°.The water droplets on the superhydrophobic surface are likely to bounce,which greatly shortens the solid-liquid contact time.Moreover,because the superhydrophobic surface is usually a regular array structure,it reduces the probability of ice nucleation and increases the delay time of ice formation[12].Furthermore,researchers proposed anti-icing surfaces inspired by various animals and plants[13],such as rose petals[14],butterfly wings[15],rice leaves[16].These studies are all based on the superhydrophobic phenomenon of living organisms in nature,imitating their microstructure,and preparing the anti-icing surfaces through photolithography,mechanical processing,electrochemical deposition,femtosecond laser processing and other methods[17-21].However,recent studies have pointed out the shortcomings of superhydrophobic surfaces in outdoor environments[22-23].Under the impact of outdoor rainwater,wind load,etc.,some tiny water droplets will infiltrate the surface microstructure,which will reduce the superhydrophobic performance and eventually lead to the failure of anti-icing.

    Many unique phenomena in nature are the results of thousands of years of evolution to adapt to the environment.Although the bionic superhydrophobic surface has the anti-icing effect,these plants are not in direct contact with ice and snow after all.We find that there is a unique plant in Qinling Mountains— Fargesia qinlingensis,which has a surface that is not easily adhered to ice and snow,as shown in Fig.1.As the climate boundary,since 1980—2016,there have been 114 regional alpine snow events in Qinling Mountains with an average time of 16 d each time.As an evergreen plant,F(xiàn)argesia qinlingensis can keep its leaves basically free of ice and snow in Qinling Mountains at an altitude of 1 500 m,showing excellent anti-icing effect.

    Fig.1 Anti-icing performance of Fargesia qinlingensis leaves

    A multilayer non-uniform height(MNH)micro-nano structure is proposed based on the Fargesia qinlingensis surface structure.The anti-icing mechanism of the MNH micro-nano structure is elucidated,and a fabrication method based on hierarchical assembly is provided for preparing flexible,large-area MNH micro-nano structures.An anti-icing skin based on bionics and electric heating is developed.The anti-icing skin has successfully completed the anti-icing function flight test on small-to-mediumsized UAVs,and it has been applied on a certain type of UAVs.

    1 Anti-icing Mechanism of Fargesia Qinlingensis

    The surface structure and chemicals of the Fargesia qinlingensis leaves are analyzed.The leaves are from the watershed at Fengyu valley in Qinling Mountains.Plants in good growth condition are selected,and 5 leaves with the length of no less than 4 cm are selected from each plant.Leaf samples are washed with ethanol immediately after harvest,and sealed in test tubes filled with deionized water.The time from harvest to experiment is less than 6 h to ensure freshness.Scanning electron microscopy(VEGA3,SBH,TESCAN Company Ltd)is used to observe the morphology of leaf samples,and the results are shown in Fig.2.The leaf surface of Fargesia qinlingensis has a multilayer structure with the scale covering a range from 100 μm to 100 nm.Its multiscale structure is composed of four layers:The first layer is columnar structures arranged with regular spacing,with a height of about 50 μm;the second layer is a drop-like structure arranged along the leaf growth direction,with a height of 20 μm and spacing of 100 μm;the third layer is composed of densely arranged papillae structures with a diameter of 5 μm;the fourth layer is nanoscale three-dimensional sheet structure.

    Fig.2 SEM images of MNH micro-nano structure of Fargesia qinlingensis

    The unique MNH micro-nano structure of Fargesia qinlingensis is the key to its ability to repel ice.For common regular array microstructures,supercooled microscopic water droplets will infiltrate into the gaps of the structure,which will weaken the superhydrophobicity and lead to surface icing.At the same time,the ice embedded in the structure will also produce the mechanical interlocking,increasing the ice adhesion strength.However,the MNH micro-nano structure of Fargesia qinlingensis is conducive to the bouncing of supercooled water droplets,and enhances the anti-wetting ability.Even if some water droplets fail to leave the surface in time and freeze eventually because of the high liquid water content and strong airflow,the ice adhesion strength is relatively low.This is because the multilayer and multiscale micro-nano structure forms more cavities,and the ice on top is more likely to generate local stress concentration.Therefore,the ice-solid interface tends to produce micro-cracks,which effectively reduces the adhesion strength.The schematic diagram of anti-icing mechanism of Fargesia qinlingensisis shown in Fig.3.

    Fig.3 Schematic diagram of the anti-icing mechanism of Fargesia qinlingensis

    2 Fabrication of Anti-icing Skin Inspired by Fargesia Qinlingensis

    The fabrication of large-scale and complex topographical structures has always been a challenge for micro-nano processing technology.The topography of Fargesia qinlingensis involves structures at different scales.Using a single mask etching method cannot produce multilayer micro-nano structures,and adding masks to achieve structures with different heights is also difficult.Here,we propose a fabrication method based on hierarchical assembly to realize a flexible large-area MNH micro-nano structure.First,large-area single-layer structure surfaces are prepared.Then,the layers are combined by adjusting the interfacial adhesion force,and a large-area flexible multi-layer structure is obtained.The schematic diagram of the fabrication process for the MNH micro-nano structure is shown in Fig.4.

    Fig.4 Fabrication process of MNH micro-nano structures

    Patterned photoresist structures on the nickel substrate are obtained through photolithography,and then the nickel mold master with fine microstructure is obtained through electroforming.Multiple nickel molds of the same size are obtained by secondary electroforming.An aligner is used to realize the preparation of large-area negative templates(Step A).Furthermore,large-area single-layer microstructures are obtained on the polyimide substrate by imprinting and photocuring(Step B).Here,the drop-like structure(Structure A)is fabricated differently from the papillae structure(Structure B).More specifically,for the drop-like structure,a pre-prepared smooth and thin ultravioletcured polymer(UV-cured polymer)is placed in 1H,1H,2H,2H-perfluorooctyltriethoxysilane solution for 2 h,and is dried in the oven with 60 ℃,30 min.The adhesion of the silaneized surface is reduced due to the formation of CF3groups.The silanized UV polymer,used as a transfer layer,is covered on the nickel template that has been coated with UV-cured prepolymer,and is irradiated with the UV curing machine for 10 s with the irradiation energy of 12 950 mJ/cm2.Then Structure A is obtained after the UV-cured polymer is peeled off.For the papillae structure,UV-cured polymer is applied to the nickel template and covered with a PI film.Structure B is also fabricated after photocuring and peeling.Referring to the wafer bonder,a set of multilayer microstructure alignment device is designed.The single-layer Structure A is attached upside down to the upper glass platform.The image of Structure A is transferred to a display screen by a charge-coupled device,and calibration lines are drawn along the feature edges of Structure A on the screen.Structure B is placed on the lower platform,with the three-axis turntable and microscope,the alignment of the multi-layer structure is realized by adjusting Structure B according to the calibration line.The aligned structure is treated by corona discharge for 1 min,so that the structural layers are fully bonded(Step C).Since the adhesion force between the interface of Structures A and B is greater than that between the interface of the transfer layer and Structure A,Structure A can be successfully peeled off and the large-area MNH micro-nano structure is finally obtained(Step D).

    The SEM image of the simplified structure inspired by Fargesia qinlingensisis shown in Fig.5.The MNH micro-nano structure has a staggered arrangement of drop-like and papillae structures,in which the length of the drop-liked structure is 45 μm,the width is 20 μm,the height is 20 μm,and the lateral spacing is 50 μm.The papillae structure is 5 μm in diameter and 5 μm in height.The static contact angle of the surface is 140.9°,and the sliding angle is 10.2°,demonstrating a fine hydrophobic property.

    Fig.5 SEM image of the prepared MNH micro-nano structure

    The ice adhesion strength of the prepared MNH micro-nano structure is measured by a selfmade adhesion force measuring equipment with the ambient temperature -10 ℃,and the water droplet is 15 μL.After the water drop freezing on the surface,the force probe is driven by the motor to remove the ice,and the force curve is recorded.According to the image method,the contact area between the ice drop and the surface is obtained,and the ice adhesion strength is calculated.Fig.6 shows the results of ice adhesion strength of the MNH micro-nano structure and the smooth surface.The results indicate that the MNH micro-nano structure reduces the ice adhesion strength by 80% compared with the smooth surface.

    Fig.6 Results of ice adhesion strength of MNH micro-nano structure and smooth surface

    3 Ice Wind Tunnel Test of Anti-icing Skin

    Previous research has proved that under the impact of high-speed cold airflow,it is difficult to achieve long-term and efficient anti-icing effect only by passive anti-icing technology.The consensus is that a combination of active and passive anti-icing technologies is currently the most reliable solution to aircraft icing problems.Therefore,we propose an anti-icing scheme,adding a surface insulation layer,a metal heating layer and a bottom insulation layer under the bionic anti-icing structure layer to obtain an anti-icing hybrid skin.The bionic anti-icing structure layer can prevent the accumulation of supercooled water droplet,and the electric heating layer ensures the efficient anti-icing process in extremely harsh environments.The upper and lower insulation layers are both PI films.The metal heating layer is made from constantan and fabricated by photolithography and etching.Constantan has high resistivity and thermal conductivity(4.8×10-7Ω·m and 118 W/m·K,respectively).At the same time,the good ductility and bending resistance of constantan guarantee the integrity when attaching to the airfoil.

    When an aircraft passes through a supercooled cloud,the impact of supercooled water droplets in different areas of the airfoil is various.Adopting a single electrothermal power density cannot achieve a reasonable distribution of energy and may even cause shortage for aircraft energy supply.Therefore,it is necessary to perform chordwise power density partitioning on the electric heating of the skin to reduce anti-icing energy consumption and ensure a longer endurance time.A low energy consumption bionic anti-icing system based on power density partition is proposed.The numerical calculation method is used to analyze the anti-icing power density distribution regularity of the airfoil surface under specific working conditions,and the anti-icing hybrid skin is designed according to the calculated power density distribution.

    Considering the actual flight requirements,the energy consumption requirements for the UAV antiicing system are the most stringent among other aircraft.Here,a certain type of the UAV is selected as the experimental object for research.According to the flight altitude,speed,attack angle of the UAV,and the meteorological design standards under typical conditions in Appendix C of CCAR-25[24],the specific working conditions are determined as:wind speed 40 m/s,temperature -10 ℃,attack angle 2°,LWC 0.503 g/m3,MVD 20 μm(LWC refers to the supercooled water content and MVD the average diameter of supercooled water droplets).In this experiment,an airfoil model scaled down by a factor of 0.5 is used,and the airfoil profile at approximately 7.7 m away from the aircraft centerline is extracted from the original wing as the scaled object.The coupled algorithm is used to calculate the external flow field of the airfoil,and the water droplet phase control equation is solved to obtain the local water droplet collection coefficient on the surface,as shown in Fig.7(a).The icing protection range determined by the droplet collection isS:-40—30 mm.Srepresents chordwise distance along the airfoil surface,with negative values indicating distance along the lower surface and positive values indicating distance along the upper surface.The theoretical anti-icing power density distribution regularity is obtained by calculating the anti-icing heat load in different areas of the airfoil.

    Considering the anti-icing effect of the MNH micro-nano structure,the accumulation of water droplets is decreased,leading to the reduction of the heat flow related to water droplets.Therefore,the correction coefficient is used here to characterize the influence of the MNH micro-nano structure surface on the calculation of the anti-icing heat flow.Experiments on the capture rate of supercooled water droplets are carried out on the surface of MNH micro-nano structure in a low temperature environment.The experimental results show that under the working conditions mentioned above,the MNH micro-nano structure surface can reduce the water collection by about 90% compared with the ordinary surface.The corrected theoretical anti-icing thermal load is shown in Fig.7(b),in which the line is the calculated theoretical anti-icing power density distribution regularity and the histogram is the partition power density value(the maximum theoretical anti-icing thermal load in each area).A handheld thermal camera(Fluke,TiS60+,Shanghai,measurement accuracy within ±2 ℃ or within 2%,thermal sensitivity ≤0.045 ℃)is used to test the thermal distribution characteristics at -10 ℃,and the results reveal that the thermal distribution of the anti-icing hybrid skin has good uniformity under low temperature conditions,as shown in Figs.7(c,d),where A—F represent different areas of airfoil and L1,L2,L3 the temperature test line selected in Fig.7(c).

    Fig.7 Design of anti-icing hybrid skin

    The anti-icing performance of the anti-icing hybrid skin is verified in the ice wind tunnel.The antiicing hybrid skin is attached to the surface of the airfoil,and the test conditions are shown in Table 1.The test results are displayed in Fig.8.There is no obvious icing on the leading edge and the upper and lower airfoil parts,which is obviously distinct from the part without the skin.Therefore,it is verified that the anti-icing hybrid skin has good anti-icing ice performance.

    Table 1 Experimental conditions for anti-icing performance test of anti-icing skin

    Fig.8 Ice wind tunnel test results for anti-icing hybrid skin

    4 Applications

    The flight test of the developed anti-icing hybrid skin demonstrates that the tested UAV successfully completes the flight mission at an altitude of 1 —4 km,a maximum flight altitude of 8 km,a cruising speed of 40 m/s and a temperature of-10—-3 ℃.At present,the anti-icing hybrid skin has been successfully applied on a certain type of UAVs,becoming the world’s first mid-airway longendurance UAV with anti-icing function.Fig.9 is the photo of the flight test of the anti-icing hybrid skin.Moreover,the anti-icing skin inspired byFargesia qinlingensishas broad application prospects in the fields of large transport aircraft,helicopters,wind power generation,and high-speed trains.

    Fig.9 Photo of the flight test of the anti-icing hybrid skin

    5 Conclusions

    Aircraft icing poses a great threat to flight safety,and the bionic micro-nano structured surface provides a new direction for anti-icing technology.A unique plant in Qinling Mountains with excellent anti-icing effect called Fargesia qinlingensisis found.The MNH micro-nano structure inspired by Fargesia qinlingensisis proposed,and the anti-icing mechanism of the multilayer structure is discussed.The multilayer and multiscale structure enhances the bouncing behavior of supercooled water droplets,and the large number of cavities reduce ice adhesion by facilitating formation of micro-cracks on the interface.A method for the preparation of flexible largearea micro-nano structures based on hierarchical assembly is proposed.The monolayer is fabricated through imprinting and photocuring,and surface modification by fluorosilanes and corona discharge is applied to realize the combination of the layers.The ice adhesion strength of the obtained anti-icing MNH micro-nano structure surface is reduced by 80%,comparing with the smooth surface.Considering the actual flight environment,a low energy consumption bionic anti-icing system based on power density partition is proposed.The UAV flight test demonstrates that the developed anti-icing hybrid skin has great anti-icing performance at an altitude of 1—4 km,a maximum flight altitude of 8 km,a cruising speed of 40 m/s,and a temperature of-10—-3 ℃.The developed anti-icing hybrid skin has been applied on a certain type of UAVs.The bio-inspired anti-icing skin has broad application prospects in large transport aircraft,helicopters,wind power generation,and high-speed trains.

    成年女人看的毛片在线观看| 日韩大尺度精品在线看网址| 九九久久精品国产亚洲av麻豆| 蜜桃亚洲精品一区二区三区| 久久久久久久久大av| 麻豆久久精品国产亚洲av| 日韩欧美精品v在线| 自拍偷自拍亚洲精品老妇| 亚洲性久久影院| 欧美zozozo另类| 国产精品,欧美在线| 人妻少妇偷人精品九色| 国产精品,欧美在线| 国产黄片美女视频| 天堂影院成人在线观看| 成人午夜高清在线视频| 亚洲熟妇中文字幕五十中出| 一进一出好大好爽视频| 夜夜看夜夜爽夜夜摸| 欧美性感艳星| 国产精品免费一区二区三区在线| 亚洲在线观看片| 99精品久久久久人妻精品| 成人av在线播放网站| 丰满乱子伦码专区| 欧美日韩黄片免| 亚洲成av人片在线播放无| 国产大屁股一区二区在线视频| 久久精品国产鲁丝片午夜精品 | 啪啪无遮挡十八禁网站| 成人三级黄色视频| 成年女人看的毛片在线观看| 亚洲一级一片aⅴ在线观看| а√天堂www在线а√下载| bbb黄色大片| 久久久国产成人精品二区| 美女xxoo啪啪120秒动态图| 动漫黄色视频在线观看| 午夜激情欧美在线| 免费大片18禁| 99久久中文字幕三级久久日本| 欧美激情久久久久久爽电影| 成人美女网站在线观看视频| 欧美最新免费一区二区三区| 久久精品国产亚洲av香蕉五月| 日本精品一区二区三区蜜桃| 亚洲乱码一区二区免费版| 日日夜夜操网爽| 男女视频在线观看网站免费| 精品久久久久久久久av| 日日啪夜夜撸| 亚洲成人免费电影在线观看| 91在线观看av| 99热精品在线国产| 亚洲专区中文字幕在线| 亚洲精品国产成人久久av| 一边摸一边抽搐一进一小说| 淫秽高清视频在线观看| 97人妻精品一区二区三区麻豆| 尾随美女入室| 成人综合一区亚洲| 蜜桃久久精品国产亚洲av| 久9热在线精品视频| 国产精品爽爽va在线观看网站| 黄片wwwwww| 久久久久久久午夜电影| a级毛片a级免费在线| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩乱码在线| 老熟妇仑乱视频hdxx| 欧美人与善性xxx| 在线天堂最新版资源| 久久久午夜欧美精品| 亚洲精品在线观看二区| 欧美区成人在线视频| 尤物成人国产欧美一区二区三区| 91久久精品国产一区二区成人| 亚洲av日韩精品久久久久久密| 香蕉av资源在线| 亚洲国产精品sss在线观看| 亚洲在线自拍视频| 在线播放国产精品三级| 亚洲中文字幕日韩| 亚洲乱码一区二区免费版| 精品国产三级普通话版| 一级黄色大片毛片| 国产精品一区二区免费欧美| 很黄的视频免费| 麻豆国产av国片精品| 日日撸夜夜添| 国产极品精品免费视频能看的| 久久久精品大字幕| h日本视频在线播放| 欧美又色又爽又黄视频| 2021天堂中文幕一二区在线观| 在线观看舔阴道视频| 亚洲最大成人手机在线| 美女黄网站色视频| 精华霜和精华液先用哪个| 尾随美女入室| 成人一区二区视频在线观看| 高清毛片免费观看视频网站| 有码 亚洲区| 最近最新免费中文字幕在线| 免费观看的影片在线观看| 国产人妻一区二区三区在| 亚洲成av人片在线播放无| 欧美丝袜亚洲另类 | 日韩中字成人| 99视频精品全部免费 在线| 高清在线国产一区| 亚洲久久久久久中文字幕| 黄色一级大片看看| 婷婷色综合大香蕉| 日本色播在线视频| 五月伊人婷婷丁香| 久久精品国产亚洲av涩爱 | 天美传媒精品一区二区| 日本免费一区二区三区高清不卡| 成人永久免费在线观看视频| 亚洲专区中文字幕在线| 亚洲精品在线观看二区| 免费看光身美女| 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| 久久久国产成人免费| 中文字幕熟女人妻在线| 国产 一区精品| 午夜福利高清视频| 国产黄a三级三级三级人| 在线观看美女被高潮喷水网站| 变态另类丝袜制服| 午夜影院日韩av| 日韩一本色道免费dvd| 九九在线视频观看精品| 天堂影院成人在线观看| 日韩亚洲欧美综合| 久久久久久久午夜电影| 欧美xxxx性猛交bbbb| 午夜视频国产福利| 夜夜看夜夜爽夜夜摸| 久久国产乱子免费精品| 国产老妇女一区| 韩国av一区二区三区四区| 欧美zozozo另类| 久99久视频精品免费| 久久热精品热| 久久精品国产亚洲av涩爱 | 午夜福利在线在线| 日韩一本色道免费dvd| 熟女电影av网| 国产精品亚洲一级av第二区| 麻豆成人av在线观看| a级一级毛片免费在线观看| 别揉我奶头~嗯~啊~动态视频| 男女边吃奶边做爰视频| 久久精品国产自在天天线| 国产高潮美女av| 我的老师免费观看完整版| 看片在线看免费视频| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 蜜桃久久精品国产亚洲av| 熟女人妻精品中文字幕| 亚洲成人久久爱视频| 午夜亚洲福利在线播放| 色噜噜av男人的天堂激情| 成人永久免费在线观看视频| 免费在线观看日本一区| 人妻丰满熟妇av一区二区三区| 性欧美人与动物交配| 国产av不卡久久| 色综合亚洲欧美另类图片| 老熟妇仑乱视频hdxx| 欧美最黄视频在线播放免费| 日韩av在线大香蕉| 制服丝袜大香蕉在线| 校园人妻丝袜中文字幕| 狠狠狠狠99中文字幕| 欧美激情在线99| 中国美女看黄片| 中亚洲国语对白在线视频| 中亚洲国语对白在线视频| 天天躁日日操中文字幕| 精品一区二区免费观看| 色哟哟哟哟哟哟| 99久国产av精品| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| 日本欧美国产在线视频| 欧美日韩综合久久久久久 | 国产精品人妻久久久影院| 99热精品在线国产| 久久久久久大精品| 人人妻人人看人人澡| 综合色av麻豆| 不卡视频在线观看欧美| 国产伦人伦偷精品视频| 91av网一区二区| 伊人久久精品亚洲午夜| 久久久精品大字幕| 乱系列少妇在线播放| 亚洲人成伊人成综合网2020| 日日摸夜夜添夜夜添小说| 国语自产精品视频在线第100页| 又紧又爽又黄一区二区| 亚洲av中文av极速乱 | 18禁黄网站禁片午夜丰满| 狂野欧美白嫩少妇大欣赏| 亚洲va在线va天堂va国产| 国产精品自产拍在线观看55亚洲| 欧美日韩精品成人综合77777| 国产午夜精品久久久久久一区二区三区 | 国产麻豆成人av免费视频| 少妇人妻精品综合一区二区 | 免费大片18禁| 午夜亚洲福利在线播放| 久久精品影院6| 国产精品三级大全| 精品久久久久久久久av| 男人舔女人下体高潮全视频| 少妇人妻一区二区三区视频| 色综合亚洲欧美另类图片| 神马国产精品三级电影在线观看| 国产精品99久久久久久久久| 99久久成人亚洲精品观看| 久久久久国内视频| 国产 一区精品| 伦理电影大哥的女人| 特大巨黑吊av在线直播| 嫩草影院精品99| 亚洲精品一区av在线观看| 免费黄网站久久成人精品| 五月玫瑰六月丁香| 亚洲av中文av极速乱 | 亚洲自拍偷在线| 国产精品国产高清国产av| 日韩欧美国产在线观看| 精品人妻熟女av久视频| 最近在线观看免费完整版| 日韩亚洲欧美综合| 国产精品久久视频播放| 99热6这里只有精品| 国产精品久久电影中文字幕| 国产精品自产拍在线观看55亚洲| 99热网站在线观看| 国产精品免费一区二区三区在线| 国产高清视频在线观看网站| 天堂动漫精品| 高清日韩中文字幕在线| 久久99热这里只有精品18| 亚洲自拍偷在线| 婷婷色综合大香蕉| 国产一区二区在线观看日韩| 97人妻精品一区二区三区麻豆| 免费观看在线日韩| 天堂av国产一区二区熟女人妻| 国产综合懂色| 级片在线观看| 亚洲美女搞黄在线观看 | 欧美性感艳星| 国产成人福利小说| 女生性感内裤真人,穿戴方法视频| 国产蜜桃级精品一区二区三区| 中文字幕av成人在线电影| 欧美日韩瑟瑟在线播放| 麻豆一二三区av精品| 老师上课跳d突然被开到最大视频| 国产亚洲欧美98| 国产v大片淫在线免费观看| 在线播放国产精品三级| av黄色大香蕉| 欧美绝顶高潮抽搐喷水| 日韩欧美 国产精品| 国产精品国产三级国产av玫瑰| 一个人免费在线观看电影| 精品欧美国产一区二区三| 中出人妻视频一区二区| 欧美国产日韩亚洲一区| 久久精品国产鲁丝片午夜精品 | 99久久精品热视频| 天堂√8在线中文| 亚洲av熟女| 少妇人妻精品综合一区二区 | 国产69精品久久久久777片| 欧美另类亚洲清纯唯美| 内射极品少妇av片p| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 观看美女的网站| 午夜爱爱视频在线播放| 婷婷丁香在线五月| 国产精品一区二区免费欧美| 少妇熟女aⅴ在线视频| 国产一区二区三区av在线 | 男女那种视频在线观看| 日韩国内少妇激情av| 自拍偷自拍亚洲精品老妇| 欧美一区二区国产精品久久精品| 欧美zozozo另类| 精品日产1卡2卡| 99久久精品一区二区三区| 国产亚洲精品久久久久久毛片| avwww免费| 久久久久久久精品吃奶| 婷婷丁香在线五月| 国产白丝娇喘喷水9色精品| 丰满的人妻完整版| 国产精品久久久久久av不卡| 91精品国产九色| 国产午夜精品论理片| 成人毛片a级毛片在线播放| 日本精品一区二区三区蜜桃| 久久国内精品自在自线图片| 亚洲第一电影网av| 欧美精品啪啪一区二区三区| 免费看a级黄色片| a级毛片免费高清观看在线播放| 男人和女人高潮做爰伦理| 内地一区二区视频在线| 人人妻人人看人人澡| 我的老师免费观看完整版| 国产高清激情床上av| 色综合站精品国产| 一边摸一边抽搐一进一小说| 美女高潮的动态| a级一级毛片免费在线观看| 悠悠久久av| 长腿黑丝高跟| 久久午夜亚洲精品久久| 国产在视频线在精品| 免费一级毛片在线播放高清视频| .国产精品久久| 国产不卡一卡二| 少妇裸体淫交视频免费看高清| 亚洲成人久久爱视频| 国产精品野战在线观看| 国产高清视频在线播放一区| 日本精品一区二区三区蜜桃| 可以在线观看的亚洲视频| 又爽又黄a免费视频| 内射极品少妇av片p| 男人舔女人下体高潮全视频| 禁无遮挡网站| 国产 一区 欧美 日韩| 国产一级毛片七仙女欲春2| 我的女老师完整版在线观看| 一边摸一边抽搐一进一小说| 久久久久久久久久久丰满 | 悠悠久久av| 国产亚洲精品综合一区在线观看| 大型黄色视频在线免费观看| 亚洲综合色惰| 亚洲av第一区精品v没综合| 在线免费观看不下载黄p国产 | 男女下面进入的视频免费午夜| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 国产av麻豆久久久久久久| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩高清专用| 联通29元200g的流量卡| 免费在线观看影片大全网站| АⅤ资源中文在线天堂| 日韩 亚洲 欧美在线| 午夜日韩欧美国产| 午夜福利18| 69av精品久久久久久| 国产在视频线在精品| 午夜福利在线观看免费完整高清在 | 舔av片在线| 老司机福利观看| 国产老妇女一区| 国产欧美日韩精品亚洲av| 国产麻豆成人av免费视频| 中国美白少妇内射xxxbb| 老女人水多毛片| 国产成人一区二区在线| 一级a爱片免费观看的视频| 免费人成视频x8x8入口观看| 中文在线观看免费www的网站| 又紧又爽又黄一区二区| 天堂动漫精品| x7x7x7水蜜桃| 中文字幕久久专区| 日韩一本色道免费dvd| 日本免费a在线| 婷婷丁香在线五月| 99视频精品全部免费 在线| 亚洲18禁久久av| 国产麻豆成人av免费视频| 一个人看视频在线观看www免费| eeuss影院久久| 精品久久久久久久末码| 观看免费一级毛片| 日韩一本色道免费dvd| 免费看美女性在线毛片视频| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 国产精华一区二区三区| 成人一区二区视频在线观看| 午夜免费成人在线视频| 校园人妻丝袜中文字幕| 国产精品久久电影中文字幕| 成年女人看的毛片在线观看| 亚洲熟妇熟女久久| 简卡轻食公司| 久久精品国产亚洲av涩爱 | 精品久久久久久久久久久久久| 色哟哟哟哟哟哟| 黄色视频,在线免费观看| 人妻久久中文字幕网| 国产老妇女一区| 亚洲精品粉嫩美女一区| 免费看av在线观看网站| 欧美日韩综合久久久久久 | 1024手机看黄色片| 亚洲国产日韩欧美精品在线观看| 亚洲精品成人久久久久久| videossex国产| 啦啦啦观看免费观看视频高清| 精品人妻1区二区| 搡老妇女老女人老熟妇| 九九爱精品视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久久久久国产a免费观看| 日本黄色片子视频| 亚洲av五月六月丁香网| 我的女老师完整版在线观看| 可以在线观看的亚洲视频| 久久久久免费精品人妻一区二区| avwww免费| 免费观看的影片在线观看| 午夜免费男女啪啪视频观看 | 免费看a级黄色片| 一个人观看的视频www高清免费观看| 亚洲第一电影网av| 国产高清视频在线播放一区| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| av在线蜜桃| 最近视频中文字幕2019在线8| 亚洲avbb在线观看| 国产精品久久久久久久电影| 国产精品自产拍在线观看55亚洲| 亚洲精品乱码久久久v下载方式| 永久网站在线| a级毛片免费高清观看在线播放| 女的被弄到高潮叫床怎么办 | 欧美成人a在线观看| 啦啦啦韩国在线观看视频| 午夜福利18| 禁无遮挡网站| 欧美不卡视频在线免费观看| 99热这里只有是精品在线观看| 亚洲精品亚洲一区二区| 99在线人妻在线中文字幕| 亚洲av不卡在线观看| 午夜免费成人在线视频| 久久午夜福利片| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 精品久久久久久久末码| 99久久无色码亚洲精品果冻| 久久久久久久久久久丰满 | 在线观看免费视频日本深夜| 久久精品影院6| 99riav亚洲国产免费| 国产精品伦人一区二区| 午夜福利高清视频| 最近最新免费中文字幕在线| 韩国av一区二区三区四区| 国产私拍福利视频在线观看| 国产真实乱freesex| 精品不卡国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 中国美白少妇内射xxxbb| 精品久久久久久久久av| 真实男女啪啪啪动态图| 婷婷色综合大香蕉| 亚洲人与动物交配视频| 亚洲电影在线观看av| 69av精品久久久久久| 日韩一区二区视频免费看| 草草在线视频免费看| 色av中文字幕| 国产av在哪里看| 亚洲国产色片| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 一个人看视频在线观看www免费| 国产成人福利小说| 久久国产精品人妻蜜桃| 婷婷色综合大香蕉| bbb黄色大片| 在线观看66精品国产| 最近视频中文字幕2019在线8| 免费观看精品视频网站| 99热网站在线观看| 国产精品久久久久久久久免| 大型黄色视频在线免费观看| 亚洲欧美日韩高清专用| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 亚洲国产日韩欧美精品在线观看| 国产黄a三级三级三级人| 观看免费一级毛片| 久久久成人免费电影| 婷婷丁香在线五月| 亚洲真实伦在线观看| 热99re8久久精品国产| 久久热精品热| 久久久色成人| 日本黄大片高清| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 黄色视频,在线免费观看| 联通29元200g的流量卡| 欧美黑人欧美精品刺激| 色av中文字幕| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 久久精品人妻少妇| 毛片女人毛片| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片| 成人特级黄色片久久久久久久| 1024手机看黄色片| 日本成人三级电影网站| 天天躁日日操中文字幕| 欧美激情久久久久久爽电影| 日本a在线网址| 欧美日韩国产亚洲二区| 色综合站精品国产| 国内精品久久久久精免费| 久久精品影院6| 99久久精品一区二区三区| 国产一区二区激情短视频| 色综合婷婷激情| 精品午夜福利在线看| 久久久精品大字幕| 久久人人精品亚洲av| 成熟少妇高潮喷水视频| 欧美bdsm另类| 女人被狂操c到高潮| 成人三级黄色视频| 一进一出抽搐动态| 日本黄大片高清| 久久国内精品自在自线图片| 在线天堂最新版资源| 97热精品久久久久久| 婷婷精品国产亚洲av| 亚洲黑人精品在线| 婷婷亚洲欧美| 日韩av在线大香蕉| 精品福利观看| 毛片一级片免费看久久久久 | 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 亚洲成a人片在线一区二区| 国产爱豆传媒在线观看| 亚洲va在线va天堂va国产| 免费av观看视频| 亚洲国产欧洲综合997久久,| 亚洲在线观看片| 日韩欧美精品v在线| 午夜免费激情av| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| 午夜福利在线观看免费完整高清在 | 能在线免费观看的黄片| 中文字幕av成人在线电影| 日韩 亚洲 欧美在线| 97碰自拍视频| 在线免费观看不下载黄p国产 | 99在线视频只有这里精品首页| 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在 | 在线播放国产精品三级| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 干丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 干丝袜人妻中文字幕| 91av网一区二区| 欧美丝袜亚洲另类 | 日本欧美国产在线视频| 全区人妻精品视频| 给我免费播放毛片高清在线观看| 悠悠久久av| 国产中年淑女户外野战色| 免费看a级黄色片| 蜜桃亚洲精品一区二区三区| 久久人人精品亚洲av| 精品99又大又爽又粗少妇毛片 | 国产精品伦人一区二区| 18禁黄网站禁片免费观看直播| 国产69精品久久久久777片| 国产一区二区三区av在线 | 欧美日本亚洲视频在线播放| 美女高潮的动态| 精品久久久久久久久亚洲 | 日韩中字成人| 老司机福利观看| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 久久中文看片网| 人妻丰满熟妇av一区二区三区| 色哟哟·www|