李琪,楊昌恒,王永,林亞秋,,向華,朱江江,
對(duì)山羊肌內(nèi)脂肪細(xì)胞的促進(jìn)作用
李琪1,楊昌恒1,王永1,林亞秋1,2,向華2,朱江江1,2
1青藏高原動(dòng)物遺傳資源保護(hù)與利用四川省重點(diǎn)實(shí)驗(yàn)室/西南民族大學(xué),成都 610041;2青藏高原動(dòng)物遺傳資源保護(hù)與利用教育部重點(diǎn)實(shí)驗(yàn)室/西南民族大學(xué),成都 610041
【背景】脂肪酸轉(zhuǎn)運(yùn)蛋白1(FATP1)能夠促進(jìn)哺乳動(dòng)物脂肪酸攝取,該過(guò)程對(duì)維持機(jī)體脂代謝平衡十分重要,也對(duì)家畜的肉質(zhì)好壞有著重要影響。【目的】通過(guò)獲得山羊的CDS區(qū)序列,檢測(cè)該基因在山羊不同組織中的表達(dá)量,探究其對(duì)山羊肌內(nèi)脂肪細(xì)胞脂質(zhì)代謝的影響,為進(jìn)一步揭示在山羊脂代謝中的作用機(jī)制提供參考,為山羊的遺傳育種改良提供理論依據(jù)?!痉椒ā坷肦T-PCR方法克隆獲得山羊的CDS區(qū)序列,利用在線工具分析其親疏水性、跨膜區(qū)域、信號(hào)肽等生物學(xué)特性,并構(gòu)建其氨基酸序列系統(tǒng)進(jìn)化樹(shù)。利用實(shí)時(shí)熒光定量PCR(RT-qPCR)技術(shù)檢測(cè)在山羊不同組織中的表達(dá)水平,構(gòu)建其組織表達(dá)譜。利用構(gòu)建的真核表達(dá)載體和篩選出的siRNA對(duì)山羊肌內(nèi)脂肪細(xì)胞進(jìn)行FATP1過(guò)表達(dá)和干擾處理,通過(guò)油紅O染色和甘油三酯測(cè)定檢測(cè)過(guò)表達(dá)和干擾后對(duì)山羊肌內(nèi)脂肪細(xì)胞脂質(zhì)沉積的影響,并通過(guò)RT-qPCR技術(shù)進(jìn)一步探究該基因過(guò)表達(dá)和干擾后對(duì)脂質(zhì)代謝相關(guān)基因表達(dá)的影響?!窘Y(jié)果】克隆獲得了CDS區(qū)1 941bp,共編碼646個(gè)氨基酸殘基,預(yù)測(cè)其分子式為C3196H5026N884O898S25,推測(cè)該蛋白為堿性疏水穩(wěn)定蛋白。三級(jí)結(jié)構(gòu)預(yù)測(cè)顯示,山羊與綿羊的FATP1蛋白質(zhì)三級(jí)結(jié)構(gòu)相似,而與牛的FATP1蛋白質(zhì)三級(jí)結(jié)構(gòu)略有不同。氨基酸序列系統(tǒng)進(jìn)化樹(shù)分析顯示,山羊FATP1與綿羊親緣關(guān)系最近。RT-qPCR檢測(cè)發(fā)現(xiàn)在山羊小腸中表達(dá)量最高。油紅O染色及甘油三酯測(cè)定表明過(guò)表達(dá)FATP1后山羊肌內(nèi)脂肪細(xì)胞內(nèi)脂滴數(shù)量增多,脂質(zhì)含量增加,而干擾FATP1后則得到了相反的結(jié)果。進(jìn)一步檢測(cè)脂質(zhì)代謝相關(guān)基因的表達(dá)變化,發(fā)現(xiàn)在山羊脂肪細(xì)胞中過(guò)表達(dá)后,脂肪酸合成、轉(zhuǎn)運(yùn)等相關(guān)基因(<0.01)、(<0.01)、(<0.01)、(<0.01)、(<0.01)、(<0.01)及(<0.05)的表達(dá)水平顯著升高,而脂解相關(guān)基因(<0.01)的表達(dá)水平則顯著降低;干擾后,脂肪酸轉(zhuǎn)運(yùn)、延長(zhǎng)等相關(guān)基因(<0.01)(<0.01)和(<0.05)的表達(dá)量顯著下降,脂解相關(guān)基因(<0.01)和(<0.05)的表達(dá)量顯著上升?!窘Y(jié)論】FATP1可能通過(guò)促進(jìn)細(xì)胞脂質(zhì)生成相關(guān)基因的表達(dá),降低脂質(zhì)降解相關(guān)基因的表達(dá),從而顯著促進(jìn)山羊肌內(nèi)脂肪細(xì)胞脂質(zhì)的沉積,這些結(jié)果為進(jìn)一步揭示在調(diào)控脂質(zhì)代謝中的作用及分子機(jī)制提供了試驗(yàn)參考。
山羊;脂肪酸轉(zhuǎn)運(yùn)蛋白1;肌內(nèi)脂肪細(xì)胞;脂質(zhì)沉積
【研究意義】哺乳動(dòng)物體內(nèi)的脂質(zhì)積累已經(jīng)被廣泛研究了幾十年,它與人類的肥胖和家畜的肉類品質(zhì)有著重要的聯(lián)系[1-3]。尤其是肌內(nèi)脂肪的含量對(duì)肉質(zhì)影響極為重要,會(huì)直接影響肉色、嫩度、風(fēng)味[4]等方面。而脂肪細(xì)胞是機(jī)體脂質(zhì)儲(chǔ)存的主要部位[5],細(xì)胞對(duì)脂肪酸的攝取主要是由蛋白質(zhì)介導(dǎo)的,有幾個(gè)蛋白質(zhì)家族參與了這一過(guò)程,其中一個(gè)家族是脂肪酸轉(zhuǎn)運(yùn)蛋白家族(fatty acid transport proteins, FATPs)。FATPs是一類參與脂肪酸吸收和活化的重要蛋白質(zhì),目前在哺乳動(dòng)物基因組中共發(fā)現(xiàn)了6個(gè)成員,F(xiàn)ATP1—6[6-7]。這6種已經(jīng)鑒定的FATPs的表達(dá)具有組織特異性[8],在維持機(jī)體的脂肪酸(FAs)穩(wěn)態(tài)中發(fā)揮重要作用。簡(jiǎn)州大耳羊是我國(guó)培育的第二個(gè)肉用山羊品種,影響羊肉品質(zhì)的因素較多,如遺傳因素,營(yíng)養(yǎng)因素,飼養(yǎng)環(huán)境等,而基因調(diào)控是肉質(zhì)調(diào)控的重要方式,有關(guān)脂質(zhì)代謝的相關(guān)基因的克隆、功能分析、生物學(xué)特性方面的研究可以提升羊肉品質(zhì),為山羊遺傳特性的改良提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】FATP1是第一個(gè)被鑒定的該家族成員,在脂肪細(xì)胞中最具特征[9]。FATP1也稱為溶質(zhì)載體家族27成員1(SLC27A1),由Schaffer和Lodish[10]從3T3-L1脂肪細(xì)胞cDNA表達(dá)文庫(kù)中鑒定和克隆。FATP1是一種進(jìn)化上保守的膜蛋白[11],在蛋白質(zhì)的氨基末端區(qū)域有一個(gè)跨膜結(jié)構(gòu)域[12],該蛋白質(zhì)主要定位于細(xì)胞質(zhì)膜[10]和內(nèi)質(zhì)網(wǎng)[13],對(duì)動(dòng)物的脂肪沉積具有調(diào)控作用[14-15]。哺乳動(dòng)物FATP1最初被確定為一種脂肪酸轉(zhuǎn)運(yùn)體[11]。然而,隨后研究發(fā)現(xiàn)FATP1具有?;o酶A合成酶活性[16-18],與超長(zhǎng)鏈輔酶A合成酶家族具有廣泛的氨基酸相似性[16],其表達(dá)與脂肪酸攝取之間存在良好的相關(guān)性[19-20],能夠促進(jìn)哺乳動(dòng)物脂肪酸攝取[21-23]。研究表明。過(guò)表達(dá)FATP1可以增加脂肪細(xì)胞的FAs輸入,促進(jìn)三酰甘油的合成[21,24-25],而脂肪酸氧化則會(huì)受到干擾,略有減少[26],而FATP1表達(dá)的降低能夠顯著降低小鼠脂肪組織中FAs的攝取量[27]?!颈狙芯壳腥朦c(diǎn)】盡管FATP1與脂肪酸代謝有關(guān)的研究越來(lái)越多,但關(guān)于FATP1調(diào)控山羊脂肪細(xì)胞內(nèi)脂質(zhì)代謝的研究還未見(jiàn)報(bào)道。本試驗(yàn)利用RT-PCR方法克隆獲得山羊,利用實(shí)時(shí)熒光定量PCR技術(shù)(RT-qPCR)檢測(cè)該基因在山羊不同組織中的表達(dá)量,利用油紅O染色觀察干擾或過(guò)表達(dá)FATP1對(duì)山羊脂肪細(xì)胞脂質(zhì)代謝的影響,并利用RT-qPCR檢測(cè)脂質(zhì)代謝相關(guān)基因的表達(dá)變化?!緮M解決的關(guān)鍵問(wèn)題】這些結(jié)果將為進(jìn)一步研究FATP1調(diào)控山羊肌內(nèi)脂肪細(xì)胞脂質(zhì)代謝機(jī)制提供重要的數(shù)據(jù)支持,為山羊遺傳特性的改良提供基礎(chǔ)理論。
所有試驗(yàn)均于2020年9月至2021年10月在西南民族大學(xué)青藏高原動(dòng)物遺傳資源保護(hù)與利用四川省重點(diǎn)實(shí)驗(yàn)室完成。
1.1.1 試驗(yàn)取材 隨機(jī)選取6只成年(1周歲)健康的雄性簡(jiǎn)州大耳羊?yàn)樵囼?yàn)動(dòng)物(購(gòu)自四川省簡(jiǎn)陽(yáng)市大哥大牧業(yè)有限公司)。屠宰后采集其心、肝、脾、肺、腎、大腸、小腸、瘤胃等組織樣品,將采集的各組織分割成黃豆大小,用DEPC水清洗干凈后迅速裝入無(wú)RNase的凍存管中,置于液氮中保存,用于后續(xù)組織RNA的提取。
1.1.2 試驗(yàn)試劑 DNA回收試劑盒、大腸桿菌DH5α感受態(tài)細(xì)胞購(gòu)自天根生化科技有限公司,DNA聚合酶、TRIzol、pMD-19T Vector、限制性內(nèi)切酶購(gòu)自寶(TaKaRa)生物公司,SYBR qPCR Master Mix試劑盒、反轉(zhuǎn)錄試劑盒購(gòu)自南京諾維贊公司。DMEM/F-12培養(yǎng)基、Opti-MEM、PBS緩沖液 pH7.4購(gòu)自賽默飛世爾生物化學(xué)制品有限公司;BCA 總蛋白質(zhì)定量試劑盒,胰蛋白酶,青霉素-鏈霉素購(gòu)自武漢博士德(Boster)生物工程有限公司;細(xì)胞/組織甘油三酯提取試劑盒購(gòu)自北京普利萊(Applygen)基因技術(shù)有限公司;其他實(shí)驗(yàn)室常規(guī)藥品及試劑均為國(guó)產(chǎn)。
1.2.1 組織總RNA提取及反轉(zhuǎn)錄 用Trizol法提取簡(jiǎn)州大耳羊的心、肝、脾、肺、腎、瘤胃等組織的總RNA,測(cè)定總RNA的OD260/OD280值,當(dāng)該值在 1. 8—2. 0 之間說(shuō)明可正常使用,然后通過(guò)瓊脂糖凝膠電泳檢測(cè)其完整性。利用反轉(zhuǎn)錄試劑盒將提取的RNA反轉(zhuǎn)錄合成cDNA,反應(yīng)體系及條件:總RNA 1 μg,4×gDNA wiper Mix 4 μL,加 RNase-free ddH2O水至16 μL,42℃ 2 min;然后加入5×HiScript Ⅲ qRT SuperMix 4 μL,37℃ 15 min,85℃ 5 s。-20℃保存。
1.2.2 山羊克隆 根據(jù)GenBank上山羊的(XM_018051382.1)預(yù)測(cè)序列,利用Primer Premier 5.0軟件設(shè)計(jì)PCR引物(表1)。RT-PCR反應(yīng)總體系:LA Taq 0.2 μL,dNTP Mix 3.2 μL,10×Buffer 2 μL,上下游引物(10 μmol·L-1)各1μL,模板cDNA 1μL,加水補(bǔ)至20 μL。利用Touchdown PCR方法進(jìn)行克隆,Touchdown PCR擴(kuò)增程序:94℃預(yù)變性3 min;94℃變性15 s,64℃/66 ℃退火30 s,72℃延伸2 min,每個(gè)循環(huán)降低0.5℃,20個(gè)循環(huán);94℃變性15 s,55℃/56℃退火30 s,72℃延伸2 min,15個(gè)循環(huán);72℃延伸10 min,4 ℃保存。1%的瓊脂糖凝膠檢測(cè)PCR產(chǎn)物后利用膠回收試劑盒對(duì)目的片段進(jìn)行回收純化,將回收產(chǎn)物連接到pMD-19T載體上,通過(guò)熱激轉(zhuǎn)化到感受態(tài)細(xì)胞(DH5α)中,然后接種于涂有IPTG和X-gal的LB固體培養(yǎng)基(含Amp)上,37℃過(guò)夜培養(yǎng)后挑取白色陽(yáng)性菌落,進(jìn)行菌液PCR鑒定后送至成都擎科生物技術(shù)有限公司進(jìn)行測(cè)序。
表1 FATP1的CDS區(qū)克隆引物
1.2.3 山羊生物學(xué)特性分析 使用Bioxm 2.6軟件對(duì)測(cè)序獲得的序列進(jìn)行開(kāi)放閱讀框預(yù)測(cè),并將其翻譯為氨基酸序列;使用ProtParam在線工具對(duì)翻譯后所得FATP1蛋白序列進(jìn)行分子量、等電點(diǎn)、酸堿性等理化性質(zhì)分析;使用Prot Scale(http://web.expasy.org/protscale)預(yù)測(cè)蛋白親疏水性;利用ExPASy(https://embnet.vital-it.ch/software/ TMPRED_form.html)預(yù)測(cè)蛋白跨膜區(qū)域;利用EMBL-EBI(https://www.ebi.ac.uk/Tools/pfa/phobius/)及TargetP-2.0(http://www.cbs.dtu.dk/services/TargetP- 2.0/)進(jìn)行蛋白信號(hào)肽的預(yù)測(cè)。使用SOPMA分析該蛋白的二級(jí)結(jié)構(gòu),通過(guò)SWISS-MODEL預(yù)測(cè)蛋白三級(jí)結(jié)構(gòu),利用STRING構(gòu)建蛋白互作網(wǎng)絡(luò),預(yù)測(cè)與其發(fā)生相互作用的蛋白;使用 MEGA 5.0 軟件采用鄰接法(Neighbor-Joining,NJ)構(gòu)建氨基酸系統(tǒng)進(jìn)化樹(shù)。
1.2.4 山羊組織表達(dá)差異分析 根據(jù)克隆獲得的序列設(shè)計(jì)其RT-qPCR引物(表2)。利用RT-qPCR技術(shù)檢測(cè)在各個(gè)組織中的表達(dá)差異,以山羊心臟組織的Ct值為對(duì)照,以為內(nèi)參基因[28-29]矯正目的基因的相對(duì)表達(dá)水平,每個(gè)組織樣本設(shè)置3個(gè)重復(fù)。
1.2.5 山羊肌內(nèi)脂肪細(xì)胞培養(yǎng) 利用實(shí)驗(yàn)室前期分離凍存于10% DMSO冷凍液中[30]的兩日齡山羊肌內(nèi)前體脂肪細(xì)胞,于37℃融化復(fù)蘇,培養(yǎng)于含有 10%胎牛血清DMEM 完全培養(yǎng)液中。細(xì)胞培養(yǎng)到約80%匯合,細(xì)胞出現(xiàn)接觸抑制后,接種于6孔板,繼續(xù)培養(yǎng),直到細(xì)胞用于試驗(yàn)操作。
1.2.6 山羊亞克隆及過(guò)表達(dá)載體構(gòu)建 根據(jù)1.2.2克隆獲得的山羊CDS 區(qū)序列,在引物上游加上保護(hù)堿基、d Ⅲ 酶切位點(diǎn)、Kozak序列和Flag標(biāo)簽蛋白序列;下游加上H Ⅰ 酶切位點(diǎn),引物序列見(jiàn)表1。將試驗(yàn)獲得的pMD19-T-質(zhì)粒作為模板,利用以上引物進(jìn)行擴(kuò)增。對(duì)PCR目的產(chǎn)物切膠回收后,進(jìn)行酶切,于16℃連接至真核表達(dá)載體pcDNA3.1上。轉(zhuǎn)化至感受態(tài)細(xì)胞DH5α,經(jīng)菌液PCR鑒定后,提取質(zhì)粒進(jìn)行雙酶切鑒定,然后送至成都擎科生物有限公司進(jìn)行測(cè)序鑒定,鑒定成功即可獲得過(guò)表達(dá)載體pcDNA3.1-。
1.2.7 干擾siRNA合成 以克隆獲得的CDS區(qū)序列為模板,由上海吉瑪制藥技術(shù)有限公司合成3條山羊siRNA,序列信息見(jiàn)表3。
1.2.8 細(xì)胞轉(zhuǎn)染 過(guò)表達(dá)載體或siRNA轉(zhuǎn)染至覆蓋皿底達(dá)80%的F3代山羊肌內(nèi)前體脂肪細(xì)胞,完全培養(yǎng)液在轉(zhuǎn)染的4h之前棄掉,加入Opti-MEM進(jìn)行細(xì)胞饑餓處理4h后,在6孔板中每孔分別加入1 μg重組載體或2 μL siRNA,混勻后置于37℃、5% CO2培養(yǎng)箱,6 h后棄掉轉(zhuǎn)染液,PBS清洗3遍,每孔加入2.5 mL油酸(50 μmol·L-1)誘導(dǎo)液進(jìn)行誘導(dǎo)分化。
1.2.9 油紅O染色檢測(cè)FATP1對(duì)脂滴生成的影響 利用油紅O染色法觀察過(guò)表達(dá)或干擾后山羊肌內(nèi)脂肪細(xì)胞分化過(guò)程中脂滴積聚的變化。用于染色的肌內(nèi)脂肪細(xì)胞接種于6孔板,轉(zhuǎn)染2 d后棄去培養(yǎng)基,用PBS緩慢清洗3次,甲醛固定30 min,棄去甲醛,PBS清洗3次后加入適量過(guò)濾后的油紅O工作液,染色20 min,棄去油紅O工作液后用PBS清洗多次,顯微鏡下觀察并拍照。
1.2.10 甘油三酯測(cè)定 用PBS清洗待測(cè)的細(xì)胞2—3遍,每孔加入200 mL裂解液,吹打收集細(xì)胞于離心管中,混勻后室溫靜置10 min。取適量上清液70℃加熱10 min,室溫2 000 r/min離心5 min,上清液即可用于甘油三酯測(cè)定。按R1﹕R2=4﹕1的比例配制工作液,96孔板每孔加入10 μL待測(cè)樣品和190 μL工作液,同時(shí)稀釋甘油標(biāo)準(zhǔn)品,將4 mmol·L-1的甘油標(biāo)準(zhǔn)品用蒸餾水按比例稀釋為1 000、500、125、31.25、7.8125、0 μmol·L-1,每個(gè)樣品設(shè)置3個(gè)重復(fù),37℃或者25℃反應(yīng)15 min,550 nm波長(zhǎng)測(cè)定OD值,繪制標(biāo)準(zhǔn)曲線并計(jì)算各樣品甘油三酯濃度。
剩余裂解液采用BCA法進(jìn)行蛋白定量。按試劑A﹕試劑B=50﹕1配制BCA工作液,并充分混勻。將濃度為2 mg·mL-1的BSA標(biāo)準(zhǔn)品按比例稀釋為2 000、1 500、750、250、25、0 μg·mL-1各取25 μL標(biāo)準(zhǔn)品和待測(cè)樣品加入96孔板中,每孔加入200 μLBCA工作液,每個(gè)樣品設(shè)置3個(gè)重復(fù),振蕩30 s充分混勻,37℃孵育30 min。冷卻到室溫后,在酶標(biāo)儀上的562 nm波長(zhǎng)檢測(cè)吸光值,繪制蛋白標(biāo)曲并計(jì)算各樣品蛋白濃度。利用計(jì)算所得的各樣品蛋白濃度來(lái)對(duì)各樣品甘油三酯濃度進(jìn)行校準(zhǔn)。
1.2.11 實(shí)時(shí)熒光定量PCR(RT-qPCR) 為進(jìn)一步探究FATP1在脂質(zhì)代謝中的作用機(jī)制,將其過(guò)表達(dá)及干擾后,檢測(cè)對(duì)脂肪酸延長(zhǎng)相關(guān)基因(,,,,和)、脂肪酸轉(zhuǎn)運(yùn)相關(guān)基因(,和)、甘油三酯合成相關(guān)基因(,,,和)和脂肪分解相關(guān)基因(,,,和)表達(dá)的影響。引物序列見(jiàn)表2。
表2 定量引物
S:正義鏈引物;A:反義鏈引物;:泛表達(dá)轉(zhuǎn)錄子基因 S: Sense primer; A: Antisense primer;: Ubiquitously expressed transcript
表3 siRNA序列
1.2.12 數(shù)據(jù)分析 RT-qPCR結(jié)果用2?△△Ct法進(jìn)行統(tǒng)計(jì)分析,采用SPSS軟件單因素方差分析法進(jìn)行差異顯著性分析,選擇LSD方法和鄧肯法進(jìn)行事后比較,<0.05時(shí)為差異顯著,<0.01時(shí)為差異極顯著,所有試驗(yàn)數(shù)據(jù)設(shè)置至少3個(gè)重復(fù),利用GraphPad Prism 5進(jìn)行統(tǒng)計(jì)分析作圖。
將反轉(zhuǎn)錄的山羊各組織cDNA混合后作為模板,RT-PCR擴(kuò)增獲得山羊序列2 07 8bp(圖1),其中5′UTR 112 bp,CDS區(qū)1 941 bp,3′UTR 25 bp,編碼646個(gè)氨基酸殘基。
圖1 山羊FATP1 PCR擴(kuò)增
2.2.1 蛋白理化性質(zhì)分析 對(duì)山羊FATP1蛋白序列進(jìn)行分析,預(yù)測(cè)其蛋白分子式為C3196H5026N884O898S25,分子質(zhì)量為71 003.95 Da;理論等電點(diǎn)(Theoretical pI)為8.83,不穩(wěn)定指數(shù)為34.85,親水性總平均值為0.044,推測(cè)該蛋白為堿性疏水穩(wěn)定蛋白。該氨基酸組成中,亮氨酸(Leu)是占比最多的氨基酸殘基(12.2%),其次為甘氨酸(Gly)(10.4%)(圖2)。TargetP-2.0 預(yù)測(cè)FATP1信號(hào)肽可能性為0.9552。
A:FATP1蛋白親疏水性預(yù)測(cè)。B:FATP1蛋白跨膜結(jié)構(gòu)預(yù)測(cè)。C:FATP1蛋白信號(hào)肽預(yù)測(cè)
2.2.2 蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè) 山羊FATP1二級(jí)結(jié)構(gòu)預(yù)測(cè)顯示,227(35.14%)個(gè)氨基酸殘基可能形成 α-螺旋(h),146(22.60%)個(gè)氨基酸殘基可能形成β-折疊(e),219(33.90%)個(gè)氨基酸殘基可能形成無(wú)規(guī)則卷曲(c),54(8.36%)個(gè)氨基酸殘基可能形成β-轉(zhuǎn)角(t)(圖3-A)。三級(jí)結(jié)構(gòu)預(yù)測(cè)顯示,山羊與綿羊的FATP1蛋白質(zhì)三級(jí)結(jié)構(gòu)相似,而與牛的FATP1蛋白質(zhì)三級(jí)結(jié)構(gòu)略有不同(圖4)。采用 STRING 交互式數(shù)據(jù)庫(kù)搜索可能與FATP1蛋白各成員相互作用的蛋白,結(jié)果如圖3-B。
2.2.3 氨基酸序列同源性比對(duì)及系統(tǒng)進(jìn)化樹(shù)構(gòu)建 利用NCBI對(duì)不同物種FATP1的氨基酸同源性進(jìn)行比較,發(fā)現(xiàn)山羊與綿羊的氨基酸序列同源性最高(99.38%),其次為牛(98.45%)和豬(93.96%),而與人的同源性為92.26%。利用MAGE 5.0構(gòu)建山羊FATP1氨基酸序列系統(tǒng)進(jìn)化樹(shù),結(jié)果如圖所示(圖3-C)。
A:FATP1蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)(藍(lán)色線條為α-螺旋,紅色線條為β-折疊,紫色線條為無(wú)規(guī)則卷曲,綠色線條為β-轉(zhuǎn)角);B:FATP1相互作用蛋白預(yù)測(cè);C:FATP1氨基酸序列系統(tǒng)進(jìn)化樹(shù)
A:山羊FATP1蛋白三級(jí)結(jié)構(gòu);B:綿羊FATP1蛋白三級(jí)結(jié)構(gòu);C:牛FATP1蛋白三級(jí)結(jié)構(gòu)
以山羊心臟組織為對(duì)照,為內(nèi)參基因,分析RT-qPCR定量結(jié)果可知在山羊各組織中均有表達(dá),其中在山羊小腸組織中高表達(dá)(<0.01,圖5-A)。
使用d Ⅲ和H Ⅰ限制性內(nèi)切酶對(duì)pcDNA3.1-重組質(zhì)粒進(jìn)行雙酶切,瓊脂糖凝膠電泳分別得到長(zhǎng)度約為5 428 bp的pcDNA3.1載體片段和2 040 bp 的目的基因片段(圖5-B),測(cè)序結(jié)果顯示,插入序列與目的基因序列完全一致,證明表達(dá)載體pcDNA3.1-構(gòu)建成功。采用qPCR技術(shù)檢測(cè)FATP1過(guò)表達(dá)及siRNA干擾后FATP1的表達(dá)情況,以UXT作為內(nèi)參基因,陰性對(duì)照組表達(dá)水平作為參照,結(jié)果顯示,轉(zhuǎn)染了pcDNA3.1-后FATP1的表達(dá)水平提高了約230倍(圖5-C),合成的siRNA對(duì)FATP1的表達(dá)水平均有干擾效果,其中FATP1-1的干擾效果最佳,達(dá)到約74%(圖5-D),故后續(xù)干擾試驗(yàn)采用FATP1-1。
FATP1過(guò)表達(dá)后能夠顯著增加山羊肌內(nèi)前體脂肪細(xì)胞脂滴的形成(圖6-A—C)(<0.01)和甘油三酯沉積(圖6-D)(<0.01)。同時(shí)FATP1表達(dá)水平的增加還能夠顯著提高甘油三酯合成相關(guān)基因(<0.01)、(<0.01)和(<0.01)(圖6-E),脂肪酸去飽和及延長(zhǎng)相關(guān)基因(<0.01)、(<0.01)和(<0.05)(圖6-F),以及脂肪酸轉(zhuǎn)運(yùn)相關(guān)基因(<0.01)(圖6-H)的表達(dá)量,而顯著降低脂解相關(guān)基因(<0.01)的表達(dá)(圖6-G)。推測(cè),F(xiàn)ATP1能夠通過(guò)促進(jìn)甘油三酯的合成及脂質(zhì)的延長(zhǎng)和轉(zhuǎn)運(yùn),抑制脂質(zhì)分解,從而促進(jìn)山羊肌內(nèi)前體脂肪細(xì)胞脂質(zhì)的沉積。
A:重組質(zhì)粒 pcDNA3.1-FATP1酶切鑒定(泳道1為Marker DL5000,泳道2為pcDNA3.1,泳道3為重組質(zhì)粒pcDNA3.1-FATP1,泳道4為Marker Ⅲ)。 B:山羊FATP1在不同組織中的表達(dá)水平(差異顯著(P<0.05)用不同小寫(xiě)字母表示;差異極顯著(P<0.01)用不同大寫(xiě)字母表示;差異不顯著(P>0.05)用相同字母表示)。C:FATP1在細(xì)胞中的過(guò)表達(dá)效率。D:FATP1在細(xì)胞中的干擾效率(*表示在0.05 水平上顯著, **表示在0.01水平顯著,***表示在0.001水平上顯著)
A和B:對(duì)照組(pcDNA3.1)及過(guò)表達(dá)組(FATP1 OVER)細(xì)胞油紅O染色;C:油紅O染色OD值檢測(cè)(490nm);D:細(xì)胞甘油三酯含量測(cè)定;E:甘油三酯合成相關(guān)基因檢測(cè);F:脂肪酸去飽和及延長(zhǎng)相關(guān)基因檢測(cè);G:脂肪酸降解相關(guān)基因檢測(cè);H:脂肪酸轉(zhuǎn)運(yùn)相關(guān)基因檢測(cè)
FATP1干擾后顯著減少了山羊肌內(nèi)前體脂肪細(xì)胞中脂滴的形成(圖7-A—C)(<0.01)和甘油三酯的生成(圖7-D)(<0.01)。同時(shí)FATP1表達(dá)水平的降低也顯著地減少了脂肪酸去飽和及延長(zhǎng)相關(guān)基因(<0.01)和(<0.05)(圖7-E),脂肪酸轉(zhuǎn)運(yùn)相關(guān)基因(<0.01)(圖7-F)的表達(dá)量,甘油三酯合成相關(guān)基因GPAM(=0.069)和DGAT2(=0.065)的表達(dá)量也有所下降,但其變化不顯著(圖7-G),而脂肪分解相關(guān)基因(<0.01)和(<0.05)的表達(dá)水平顯著升高(圖7-H)。推測(cè),干擾FATP1能夠通過(guò)抑制脂肪酸的延長(zhǎng)和轉(zhuǎn)運(yùn),增加脂質(zhì)降解來(lái)抑制山羊脂肪細(xì)胞中脂質(zhì)的沉積。
A和B:對(duì)照組(si-NC)及干擾組(FATP1-1)細(xì)胞油紅O染色;C:油紅O染色OD值檢測(cè)(490nm);D:細(xì)胞甘油三酯含量測(cè)定;E:脂肪酸去飽和及延長(zhǎng)相關(guān)基因檢測(cè);F:脂肪酸轉(zhuǎn)運(yùn)相關(guān)基因檢測(cè);G:甘油三酯合成相關(guān)基因檢測(cè);H:脂肪酸降解相關(guān)基因檢測(cè)
FATP1首次在3T3-L1脂肪細(xì)胞中被鑒定為定位于質(zhì)膜的完整膜蛋白[10],其質(zhì)膜定位后續(xù)在293細(xì)胞[31]和棕色脂肪組織[32]中也被鑒定到。FATP1通過(guò)其膜定位參與FAs轉(zhuǎn)運(yùn),進(jìn)而調(diào)控甘油三酯合成和脂質(zhì)沉積[14,33]。過(guò)表達(dá)FATP1可提高FAs的轉(zhuǎn)運(yùn)率,增加FAs的攝取,抑制FAs的氧化,最終促進(jìn)酵母菌株[34]、293細(xì)胞[31]、人肌肉細(xì)胞[26]和豬肌內(nèi)前體脂肪細(xì)胞的脂質(zhì)積累[14]。而降低FATP1的表達(dá)則能夠引起3T3-L1脂肪細(xì)胞甘油三酯積累減少和脂滴減小[35]。在本研究中,干擾山羊脂肪細(xì)胞FATP1后,雖然對(duì)甘油三酯合成的相關(guān)基因的表達(dá)水平?jīng)]有顯著影響,但是脂質(zhì)降解基因表達(dá)水平顯著升高,細(xì)胞中甘油三酯含量和脂滴的數(shù)量都有所減少。而在過(guò)表達(dá)FATP1后,細(xì)胞內(nèi)脂質(zhì)含量及促進(jìn)脂質(zhì)合成基因的表達(dá)水平都有所提高。推測(cè),F(xiàn)ATP1可能通過(guò)促進(jìn)脂質(zhì)沉積相關(guān)基因的合成和抑制脂解相關(guān)基因的表達(dá),從而促進(jìn)山羊肌內(nèi)脂肪細(xì)胞脂質(zhì)沉積。
然而,隨著研究的不斷深入,對(duì)FATP1的功能也開(kāi)始逐漸有了爭(zhēng)議。雖然有許多研究表明FATP1可促進(jìn)脂質(zhì)積累,但也有研究者得到了相反的結(jié)果[11,36]。脂肪組織是一個(gè)典型的脂質(zhì)儲(chǔ)存庫(kù),F(xiàn)ATP1能夠增強(qiáng)其脂質(zhì)的積累。相反,肌肉收縮需要持續(xù)消耗能量,F(xiàn)ATP1則促進(jìn)FAs氧化以提供能量。在大鼠L6E6肌管[37]、心肌細(xì)胞[38-39]和肌肉組織[11]中,F(xiàn)ATP1主要定位于線粒體,從而介導(dǎo)了這些組織中FAs的氧化[40]。在肌肉組織中FATP1的線粒體定位與FATP1的FAs氧化作用相關(guān)。在培養(yǎng)的肌肉細(xì)胞和小鼠肌肉組織中,F(xiàn)ATP1過(guò)表達(dá)則以促進(jìn)脂肪酸氧化而非甘油三酯積累為目標(biāo)[11,41]。FATP1功能的兩面性可能與其不同的組織及亞細(xì)胞定位相關(guān)。
FATP1對(duì)脂質(zhì)代謝的影響受PPAR[42-43]、TR4[44]、 KLF15[45-47]等轉(zhuǎn)錄因子的調(diào)節(jié)。TR4可直接結(jié)合位于FATP1 5′啟動(dòng)子區(qū)域的TR4響應(yīng)元件來(lái)反式激活FATP1 5′啟動(dòng)子活性,從而誘導(dǎo)FATP1基因的表達(dá),促進(jìn)3T3-L1脂肪細(xì)胞中的脂質(zhì)積累[44]。此外,脂滴相關(guān)基因也會(huì)影響FATP1對(duì)脂代謝的調(diào)控。脂滴是中性脂質(zhì)儲(chǔ)存和動(dòng)員的關(guān)鍵位點(diǎn)[48]。FATP1能與DGAT2形成甘油三酯合成復(fù)合物[49],作用于ER–LD界面,作用促進(jìn)哺乳動(dòng)物細(xì)胞中脂滴的擴(kuò)增,從而影響機(jī)體脂代謝。本試驗(yàn)中通過(guò)過(guò)表達(dá)和干擾試驗(yàn)來(lái)探究在調(diào)控山羊肌內(nèi)前體脂肪細(xì)胞脂質(zhì)沉積中的作用,這也為后續(xù)從轉(zhuǎn)錄因子等上游調(diào)節(jié)因子的角度完善胞內(nèi)脂質(zhì)代謝的調(diào)控網(wǎng)絡(luò)奠定了基礎(chǔ)。FATP1在脂肪和肌肉組織中都能夠起到調(diào)節(jié)脂質(zhì)代謝的作用,由此可見(jiàn)FATP1在機(jī)體脂代謝中的重要性。無(wú)論是FATP1完整的調(diào)控網(wǎng)絡(luò)的挖掘還是其既能促進(jìn)脂質(zhì)積累也和脂肪酸氧化相關(guān)的獨(dú)特性功能,都需要更進(jìn)一步的研究來(lái)闡明,從而更充分地把握該基因的作用機(jī)制,并將其對(duì)脂質(zhì)代謝的調(diào)控作用運(yùn)用到山羊及更多家畜的優(yōu)良品種選育中。
克隆獲得山羊的CDS區(qū)全長(zhǎng)1 941 bp,編碼646個(gè)氨基酸殘基,在山羊小腸組織中高表達(dá)。FATP1可能通過(guò)促進(jìn)脂質(zhì)生成、抑制脂質(zhì)分解和脂肪酸氧化,進(jìn)而促進(jìn)山羊肌內(nèi)脂肪細(xì)胞脂質(zhì)沉積。這些結(jié)果能為進(jìn)一步揭示在脂質(zhì)代謝中的作用及其調(diào)控機(jī)制提供理論基礎(chǔ)。
[1] STEFAN N, SCHICK F, H?RING H U. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metabolism, 2017, 26(2): 292-300.
[2] 張龍, 朱方俊, 王彥, 蘭茜, 呂榮平, 劉益平, 朱慶. 雞FATP1基因多態(tài)性與屠體性狀的相關(guān)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42(9): 3272-3278.
ZHANG L, ZHU F J, WANG Y, LAN X, Lü R P, LIU Y P, ZHU Q. Correlation analysis betweengene polymorphism and carcass traits in chicken. Scientia Agricultura Sinica, 2009, 42(9): 3272-3278. (in Chinese)
[3] 華緒川, 張立凡, 蔡兆偉, 蔣曉玲, 徐寧迎, 張金枝. 豬FATP1基因5’調(diào)控區(qū)多態(tài)性及其與脂肪性狀的相關(guān)分析. 江蘇農(nóng)業(yè)學(xué)報(bào), 2011, 27(1): 89-93.
HUA X C, ZHANG L F, CAI Z W, JIANG X L, XU N Y, ZHANG J Z. Polymorphism in 5’regulatory region ofgene and its association with fat traits. Jiangsu Journal of Agricultural Sciences, 2011, 27(1): 89-93. (in Chinese)
[4] 黃業(yè)傳, 賀稚非, 李洪軍, 秦剛, 王庭, 馬明輝. 皮下脂肪和肌內(nèi)脂肪對(duì)豬肉風(fēng)味的作用. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(10): 2118-2130. doi:10.3864/j.issn.0578-1752.2011.10.017.
HUANG Y C, HE Z F, LI H J, QIN G, WANG T, MA M H. The flavor contribution of subcutaneous and intramuscular fat to pork. Scientia Agricultura Sinica, 2011, 44(10): 2118-2130. doi:10.3864/j.issn. 0578-1752.2011.10.017. (in Chinese)
[5] STAHL A, EVANS J G, PATTEL S, HIRSCH D, LODISH H F. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Developmental Cell, 2002, 2(4): 477-488.
[6] GIMENO R E. Fatty acid transport proteins. Current Opinion in Lipidology, 2007, 18(3): 271-276.
[7] KAZANTZIS M, STAHL A. Fatty acid transport proteins, implications in physiology and disease. Biochimica et Biophysica Acta, 2012, 1821(5): 852-857.
[8] POHL J, RING A, HERMANN T, STREMMEL W. Role of FATP in parenchymal cell fatty acid uptake. Biochimica et Biophysica Acta, 2004, 1686(1/2): 1-6.
[9] WU Q W, ORTEGON A M, TSANG B, DOEGE H, FEINGOLD K R, STAHL A. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Molecular and Cellular Biology, 2006, 26(9): 3455-3467.
[10] SCHAFFER J E, LODISH H F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 1994, 79(3): 427-436.
[11] GUITART M, OSORIO-CONLES O, PENTINAT T, CEBRIà J, GARCíA-VILLORIA J, SALA D, SEBASTIáN D, ZORZANO A, RIBES A, JIMéNEZ-CHILLARóN J C, GARCíA-MARTíNEZ C, GóMEZ-FOIX A M. Fatty acid transport protein 1 (FATP1) localizes in mitochondria in mouse skeletal muscle and regulates lipid and ketone body disposal. PLoS ONE, 2014, 9(5): e98109.
[12] ORDOVáS L, ROY R, ZARAGOZA P, RODELLAR C. Structural and functional characterization of the bovine solute carrier family 27 member 1 () gene. Cytogenetic and Genome Research, 2006, 115(2): 115-122.
[13] LEWIS S E, LISTENBERGER L L, ORY D S, SCHAFFER J E. Membrane topology of the murine fatty acid transport protein 1. Journal of Biological Chemistry, 2001, 276(40): 37042-37050.
[14] CHEN X L, LUO Y L, WANG R S, ZHOU B, HUANG Z Q, JIA G, ZHAO H, LIU G M. Effects of fatty acid transport protein 1 on proliferation and differentiation of porcine intramuscular preadipocytes. Animal Science Journal, 2017, 88(5): 731-738.
[15] WANG H, WANG J, YANG D D, LIU Z L, ZENG Y Q, CHEN W. Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in Laiwu pigs. Asian-Australasian Journal of Animal Sciences, 2020, 33(3): 390-397.
[16] COE N R, SMITH A J, FROHNERT B I, WATKINS P A, BERNLOHR D A. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. Journal of Biological Chemistry, 1999, 274(51): 36300-36304.
[17] HALL A M, SMITH A J, BERNLOHR D A. Characterization of the acyl-CoA synthetase activity of purified murine fatty acid transport protein 1. Journal of Biological Chemistry, 2003, 278(44): 43008- 43013.
[18] HALL A M, WICZER B M, HERRMANN T, STREMMEL W, BERNLOHR D A. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. Journal of Biological Chemistry, 2005, 280(12): 11948-11954.
[19] HEATHER L C, COLE M A, LYGATE C A, EVANS R D, STUCKEY D J, MURRAY A J, NEUBAUER S, CLARKE K. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovascular Research, 2006, 72(3): 430-437.
[20] ZHANG M M, DI MARTINO J S, BOWMAN R L, CAMPBELL N R, BAKSH S C, SIMON-VERMOT T, KIM I S, HALDEMAN P, MONDAL C, YONG-GONZALES V, ABU-AKEEL M, MERGHOUB T, JONES D R, ZHU X G, ARORA A, ARIYAN C E, BIRSOY K, WOLCHOK J D, PANAGEAS K S, HOLLMANN T, BRAVO-CORDERO J J, WHITE R M. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discovery, 2018, 8(8): 1006-1025.
[21] ZHAN T Z, POPPELREUTHER M, EHEHALT R, FüLLEKRUG J. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS ONE, 2012, 7(9): e45087.
[22] STAHL A. A current review of fatty acid transport proteins (SLC27). Pflügers Archiv, 2004, 447(5): 722-727.
[23] DOEGE H, STAHL A. Protein-mediated fatty acid uptake: novel insights frommodels. Physiology (Bethesda, Md), 2006, 21: 259-268.
[24] STEFANYK L E, BONEN A, DYCK D J. Insulin and contraction- induced movement of fatty acid transport proteins to skeletal muscle transverse-tubules is distinctly different than to the sarcolemma. Metabolism, 2012, 61(11): 1518-1522.
[25] WICZER B M, LOBO S, MACHEN G L, GRAVES L M, BERNLOHR D A. FATP1 mediates fatty acid-induced activation of AMPK in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2009, 387(2): 234-238.
[26] GARCíA-MARTíNEZ C, MAROTTA M, MOORE-CARRASCO R, GUITART M, CAMPS M, BUSQUETS S, MONTELL E, GóMEZ- FOIX A M. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. American Journal of Physiology Cell Physiology, 2005, 288(6): C1264-C1272.
[27] KIM J K, GIMENO R E, HIGASHIMORI T, KIM H J, CHOI H, PUNREDDY S, MOZELL R L, TAN G, STRICKER-KRONGRAD A, HIRSCH D J, FILLMORE J J, LIU Z X, DONG J Y, CLINE G, STAHL A, LODISH H F, SHULMAN G I. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. The Journal of Clinical Investigation, 2004, 113(5): 756-763.
[28] 池永東, 王永, 胡萌, 何小芳, 朱江江, 趙越, 林亞秋. 山羊不同組織器官的內(nèi)參基因篩選. 基因組學(xué)與應(yīng)用生物學(xué), 2020, 39(2): 561-567.
CHI Y D, WANG Y, HU M, HE X F, ZHU J J, ZHAO Y, LIN Y Q. Screening of internal reference genes in different tissues and organs of goats. Genomics and Applied Biology, 2020, 39(2): 561-567. (in Chinese)
[29] 許晴, 林森, 朱江江, 王永, 林亞秋. 山羊肌內(nèi)前體脂肪細(xì)胞誘導(dǎo)分化過(guò)程中內(nèi)參基因的表達(dá)穩(wěn)定性分析. 畜牧獸醫(yī)學(xué)報(bào), 2018, 49(5): 907-918.
XU Q, LIN S, ZHU J J, WANG Y, LIN Y Q. The expression stability analysis of reference genes in the process of goat intramuscular preadipocytes differentiation in goat. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(5): 907-918. (in Chinese)
[30] 蔡勇, 阿依木古麗, 臧榮鑫, 劉翊中, 楊具田, 喬自林, 曹忻, 徐紅偉, 吳建平. 不同凍存保護(hù)劑對(duì)綿羊前體脂肪細(xì)胞凍存效果的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(7): 1439-1446.
CAI Y, AYIMUGULI, ZANG R X, LIU Y Z, YANG J T, QIAO Z L, CAO X, XU H W, WU J P. Effects of different cryoprotectants on ovine preadipocytes cryopreservation. Scientia Agricultura Sinica, 2012, 45(7): 1439-1446. (in Chinese)
[31] HATCH G M, SMITH A J, XU F Y, HALL A M, BERNLOHR D A. FATP1 channels exogenous FA into 1, 2, 3-triacyl--glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. Journal of Lipid Research, 2002, 43(9): 1380-1389.
[32] WU Q W, KAZANTZIS M, DOEGE H, ORTEGON A M, TSANG B, FALCON A, STAHL A. Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes, 2006, 55(12): 3229-3237.
[33] QI R L, LONG D B, WANG J, WANG Q, HUANG X F, CAO C T, GAO G L, HUANG J X. MicroRNA-199a targets the fatty acid transport protein 1 gene and inhibits the adipogenic trans- differentiation of C2C12 myoblasts. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2016, 39(3): 1087-1097.
[34] DIRUSSO C C, LI H, DARWIS D, WATKINS P A, BERGER J, BLACK P N. Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast. Journal of Biological Chemistry, 2005, 280(17): 16829-16837.
[35] LOBO S, WICZER B M, SMITH A J, HALL A M, BERNLOHR D A. Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4. Journal of Lipid Research, 2007, 48(3): 609-620.
[36] QIU F F, XIE L, MA J G, LUO W, ZHANG L, CHAO Z, CHEN S H, NIE Q H, LIN Z M, ZHANG X Q. Lower expression ofenhances intramuscular fat deposition in chicken via down-regulated fatty acid oxidation mediated by. Frontiers in Physiology, 2017, 8: 449.
[37] NICKERSON J G, ALKHATEEB H, BENTON C R, LALLY J, NICKERSON J, HAN X X, WILSON M H, JAIN S S, SNOOK L A, GLATZ J F C, CHABOWSKI A, LUIKEN J J F P, BONEN A. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. Journal of Biological Chemistry, 2009, 284(24): 16522-16530.
[38] SEBASTIáN D, GUITART M, GARCíA-MARTíNEZ C, MAUVEZIN C, ORELLANA-GAVALDà J M, SERRA D, GóMEZ-FOIX A M, HEGARDT F G, ASINS G. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. Journal of Lipid Research, 2009, 50(9): 1789-1799.
[39] CHIU H C, KOVACS A, BLANTON R M, HAN X L, COURTOIS M, WEINHEIMER C J, YAMADA K A, BRUNET S, XU H D, NERBONNE J M, WELCH M J, FETTIG N M, SHARP T L, SAMBANDAM N, OLSON K M, ORY D S, SCHAFFER J E. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circulation Research, 2005, 96(2): 225-233.
[40] HUANG J P, ZHU R R, SHI D S. The role of FATP1 in lipid accumulation: a review. Molecular and Cellular Biochemistry, 2021, 476(4): 1897-1903.
[41] HOLLOWAY G P, CHOU C J, LALLY J, STELLINGWERFF T, MAHER A C, GAVRILOVA O, HALUZIK M, ALKHATEEB H, REITMAN M L, BONEN A. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Diabetologia, 2011, 54(6): 1457-1467.
[42] FROHNERT B I, HUI T Y, BERNLOHR D A. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. Journal of Biological Chemistry, 1999, 274(7): 3970-3977.
[43] YE G Z, GAO H, WANG Z C, LIN Y, LIAO X, ZHANG H, CHI Y L, ZHU H M, DONG S J. PPARα and PPARγ activation attenuates total free fatty acid and triglyceride accumulation in macrophages via the inhibition of Fatp1 expression. Cell Death & Disease, 2019, 10: 39.
[44] CHOI H, KIM S J, PARK S S, CHANG C, KIM E. TR4 activatesgene expression to promote lipid accumulation in 3T3-L1 adipocytes. FEBS Letters, 2011, 585(17): 2763-2767.
[45] PROSDOCIMO D A, ANAND P, LIAO X D, ZHU H, SHELKAY S, ARTERO-CALDERON P, ZHANG L L, KIRSH J, MOORE D, ROSCA M G, VAZQUEZ E, KERNER J, AKAT K M, WILLIAMS Z, ZHAO J H, FUJIOKA H, TUSCHL T, BAI X D, SCHULZE P C, HOPPEL C L, JAIN M K, HALDAR S M. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. Journal of Biological Chemistry, 2014, 289(9): 5914-5924.
[46] ZHAO Z D, TIAN H S, SHI B G, JIANG Y Y, LIU X, HU J. Transcriptional regulation of the bovine fatty acid transport protein 1 gene by Krüppel-like factors 15. Animals: an Open Access Journal from MDPI, 2019, 9(9): 654.
[47] 朱江江, 林亞秋, 王永, 林森. 山羊Kruppel樣轉(zhuǎn)錄因子家族在前體脂肪細(xì)胞分化中的表達(dá)模式及相關(guān)性分析. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(13): 2341-2351. doi:10.3864/j.issn.0578-1752.2019.13.012.
ZHU J J, LIN Y Q, WANG Y, LIN S. Expression profile and correlations of kruppel like factors during caprine() preadipocyte differentiation. Scientia Agricultura Sinica, 2019, 52(13): 2341-2351. doi:10.3864/j.issn.0578-1752.2019.13.012. (in Chinese)
[48] MAK H Y. Lipid droplets as fat storage organelles in: thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. Journal of Lipid Research, 2012, 53(1): 28-33.
[49] XU N Y, ZHANG S O, COLE R A, MCKINNEY S A, GUO F L, HAAS J T, BOBBA S, FARESE R V Jr, MAK H Y. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. The Journal of Cell Biology, 2012, 198(5): 895-911.
Role of
LI Qi1, YANG ChangHeng1, WANG Yong1, LIN YaQiu1, 2, XIANG Hua2, ZHU Jiangjiang1, 2
1Qinghai-Tibetan Plateau Animal Genetic ResourceReservation and Utilization Key Laboratory of Sichuan Province/Southwest Minzu University, Chengdu 610041;2Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education/Southwest Minzu University, Chengdu 610041
【Background】Fatty acid transporter 1 (FATP1) can promote the uptake of fatty acids in mammals. This process is very important to maintain the balance of lipid metabolism, and also has an important impact on the meat quality of livestock.【Objective】The aim of this study was to obtain the CDS sequence of goatgene, to detect the expression ofgene in different tissues of goats, and to explore its effect on lipid metabolism of goat intramuscular adipocytes, so as to provide a reference for further revealing the mechanism ofgene in goat lipid metabolism, which can provide a theoretical basis for genetic and breeding improvement of goats.【Method】The CDS of goatgene was cloned by real-time fluorescence quantitative PCR (RT-PCR), its biological characteristics, such as hydrophobicity, transmembrane region and signal peptide, were analyzed by online tools, and its amino acid sequence phylogenetic tree was constructed. The expression level ofgene in different goat tissues was detected by RT-qPCR and its tissue expression pattern was constructed. The constructed eukaryotic expression vector and screened siRNA were used to overexpress and interfere with FATP1 in goat intramuscular adipocytes, the effects ofgene overexpression and interference on lipid deposition in goat intramuscular adipocytes were detected by oil red O staining and triglyceride determination, and the effects ofgene overexpression and interference on the expression of genes related to lipid metabolism were further explored by RT-qPCR. 【Result】The CDS ofgene was 1 941 bp, encoding 646 amino acids residues. It was predicted that its molecular formula was C3196H5026N884O898S25, and the protein was a basic hydrophobic stable protein. Phylogenetic tree analysis of amino acid sequence showed that goat FATP1 was closely related to sheep. RT-qPCR showed that the expression ofgene was the highest in goat small intestine. Oil red O staining and triglyceride determination showed that the number of lipid droplets and triglyceride content in goat intramuscular adipocytes increased after overexpression of FATP1, but the opposite results were obtained after interference with FATP1. After overexpression of FATP1 in goat adipocytes, the expression levels of fatty acid synthesis, transport and other related genes(<0.01),(<0.01),(<0.01),(<0.01),(<0.01),(<0.01) and(<0.05) increased significantly, while the expression level of lipolysis related genes(<0.01) decreased significantly. After interfering FATP1, the expression of fatty acid transport, elongation and other related genes(<0.01),(<0.01) and(<0.05) decreased significantly, and the expression of lipolysis related genes(<0.01) and(<0.05) increased significantly. 【Conclusion】FATP1 might significantly promote the lipid deposition of goat intramuscular precursor adipocytes by promoting the expression of genes related to cell lipid production and reducing the expression of genes related to lipolysis, which provided an experimental reference for further revealing the role and molecular mechanism of FATP1 gene in regulating lipid metabolism.
goat; FATP1; intramuscular adipocytes; lipid deposition
10.3864/j.issn.0578-1752.2023.10.015
2021-12-02;
2022-10-31
國(guó)家自然科學(xué)基金(32072723)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0500709)、四川省科技計(jì)劃項(xiàng)目(2020JDJQ0010,2021YFYZ0003)、中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)基金(2021PTJS21)
李琪,E-mail:liqiligexiao@outlook.com。通信作者 朱江江,E-mail:zhujiang4656@hotmail.com。通信作者向華,E-mail:xianghua2008411@163.com
(責(zé)任編輯 林鑒非)
中國(guó)農(nóng)業(yè)科學(xué)2023年10期