李繼榮,劉鑫,2,王君,曹曉鋼,次頓
牦牛乳制品加工過程中穩(wěn)定碳、氮同位素分餾效應(yīng)
1西藏自治區(qū)農(nóng)牧科學(xué)院農(nóng)業(yè)質(zhì)量標(biāo)準(zhǔn)與檢測研究所/農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品質(zhì)量監(jiān)督檢驗測試中心(拉薩),拉薩 850032;2西藏農(nóng)牧學(xué)院食品科學(xué)學(xué)院,西藏林芝 860000;3拉薩海關(guān)技術(shù)中心,拉薩 850002
【背景】穩(wěn)定同位素指紋圖譜技術(shù)已廣泛應(yīng)用于乳制品產(chǎn)地溯源研究中,但多集中于產(chǎn)品與原料乳穩(wěn)定同位素間差異比較。乳制品加工過程中穩(wěn)定同位素是否存在分餾效應(yīng),穩(wěn)定碳、氮同位素能否用于牦牛乳制品的產(chǎn)地溯源尚不清楚?!灸康摹恳躁笈K崮?、牦牛奶渣為研究對象,明確牦牛乳制品加工過程中各關(guān)鍵點(diǎn)樣品穩(wěn)定碳、氮同位素變化,分餾系數(shù)及相關(guān)性,探究不同產(chǎn)地牦牛乳制品穩(wěn)定碳、氮同位素特征,為牦牛乳制品產(chǎn)地溯源提供理論與技術(shù)支撐?!痉椒ā繌奈鞑刈灾螀^(qū)那曲市聶榮縣、嘉黎縣采集酸奶加工過程(牦牛乳、煮沸5 min牦牛乳、加菌種后、40℃發(fā)酵6 h、酸奶成品)5個關(guān)鍵取樣點(diǎn)對應(yīng)樣品和奶渣加工過程(牦牛乳、脫脂牦牛乳、煮沸10 h脫脂牦牛乳和奶渣成品)4個關(guān)鍵取樣點(diǎn)對應(yīng)樣品共計196份。利用元素分析—同位素比率質(zhì)譜儀(EA-IRMS)測定穩(wěn)定碳、氮同位素比率。結(jié)合單因素方差分析,比較穩(wěn)定碳、氮同位素在酸奶、奶渣加工關(guān)鍵采樣點(diǎn)間的差異;酸奶、奶渣加工過程中關(guān)鍵采樣點(diǎn)樣品穩(wěn)定碳、氮同位素的相關(guān)性進(jìn)行皮爾遜相關(guān)分析;兩因素方差分析比較不同產(chǎn)地酸奶與牦牛乳、奶渣與牦牛乳穩(wěn)定碳、氮同位素差異?!窘Y(jié)果】酸奶加工過程中存在δ13C、δ15N分餾,δ13C牦牛乳>δ13C40℃發(fā)酵6 h、牦牛酸奶>δ13C添加菌種后樣品,分餾系數(shù)介于0.9996—1.0009,Δ牦牛乳-牦牛酸奶為0.48‰;δ15N煮沸5 min牦牛乳、40 ℃發(fā)酵6 h、牦牛酸奶>δ15N牦牛乳,分餾系數(shù)介于0.9993—1,Δ牦牛乳-牦牛酸奶為-0.61‰;部分關(guān)鍵取樣點(diǎn)間穩(wěn)定碳、氮同位素存在顯著相關(guān)性。奶渣加工過程中,δ13C牦牛乳、煮沸10 h脫脂牦牛乳、奶渣>δ13C脫脂牦牛乳,分餾系數(shù)介于0.9995—1.0005,Δ牦牛乳-牦牛奶渣為0,部分關(guān)鍵點(diǎn)樣品間δ13C存在顯著負(fù)相關(guān);各關(guān)鍵點(diǎn)樣品δ15N無顯著差異,分餾值均為0。不同產(chǎn)地乳制品穩(wěn)定碳、氮同位素差異極顯著,聶榮縣較嘉黎縣牦牛乳制品δ13C、δ15N富集?!窘Y(jié)論】牦牛乳制品加工過程中δ13C、δ15N存在分餾,添加菌種、發(fā)酵、離心脫脂過程導(dǎo)致δ13C比值不同,加熱使樣品δ13C、δ15N發(fā)生變化。雖然牦牛乳制品加工過程中發(fā)生穩(wěn)定同位素分餾,但與產(chǎn)地相比,加工過程的影響較小,穩(wěn)定碳、氮同位素可應(yīng)用于牦牛乳制品產(chǎn)地溯源。
牦牛乳;酸奶;奶渣;牦牛乳制品;穩(wěn)定碳同位素;穩(wěn)定氮同位素
【研究意義】作為藏族人民最喜愛的食物之一,牦牛乳富含蛋白質(zhì)、脂肪、糖類等多種營養(yǎng)素,具備開發(fā)高品質(zhì)乳制品的潛力[1]。目前常見的牦牛乳制品包括酸奶、奶渣及酥油等[2]。牦牛酸奶在降低LDL膽固醇、增進(jìn)骨骼健康及抗動脈粥樣硬化等方面發(fā)揮著重要作用[3]。牦牛奶渣又名曲拉,是將牦牛乳經(jīng)煮沸脫脂后自然發(fā)酵、風(fēng)干,不加凝乳酶、不經(jīng)成熟直接食用的酸凝型硬質(zhì)奶酪[4],具有較好的抗氧化活性[5]。食品產(chǎn)地溯源技術(shù)是有效實(shí)施食品原產(chǎn)地追溯、保護(hù)名優(yōu)特產(chǎn)品的重要技術(shù)手段[6]。穩(wěn)定同位素是用于乳制品產(chǎn)地溯源的有效指標(biāo)[7-9]。穩(wěn)定同位素分餾指同位素比值不同的兩種物質(zhì)之間發(fā)生的同位素分配[10]。研究牦牛乳制品加工過程中穩(wěn)定同位素的組成特征與分餾,可為牦牛乳及制品產(chǎn)地溯源提供理論和技術(shù)支撐?!厩叭搜芯窟M(jìn)展】穩(wěn)定同位素指紋圖譜技術(shù)已廣泛應(yīng)用于乳制品產(chǎn)地溯源中,主要應(yīng)用于牛奶[11-12]、奶酪[7-8]、黃油[13]、嬰幼兒配方奶粉[14]等產(chǎn)地溯源及真?zhèn)伪鎰e。常用的測定指標(biāo)有δ13C、δ15N、δD、δ18O、δ34S和86Sr/88Sr等[15-16]。JIN等[15]使用δ13C、δ15N、δD、δ18O對鮮牛奶與復(fù)原乳進(jìn)行辨別,辨別率達(dá)94.9%。ZHAO等[11]對中國(河北、寧夏、陜西、內(nèi)蒙古、江蘇)牛奶產(chǎn)地溯源研究發(fā)現(xiàn),利用δ13C、δ15N、δD、δ18O可以對間距0.7 km以上奶牛場產(chǎn)牛奶進(jìn)行區(qū)分。有關(guān)加工過程中穩(wěn)定同位素分餾研究較少,主要集中在酒類[17-19]、茶葉[20-23]、谷物[24-27]、肉類[28-30]、油類[31]、牛奶[32]等產(chǎn)品。SCAMPICCHIO等[33]研究巴氏滅菌和超高溫滅菌對牛奶穩(wěn)定同位素的影響,結(jié)果顯示加熱使碳、氮同位素偏富。MASUD等[34]有關(guān)牛奶不同成分及乙醇穩(wěn)定同位素組成特征的研究時發(fā)現(xiàn),發(fā)酵使乙醇較乳糖穩(wěn)定碳同位素富集。ALTIERI等[7]有關(guān)馬蘇里拉奶酪生產(chǎn)過程中穩(wěn)定同位素分餾結(jié)果顯示,馬蘇里拉奶酪與原乳間穩(wěn)定碳、氮同位素?zé)o顯著差異。【本研究切入點(diǎn)】利用穩(wěn)定同位素指紋圖譜技術(shù)對乳制品產(chǎn)地溯源的研究,多集中于產(chǎn)品與原料乳穩(wěn)定同位素間差異比較,乳制品加工過程中各個關(guān)鍵點(diǎn)如何影響產(chǎn)品最終穩(wěn)定同位素,其間是否存在分餾,進(jìn)而應(yīng)用于牦牛乳及其制品產(chǎn)地溯源尚不清楚,牦牛酸奶、牦牛奶渣加工過程中穩(wěn)定碳、氮同位素變化規(guī)律也未見報道?!緮M解決的關(guān)鍵問題】研究牦牛酸奶、牦牛奶渣加工過程中不同關(guān)鍵點(diǎn)樣品穩(wěn)定碳、氮同位素差異、分餾系數(shù)及相關(guān)性,探究應(yīng)用穩(wěn)定碳、氮同位素分析技術(shù)進(jìn)行牦牛乳及其制品產(chǎn)地溯源的可行性,為牦牛乳及其制品的產(chǎn)地溯源提供理論參考。
試驗于2021年在西藏自治區(qū)那曲市聶榮嘎確生態(tài)畜牧業(yè)發(fā)展有限責(zé)任公司和嘉黎縣娘亞牦牛養(yǎng)殖產(chǎn)業(yè)發(fā)展有限責(zé)任公司進(jìn)行。
1.1.1 酸奶加工工藝 擠出的新鮮牦牛乳經(jīng)紗布過濾除雜得到酸奶加工牦牛乳原料,煮沸5 min對材料進(jìn)行殺菌,殺菌晾涼后的樣品加入前1 d的老酸奶作為菌種,添加菌種后樣品40℃發(fā)酵6 h,4—6℃冷藏6 h制得酸奶成品。
1.1.2 奶渣加工工藝 擠出的新鮮牦牛乳經(jīng)紗布過濾除雜得到奶渣加工牦牛乳原料,40 L牛奶分離機(jī)中脫脂得脫脂牦牛乳,煮沸10 h脫脂牦牛乳進(jìn)行殺菌及蒸干水分,塑形晾曬得到奶渣成品。
2021年8—9月從西藏自治區(qū)那曲市聶榮嘎確生態(tài)畜牧業(yè)發(fā)展有限責(zé)任公司采集酸奶加工過程(牦牛乳、煮沸5 min牦牛乳、加菌種后、40℃發(fā)酵6 h、酸奶成品)5個關(guān)鍵取樣點(diǎn)對應(yīng)樣品和奶渣加工過程(牦牛乳、脫脂牦牛乳、煮沸10 h脫脂牦牛乳和奶渣成品)4個關(guān)鍵取樣點(diǎn)對應(yīng)樣品共計150份,其中牦牛乳樣品20份,對應(yīng)煮沸5 min牦牛乳樣品、加菌種后樣品、40℃發(fā)酵6 h樣品、酸奶成品各19份,對應(yīng)脫脂牦牛乳、煮沸10 h脫脂牦牛乳和奶渣成品各18份;2021年9—10月從西藏自治區(qū)那曲市嘉黎縣娘亞牦牛養(yǎng)殖產(chǎn)業(yè)發(fā)展有限責(zé)任公司采集樣品46份,其中牦牛乳18份,牦牛酸奶18份,奶渣成品10份(表1)。牦牛乳采自當(dāng)日酸奶、奶渣生產(chǎn)所用除雜后牦牛乳混樣,酸奶、奶渣加工關(guān)鍵點(diǎn)取樣為同一天、同一牦牛乳原料。
表1 采樣點(diǎn)信息表
1.3.1 樣品前處理 取25 mL樣品置于90 mm無菌培養(yǎng)皿中,為避免樣品間污染,使用封口膜封口并用牙簽戳孔,冷凍干燥72 h至恒重,干燥后樣品包裝于直徑12.5 mm的定量濾紙,將濾紙包好的樣品置于250 mL索氏提取器中,使用三氯甲烷﹕甲醇(2﹕1)有機(jī)溶劑60℃脫脂6 h,脫脂后的樣品冷凍干燥24 h至恒重,脫脂干燥后的樣品使用Tissuelyser-192型多樣品組織研磨儀研磨,過100目篩,處理好的樣品存于2 mL離心管中備用。
1.3.2 樣品測定 使用十萬分之一天平稱取0.4 mg樣品放入錫杯中包樣。元素分析儀:Flash EA2000型串聯(lián)穩(wěn)定同位素比率質(zhì)譜儀:Delta V Advantage Isotope Ratio MS進(jìn)行穩(wěn)定碳、氮同位素檢測。使用標(biāo)準(zhǔn)品為IAEA-600,儀器對δ13C和δ15N的連續(xù)測定精度分別小于±0.1‰、±0.2‰。
穩(wěn)定同位素比值表示樣品與標(biāo)準(zhǔn)品之間偏差的千分?jǐn)?shù):
δ(‰)=[(sample/standard-1)]×1000
式中,:C或N;=C/C或N/N;sample:被測樣品的同位素豐度比;standard:標(biāo)準(zhǔn)品的同位素豐度比。
乳制品加工各關(guān)鍵點(diǎn)分餾系數(shù)計算公式如下:
αA-B=A/B
式中,αA-B:A樣品與B樣品間同位素分餾系數(shù);=C/C或N/N;A、B:乳制品加工關(guān)鍵點(diǎn)樣品名稱。A、B樣品間的分餾值為ΔA-B=δA-δB。
使用軟件Excel 2019對數(shù)據(jù)進(jìn)行整理,SPSS 26對數(shù)據(jù)進(jìn)行統(tǒng)計分析,使用單因素方差分析比較穩(wěn)定碳、氮同位素在酸奶、奶渣加工關(guān)鍵采樣點(diǎn)間的差異,統(tǒng)計檢驗前,用Kolmogorov-Smirnov和Levene統(tǒng)計量分別檢驗所有數(shù)據(jù)的正態(tài)性和方差同質(zhì)性,滿足方差齊性時采用LSD多重比較,不滿足方差齊性時采用Games-Howell多重比較法進(jìn)行分析;皮爾遜相關(guān)分析檢測酸奶、奶渣加工過程中關(guān)鍵采樣點(diǎn)樣品穩(wěn)定碳、氮同位素的相關(guān)性;線性回歸分析構(gòu)建酸奶、奶渣加工過程中關(guān)鍵采樣點(diǎn)樣品穩(wěn)定碳、氮同位素的線性方程;兩因素方差分析比較不同產(chǎn)地(聶榮縣和嘉黎縣)牦牛乳與酸奶、牦牛乳與奶渣穩(wěn)定碳、氮同位素差異。使用Origin 2021作圖。
酸奶加工過程中,牦牛乳原料δ13C平均值為-25.2‰,煮沸5 min牦牛乳δ13C平均值為-25.9‰,添加菌種后樣品δ13C平均值為-26.0‰,40℃發(fā)酵6 h樣品δ13C平均值為-25.6‰,酸奶成品δ13C平均值為-25.7‰(圖1)。單因素方差分析結(jié)果顯示,酸奶加工過程中穩(wěn)定碳同位素差異極顯著((4, 90)=11.417,<0.01),δ13C牦牛乳>δ13C40℃發(fā)酵6 h、酸奶>δ13C添加菌種后樣品,δ13C煮沸5 min牦牛乳與δ13C添加菌種后樣品、δ13C酸奶無顯著差異,δ13C40℃發(fā)酵6 h與δ13C酸奶無顯著差異(表2)。牦牛乳δ13C與煮沸5 min牦牛乳δ13C分餾值介于-0.1‰—1.7‰,牦牛乳δ13C較煮沸5 min牦牛乳δ13C富集0.72‰,分餾系數(shù)為1.0007;牦牛乳δ13C與添加菌種后樣品δ13C 分餾值介于0.2‰—1.8‰,牦牛乳δ13C較添加菌種后樣品δ13C富集0.87‰,分餾系數(shù)為1.0009;牦牛乳δ13C與40℃發(fā)酵6 h樣品δ13C分餾值介于-0.9‰—2.1‰,牦牛乳δ13C較40℃發(fā)酵6 h樣品δ13C富集0.46‰,分餾系數(shù)為1.0005;牦牛乳δ13C與酸奶δ13C分餾值介于-0.9‰—1.9‰,牦牛乳δ13C較酸奶δ13C富集0.48‰,分餾系數(shù)為1.0005;添加菌種后樣品δ13C較40 ℃發(fā)酵6 h樣品δ13C、酸奶δ13C貧化,添加菌種后樣品δ13C與40 ℃發(fā)酵6 h樣品δ13C分餾值介于-1.6‰—1.2‰,添加菌種后樣品δ13C較40 ℃發(fā)酵6 h樣品δ13C貧化0.40‰,分餾系數(shù)為0.9996;添加菌種后樣品δ13C與酸奶δ13C分餾值介于-1.6‰—0.4‰,添加菌種后樣品δ13C較酸奶δ13C貧化0.39‰,分餾系數(shù)為0.9996。
不同大寫字母表示差異極顯著(P<0.01) Different capital letters indicate extremely significant difference (P<0.01)
酸奶加工過程中,牦牛乳原料δ15N平均值為4.2‰,煮沸5 min牦牛乳樣品的δ15N平均值為4.7‰,添加菌種后樣品δ15N平均值為4.5‰,40 ℃發(fā)酵6 h樣品δ15N平均值4.9‰,酸奶成品δ15N平均值為4.8‰。單因素方差分析結(jié)果顯示(圖1),酸奶加工過程中穩(wěn)定氮同位素差異極其顯著((4, 90)= 3.736,<0.01),δ15N煮沸5 min牦牛乳、40 ℃發(fā)酵6 h、酸奶>δ15N牦牛乳,δ15N添加菌種后樣品與δ15N牦牛乳、δ15N酸奶無顯著差異,δ15N酸奶與δ15N煮沸5 min牦牛乳、δ15N添加菌種后樣品、δ15N40℃發(fā)酵6 h樣品無顯著差異。牦牛乳原料δ15N較煮沸5 min牦牛乳δ15N、40 ℃發(fā)酵6 h樣品δ15N、酸奶δ15N貧化(表2),牦牛乳原料δ15N與煮沸5 min牦牛乳δ15N分餾值介于-1.6‰—0.7‰,牦牛乳原料δ15N較煮沸5 min牦牛乳δ15N貧化0.51‰,分餾系數(shù)為0.9995;牦牛乳原料δ15N與40 ℃發(fā)酵6 h樣品δ15N分餾值介于-1.6‰—1.3‰,牦牛乳原料δ15N較40 ℃發(fā)酵6 h樣品δ15N貧化0.67‰,分餾系數(shù)為0.9993;牦牛乳原料δ15N與酸奶δ15N分餾值介于-1.7‰— 2.0‰,牦牛乳原料δ15N較酸奶δ15N貧化0.61‰,分餾系數(shù)為0.9994。
表2 牦牛酸奶加工過程中各成分間穩(wěn)定碳、氮同位素分餾系數(shù)表
圖2顯示40 ℃發(fā)酵6 h樣品δ13C與酸奶成品δ13C、煮沸5 min牦牛乳δ13C存在顯著正關(guān)性(=0.551,<0.05;=0.47,<0.05),與牦牛乳樣品δ13C存在顯著負(fù)關(guān)性(=-0.532,<0.05)。
圖3顯示酸奶成品δ15N與煮沸5 min牦牛乳δ15N存在顯著正相關(guān)(=0.523,<0.05),與添加菌種后樣品δ15N、40 ℃發(fā)酵6 h樣品δ15N存在極顯著正相關(guān)(=0.74,<0.01;=0.639,<0.01);煮沸5 min牦牛乳δ15N與添加菌種后樣品δ15N、40 ℃發(fā)酵6 h樣品δ15N存在極顯著正相關(guān)(=0.872,<0.01;=0.648,<0.01);添加菌種后樣品δ15N與40 ℃發(fā)酵6 h樣品存在極顯著正相關(guān)性(=0.685,<0.01)。
奶渣加工過程中牦牛乳原料δ13C平均值為-25.2‰,脫脂牦牛乳δ13C平均值為-25.7‰,煮沸10 h脫脂牦牛乳δ13C平均值為-25.2‰,奶渣成品δ13C平均值為-25.3‰。牦牛乳原料δ15N平均值為4.1‰,脫脂牦牛乳δ15N平均值為4.0‰,煮沸10 h脫脂牦牛乳δ15N平均值為4.4‰,奶渣成品δ15N平均值為4.6‰。單因素方差分析結(jié)果顯示(圖4),奶渣加工過程中樣品δ13C差異顯著((3, 68)=3.805,<0.05),δ13C牦牛乳、煮沸10 h脫脂牦牛乳、奶渣>δ13C脫脂牦牛乳,δ13C牦牛乳與δ13C煮沸10 h脫脂牦牛乳、δ13C奶渣無顯著差異。脫脂牦牛乳δ13C 較牦牛乳原料δ13C、煮沸10 h脫脂牦牛乳δ13C、奶渣δ13C貧化(表3),脫脂牦牛乳δ13C與牦牛乳原料δ13C分餾值介于-3.2‰—1.1‰,牦牛乳δ13C較脫脂牦牛乳δ13C富集0.51‰,分餾系數(shù)為1.0005;脫脂牦牛乳δ13C與煮沸10 h脫脂牦牛乳δ13C分餾值介于-2.6‰— 0.9‰,脫脂牦牛乳δ13C較煮沸10 h脫脂牦牛乳δ13C貧化0.51‰,分餾系數(shù)為0.9995;脫脂牦牛乳δ13C與奶渣δ13C分餾值介于-3.0‰—0.5‰,脫脂牦牛乳δ13C較奶渣δ13C貧化0.46‰,分餾系數(shù)為0.9995。奶渣加工過程中δ15N無顯著差異((3, 68)=2.492,=0.067)。
圖2 酸奶加工過程中各關(guān)鍵取樣點(diǎn)穩(wěn)定碳同位素相關(guān)性
表3 牦牛奶渣加工過程中各成分間穩(wěn)定碳、氮同位素分餾系數(shù)表
圖3 酸奶加工過程中各關(guān)鍵取樣點(diǎn)穩(wěn)定氮同位素相關(guān)性
為了研究奶渣加工過程中牦牛乳原料、脫脂牦牛乳、煮沸10 h脫脂牦牛乳和奶渣成品穩(wěn)定碳、氮同位素的關(guān)系,對數(shù)據(jù)采用Pearson相關(guān)分析。結(jié)果顯示(圖5),牦牛乳原料δ13C與脫脂牦牛乳δ13C、奶渣成品δ13C存在顯著負(fù)關(guān)性(=-0.544,<0.05;=-0.549,<0.05),奶渣成品與煮沸10 h脫脂牦牛乳δ13C存在極其顯著負(fù)關(guān)性(=-0.603,<0.01)。奶渣加工過程中各關(guān)鍵取樣點(diǎn)樣品δ15N無顯著相關(guān)性。
聶榮縣與嘉黎縣產(chǎn)牦牛乳與酸奶兩因素方差分析結(jié)果顯示(圖6),不同產(chǎn)地牦牛乳δ13C與酸奶δ13C間存在極其顯著差異((3, 71)=6.308,<0.01),聶榮縣與嘉黎縣牦牛乳制品(牦牛乳、酸奶)δ13C差異極其顯著((1, 74)=7.309,<0.01),牦牛乳與酸奶間δ13C存在顯著差異((1, 74)=4.941,<0.05),且產(chǎn)地與乳制品的差異存在交互作用((1, 74)=5.9,<0.05)。聶榮縣較嘉黎縣乳制品(牦牛乳、酸奶)δ13C富集,分餾值為0.3‰,牦牛乳δ13C較酸奶δ13C富集,分餾值為0.2‰;聶榮縣與嘉黎縣牦牛乳制品(牦牛乳、酸奶)δ15N差異極其顯著((1, 74)=85.382,<0.01),牦牛乳與酸奶間δ15N無顯著差異((1, 74)=1.894,>0.05),聶榮縣較嘉黎縣牦牛乳制品(牦牛乳、酸奶)δ15N富集,分餾值為1.3‰。
不同小寫字母表示差異顯著(P<0.05) Different lowercase letters indicate significant difference (P<0.05)
圖5 奶渣加工過程中穩(wěn)定碳同位素相關(guān)性
聶榮縣與嘉黎縣產(chǎn)牦牛乳與奶渣兩因素方差分析結(jié)果顯示(圖6),聶榮縣與嘉黎縣牦牛乳制品(牦牛乳、奶渣)δ13C差異極其顯著((1, 65)=19.768,<0.01),牦牛乳與奶渣間δ13C無顯著差異((1, 65)=0.834,>0.05)。聶榮縣較嘉黎縣乳制品(牦牛乳、奶渣)δ13C富集,分餾值為0.5‰;聶榮縣與嘉黎縣牦牛乳制品δ15N差異極其顯著((1, 65)=42.727,<0.01),牦牛乳與奶渣間δ15N無顯著差異((1, 65)=0.647,>0.05),聶榮縣較嘉黎縣牦牛乳制品(牦牛乳、奶渣)δ15N富集,分餾值為1.1‰。
圖6 不同產(chǎn)地乳制品穩(wěn)定碳、氮同位素
美拉德反應(yīng)是熱加工食品發(fā)生的主要反應(yīng)之一,溫度越高,反應(yīng)時間越長,美拉德反應(yīng)進(jìn)行的程度越大[35]。酸奶加工過程中,牦牛全乳煮沸5 min使樣品δ13C貧化,δ15N富集;而奶渣加工過程中,脫脂牦牛乳煮沸10 h使樣品δ13C富集,δ15N無顯著差異。造成這一不同結(jié)論的原因可能是由于美拉德反應(yīng)底物不同、加熱時間不同,使所得產(chǎn)物不同。牦牛全乳煮沸5 min使樣品δ15N富集,結(jié)果與FRASER等[36]碳化試驗中加熱使δ15N值富集的結(jié)論一致。
原料乳中的蛋白質(zhì)、脂肪和糖類在乳酸菌的作用下發(fā)酵形成不同種類的有機(jī)酸[37]。張倩等[18]有關(guān)釀酒糧食發(fā)酵蒸餾乙醇穩(wěn)定碳同位素的變化研究得出,發(fā)酵糧食的種類、比例決定了發(fā)酵原材料的總δ13C,最終影響發(fā)酵乙醇δ13C。本研究得出酸奶加工過程中,發(fā)酵使樣品δ13C逐漸富集,可能是由于發(fā)酵降低了牦牛奶中的乳糖含量[38],而乳糖發(fā)酵使乙醇δ13C較乳糖δ13C偏富集所致[34]。BOSTIC等[27]有關(guān)烘烤和發(fā)酵對谷物食品穩(wěn)定碳、氮同位素比值影響的研究顯示,面包發(fā)酵75 min,δ15N沒有顯著差異。這一結(jié)果與本研究中發(fā)酵未改變樣品δ15N比值的結(jié)論一致。
牦牛乳經(jīng)牛奶脫脂機(jī)脫脂得到脫脂牦牛乳,牦牛乳與脫脂牦牛乳經(jīng)冷凍干燥脫脂后得到奶渣加工關(guān)鍵點(diǎn)樣品,脫出的脂質(zhì)經(jīng)沖洗、塑形可加工成酥油。BOSTIC等[32]發(fā)現(xiàn)脂肪含量與穩(wěn)定碳同位素比值存在線性關(guān)系,牛奶干重中每增加8.75%脂肪含量,穩(wěn)定碳同位素比值貧化0.33‰。脂質(zhì)中δ13C較為貧化,樣品脫脂可使δ13C富集。理論上,牦牛乳與脫脂牦牛乳經(jīng)脫脂處理后,δ13C應(yīng)無顯著差異或牦牛乳δ13C較脫脂牦牛乳δ13C貧化,而本研究得出脫脂后的牦牛乳δ13C較再脫脂后脫脂牦牛乳δ13C富集,其原因可能是由于脫脂牦牛乳制備時除脫除脂質(zhì)外,同時脫除部分蛋白質(zhì)或糖類[39-40],最終導(dǎo)致脫脂牦牛乳δ13C富集。
奶渣又名曲拉,是將牦牛乳經(jīng)煮沸脫脂后自然發(fā)酵、風(fēng)干,不加凝乳酶、不經(jīng)成熟直接食用的酸凝型硬質(zhì)奶酪[4]。本研究中奶渣與牦牛乳間穩(wěn)定碳、氮同位素分餾系數(shù)為1,與CAPICI等[41]有關(guān)奶酪與原乳間穩(wěn)定碳、氮同位素未發(fā)生分餾結(jié)果一致。不同產(chǎn)地奶渣與牦牛乳穩(wěn)定碳、氮同位素變化規(guī)律相同,說明牦牛乳穩(wěn)定碳、氮同位素可以反映乳制品奶渣穩(wěn)定同位素特征。
牦牛乳制品穩(wěn)定碳、氮同位素比值存在一定的地域性,不同產(chǎn)地牦牛乳穩(wěn)定同位素比值差異主要由于牦牛所食食物穩(wěn)定同位素比值差異所致[10,12]。C3植物δ13C介于-23‰—-38‰,C4植物δ13C介于-12‰— -14‰[10],西藏牦牛乳δ13C介于-26.3‰—-24.5‰,說明西藏牦牛主要以C3植物為主。雖然酸奶加工過程中穩(wěn)定碳、氮同位素存在分餾現(xiàn)象,但產(chǎn)地間的穩(wěn)定碳、氮同位素差異較加工過程所引起的穩(wěn)定碳、氮同位素大。
牦牛乳制品加工過程中δ13C、δ15N存在分餾,添加菌種、發(fā)酵、離心脫脂過程導(dǎo)致δ13C比值不同,加熱使樣品δ13C、δ15N發(fā)生變化。δ13C平均分餾值小于0.9‰,分餾系數(shù)介于0.9995—1.0009;δ15N平均分餾值小于0.7‰,分餾系數(shù)介于0.9993—1。雖然牦牛乳制品加工過程中發(fā)生穩(wěn)定同位素分餾,但與產(chǎn)地相比,加工過程影響較小,穩(wěn)定碳、氮同位素可應(yīng)用于牦牛乳制品產(chǎn)地溯源。
[1] 代安娜, 楊具田, 丁波, 劉紅娜. 牦牛乳組分及功能特性研究進(jìn)展. 動物營養(yǎng)學(xué)報, 2022, 34(6): 3443-3453.
DAI A N, YANG J T, DING B, LIU H N. Research progress on components and functional characteristics of yak milk. Chinese Journal of Animal Nutrition, 2022, 34(6): 3443-3453. (in Chinese)
[2] 孫鵬飛. 牦牛乳開發(fā)利用現(xiàn)狀及產(chǎn)業(yè)化發(fā)展建議. 中國畜牧業(yè), 2021(15): 48.
SUN P F. Present situation of yak milk development and utilization and suggestions for industrialization development. China Animal Industry, 2021(15): 48. (in Chinese)
[3] 李雙嬌, 代安娜, 王慧, 王騰靜, 丁波. 牦牛酸奶營養(yǎng)價值與健康功能的研究進(jìn)展. 中國奶牛, 2021(6): 47-50.
LI S J, DAI A N, WANG H, WANG T J, DING B. Research progress on the nutritional value and health function of yak yogurt. China Dairy Cattle, 2021(6): 47-50. (in Chinese)
[4] 盧灝澤, 呂嘉偉, 楊帆, 張洋銘, 王妍凌, 陳璐, 張晶晶, 張鳳杰, 薛潔, 薛蓓. 西藏牦牛奶酪的微生物群落結(jié)構(gòu)與風(fēng)味物質(zhì)分析. 食品與發(fā)酵工業(yè), 2023, 49(6): 179-185.
LU H Z, Lü J W, YANG F, ZHANG Y M, WANG Y L, CHEN L, ZHANG J J, ZHANG F J, XUE J, XUE B. Microbial community structure and flavor analysis of Tibetan yak cheese. Food and Fermentation Industries, 2023, 49(6): 179-185. (in Chinese)
[5] 楊飛艷, 羅章, 謝司偉, 劉春愛, 黃文陽, 孫術(shù)國. 西藏不同海拔牦牛奶渣營養(yǎng)、風(fēng)味特性及抗氧化活性研究. 食品工業(yè)科技, 2021, 42(11): 81-88.
YANG F Y, LUO Z, XIE S W, LIU C A, HUANG W Y, SUN S G. Study on nutrition, flavor characteristics and antioxidant activity of yak milk dregs at different elevations in Tibet. Science and Technology of Food Industry, 2021, 42(11): 81-88. (in Chinese)
[6] 馬奕顏, 郭波莉, 魏益民, 趙海燕. 植物源性食品原產(chǎn)地溯源技術(shù)研究進(jìn)展. 食品科學(xué), 2014, 35(5): 246-250.
MA Y Y, GUO B L, WEI Y M, ZHAO H Y. An overview of analytical approaches for tracing the geographical origins of plant-derived foods. Food Science, 2014, 35(5): 246-250. (in Chinese)
[7] ALTIERI S, SAIANO K, BIONDI M, RICCI P, LUBRITTO C. Traceability of ‘Mozzarella di Bufala Campana’ production chain by means of carbon, nitrogen and oxygen stable isotope ratios. Journal of the Science of Food and Agriculture, 2020, 100(3): 995-1003.
[8] PIANEZZE S, BONTEMPO L, PERINI M, TONON A, ZILLER L, FRANCESCHI P, CAMIN F. δ34S for tracing the origin of cheese and detecting its authenticity. Journal of Mass Spectrometry, 2020, 55(7): e4451.
[9] PERINI M, THOMAS F, CABA?ERO ORTIZ A I, SIMONI M, CAMIN F. Stable isotope ratio analysis of lactose as a possible potential geographical tracer of milk. Food Control, 2022, 139: 109051.
[10] 鄭永飛, 陳江峰. 穩(wěn)定同位素地球化學(xué). 北京: 科學(xué)出版社, 2000.
ZHENG Y F, CHEN J F. Isotopic Geochemistry. Beijing: Science Press, 2000. (in Chinese)
[11] ZHAO S S, ZHAO Y, ROGERS K M, CHEN G, CHEN A L, YANG S M. Application of multi-element (C, N, H, O) stable isotope ratio analysis for the traceability of milk samples from China. Food Chemistry, 2020, 310: 125826.
[12] O'SULLIVAN R, MONAHAN F J, BAHAR B, KIRWAN L, PIERCE K, O'SHEA A, MCELROY S, MALONE F, HANAFIN B, MOLLOY S, EVANS A C O, SCHMIDT O. Stable isotope profile (C, N, O, S) of Irish raw milk: baseline data for authentication. Food Control, 2021, 121: 107643.
[13] ROSSMANN A, HABERHAUER G, H?LZL S, HORN P, PICHLMAYER F, VOERKELIUS S. The potential of multielement stable isotope analysis for regional origin assignment of butter. European Food Research and Technology, 2000, 211(1): 32-40.
[14] ZHOU X W, YAN Z, JIN B H, WU Y Y, XIE L Q, CHEN H Q, LIN G H, ZHAO Y, ROGERS K M, WU H. Origin verification of imported infant formula and fresh milk into China using stable isotope and elemental chemometrics. Food Control, 2021, 128: 108165.
[15] JIN B H, ZHOU X W, ROGERS K M, YI B Q, BIAN X H, YAN Z, CHEN H Q, ZHOU H C, XIE L Q, LIN G H, WU H. A stable isotope and chemometric framework to distinguish fresh milk from reconstituted milk powder and detect potential extraneous nitrogen additives. Journal of Food Composition and Analysis, 2022, 108: 104441.
[16] GREGOR?I? S H, OGRINC N, FREW R, NE?EMER M, STROJNIK L, ZULIANI T. The provenance of Slovenian milk using Sr-87/Sr-86isotope ratios. Foods, 2021, 10(8): 1729.
[17] 申雪, 聶晶, 李春霖, 邵圣枝, 黃翠, 張永志, 武運(yùn), 袁玉偉. 葡萄酒發(fā)酵前后穩(wěn)定同位素特征變化及初步相關(guān)性分析. 核農(nóng)學(xué)報, 2022, 36(3): 628-634.
SHEN X, NIE J, LI C L, SHAO S Z, HUANG C, ZHANG Y Z, WU Y, YUAN Y W. Changes in stable isotopic characteristics of wine after fermentation and preliminary correlation analysis. Journal of Nuclear Agricultural Sciences, 2022, 36(3): 628-634. (in Chinese)
[18] 張倩, 謝正敏, 安明哲, 葉華夏, 魏金萍, 黃箭. 釀酒糧食發(fā)酵蒸餾乙醇碳穩(wěn)定同位素的變化. 釀酒科技, 2020(3): 47-51.
ZHANG Q, XIE Z M, AN M Z, YE H X, WEI J P, HUANG J. Changes of stable carbon isotopes of ethanol in the fermentation and distillation of liquor-making grains. Liquor-Making Science & Technology, 2020(3): 47-51. (in Chinese)
[19] 岳濤, 王道兵, 李安軍, 姜利, 李國輝, 岳紅衛(wèi), 張洛琪, 鐘其頂. 白酒大生產(chǎn)過程中乙醇穩(wěn)定碳同位素變化特征研究. 食品與發(fā)酵工業(yè), 2023, 49(2): 63-67.
YUE T, WANG D B, LI A J, JIANG L, LI G H, YUE H W, ZHANG L Q, ZHONG Q D. Stable carbon isotopic variation in ethanol during Baijiu processing. Food and Fermentation Industries, 2023, 49(2): 63-67. (in Chinese)
[20] 劉志, 張永志, 周鐵鋒, 邵圣枝, 周莉, 袁玉偉. 不同烘干方式對茶葉中穩(wěn)定同位素特征及其產(chǎn)地溯源的影響. 核農(nóng)學(xué)報, 2018, 32(7): 1408-1416.
LIU Z, ZHANG Y Z, ZHOU T F, SHAO S Z, ZHOU L, YUAN Y W. Effects of different drying techniques on stable isotopic characteristics and traceability of tea. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1408-1416. (in Chinese)
[21] 邵圣枝, 聶晶, 劉志, 張永志, 王鈁, Rogers K M, 袁玉偉. 茶葉加工與樣品制備對同位素分餾和測定的影響. 核農(nóng)學(xué)報, 2020, 34(1): 78-84.
SHAO S Z, NIE J, LIU Z, ZHANG Y Z, WANG F, ROGERS K M, YUAN Y W. Effects of tea processing and sample preparation on the determination of stable isotope ratio and its fractionation. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 78-84. (in Chinese)
[22] 張豫青, 李思敏, 池福敏, 李梁. 紅茶加工過程中穩(wěn)定同位素變化研究. 現(xiàn)代食品, 2021, 27(7): 217-220.
ZHANG Y Q, LI S M, CHI F M, LI L. Study on the change of stable isotope during the processing of black tea. Modern Food, 2021, 27(7): 217-220. (in Chinese)
[23] 劉宏艷, 麥穎暉, 劉毅, 郭歡, 夏宇, 楊志玲, 甘人友. 加工方式對木姜葉柯甜茶速溶粉穩(wěn)定同位素指紋的影響. 核農(nóng)學(xué)報, 2020, 34(S1): 21-27.
LIU H Y, MAI Y H, LIU Y, GUO H, XIA Y, YANG Z L, GAN R Y. Effects of processing on stable isotopic fingerprints of instant sweet tea [(Hance) Chun]. Journal of Nuclear Agricultural Sciences, 2020, 34(S): 21-27. (in Chinese)
[24] 李繼榮, 張?zhí)苽? 次仁德吉, 楊小俊, 次頓. 糌粑加工過程中穩(wěn)定同位素指紋分餾效應(yīng)分析. 中國農(nóng)業(yè)科學(xué), 2019, 52(24): 4592-4602. doi: 10.3864/j.issn.0578-1752.2019.24.013.
LI J R, ZHANG T W, CIREN D J, YANG X J, CI D. Fractionation effect of stable isotopic ratios in tsamba processing. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602. doi: 10.3864/j.issn. 0578-1752.2019.24.013. (in Chinese)
[25] WADOOD S A, GUO B L, WEI Y M. Geographical traceability of wheat and its products using multielement light stable isotopes coupled with chemometrics. Journal of Mass Spectrometry: Journal of Mass Spectrometry, 2019, 54(2): 178-188.
[26] SUZUKI Y, NAKASHITA R, HUQUE R, KHATUN M A, OTHMAN Z B, SALIM N A B A, THANTAR S, CORAZON PABROA P, KONG P Y K, WADUGE V A, SRINUTTRAKUL W, HOSONUMA A, CHIKU K, YOSHIDA M. Effects of processing on stable isotope compositions (delta C-13, delta N-15, and delta O-18) of rice () and stable isotope analysis of asian rice samples for tracing their geographical origins. Jarq-Japan Agricultural Research Quarterly, 2020, 56(1): 95-103.
[27] BOSTIC J N, PALAFOX S J, ROTTMUELLER M E, JAHREN A H. Effect of baking and fermentation on the stable carbon and nitrogen isotope ratios of grain-based food. Rapid Communications in Mass Spectrometry, 2015, 29(10): 937-947.
[28] ROYER A, DAUX V, FOUREL F, LéCUYER C. Carbon, nitrogen and oxygen isotope fractionation during food cooking: implications for the interpretation of the fossil human record. American Journal of Physical Anthropology, 2017, 163(4): 759-771.
[29] WANG Y C, CHANG Y J, WANG P L, SHIAO J C. Evaluation of cooking effects on otolith stable carbon and oxygen isotope values of teleostean fish(Cuvier, 1830). Rapid Communications in Mass Spectrometry, 2022, 36(4): e9233.
[30] ZHOU J Q, GUO B L, WEI Y M, ZHANG G Q, WEI S, MA Y Y. The effect of different cooking processes on stable C, N, and H isotopic compositions of beef. Food Chemistry, 2015, 182: 23-26.
[31] 王道兵, 岳紅衛(wèi), 高冠勇, 宋立里, 武竹英, 王一路, 鐘其頂, 張柏林. 花生油生產(chǎn)過程中穩(wěn)定同位素變化規(guī)律及影響因素研究. 核農(nóng)學(xué)報, 2020, 34(S1): 104-109.
WANG D B, YUE H W, GAO G Y, SONG L L, WU Z Y, WANG Y L, ZHONG Q D, ZHANG B L. Stable isotopic variation and influence factors in peanut oil during processing. Journal of Nuclear Agricultural Sciences, 2020, 34(S1): 104-109. (in Chinese)
[32] BOSTIC J N, HAGOPIAN W M, JAHREN A H. Carbon and nitrogen stable isotopes in U.S. milk: insight into production process. Rapid Communications in Mass Spectrometry, 2018, 32(7): 561-566.
[33] SCAMPICCHIO M, MIMMO T, CAPICI C, HUCK C, INNOCENTE N, DRUSCH S, CESCO S. Identification of milk origin and process- induced changes in milk by stable isotope ratio mass spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60(45): 11268-11273.
[34] MASUD Z, VALLET C, MARTIN G J. Stable isotope characterization of milk components and whey ethanol. Journal of Agricultural and Food Chemistry, 1999, 47(11): 4693-4699.
[35] 趙新淮, 徐紅華, 姜毓君. 食品蛋白質(zhì): 結(jié)構(gòu)、性質(zhì)與功能. 北京: 科學(xué)出版社, 2009.
ZHAO X H, XU H H, JIANG Y J. Food protein: Structure, properties and functions. Beijing: Science Press, 2009. (in Chinese)
[36] FRASER R A, BOGAARD A, CHARLES M, STYRING A K, WALLACE M, JONES G, DITCHFIELD P, HEATON T H E. Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science, 2013, 40(12): 4754-4766.
[37] 孟祥晨, 李艾黎, 焦月華. 乳酸菌食品加工技術(shù). 北京: 科學(xué)出版社, 2019.
MENG X C, LI A L, JIAO Y H. Processing Technology of Lactic Acid Bacteria Food. Beijing: Science Press, 2019. (in Chinese)
[38] 李升升, 張燕, 趙立柱. 發(fā)酵和后熟對牦牛奶營養(yǎng)及風(fēng)味物質(zhì)的影響. 食品工業(yè)科技, 2022, 43(5): 114-120.
LI S S, ZHANG Y, ZHAO L Z. Effect of fermentation and post-fermentation on nutritional composition and volatile substances of yak milk. Science and Technology of Food Industry, 2022, 43(5): 114-120. (in Chinese)
[39] 喻峰, 熊華, 呂培蕾. 西藏牦牛酥油脂肪酸成分分析及功能特性評價. 中國油脂, 2006, 31(11): 35-38.
YU F, XIONG H, Lü P L. Fatty acid composition and function evaluation of Tibet yak butter. China Oils and Fats, 2006, 31(11): 35-38. (in Chinese)
[40] SCHULZE E, DIOP H, BREVES G, GIESE W. Effect of energy-metabolism on c-13/c-12-ratios in milk-fat and lactose of cows. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 1992, 103(4): 913-916.
[41] CAPICI C, MIMMO T, KERSCHBAUMER L, CESCO S, SCAMPICCHIO M. Determination of cheese authenticity by carbon and nitrogen isotope analysis:cheese as a case study. Food Analytical Methods, 2015, 8(8): 2157-2162.
Fractionation Effect of Stable Carbon and Nitrogen Isotope Ratios in Yak Dairy Products Processing
1Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences/Supervision and Testing Center for Farm Products Quality, Ministry of Agriculture and Rural Affairs, Lhasa 850032;2Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, Tibet;3Lhasa Customs Technology Center, Lhasa 850002
【Background】Stable isotope fingerprinting technology has been widely adopted in the origin traceability study of dairy products. However, most of them are focused on comparing the differences between the stable isotopes of raw milk and milk products. Nevertheless, the fractionation effect of stable isotopes on dairy products processing and the application of stable carbon and nitrogen isotopes for origin tracing of yak dairy products are still unclear. 【Objective】In this study, yak yogurt and yak milk dregs were used as the study subjects to determine the changes in stable carbon and nitrogen isotope and the fractionation coefficients and correlations of yak dairy products at key points during processing, to investigate the stable carbon and nitrogen isotope characteristics of yak dairy products from different origins, so as to provide the theoretical and technical supports for origin traceability of yak dairy products. 【Method】A total of 196 samples were collected from the Nerong and Jiali counties of Nagqu City, Tibet Autonomous Region, obtain five key sampling points for yogurt processing (yak milk, yak milk boiled for 5 min, sample after strain addition, fermentation at 40 ℃ for 6 h, and yogurt) and four key sampling points for milk dregs processing (yak milk, skimmed yak milk, skimmed yak milk boiled for 10 h, and milk dregs). The stable carbon and nitrogen isotope ratios were determined using an elemental analysis isotope ratio mass spectrometer (EA-IRMS). The differences and correlations between the stable carbon and nitrogen isotopes at the key sampling points for yogurt and milk dregs processing were determined using one-way ANOVA comparative analysis and Pearson correlation analysis, respectively. Furthermore, the differences in stable carbon and nitrogen isotopes between yogurt and yak milk and milk dregs and yak milk with different origins were determined using a two-factor ANOVA. 【Result】The fractionation of stable carbon and nitrogen isotope during yogurt processing was as follows: δ13Cyak milk>δ13C40℃fermentation for 6 h, yak yogurt>δ13Csamples after adding strain, fractionation coefficient between 0.9996 and 1.0009,ΔYak milk-yak yogurtwas 0.48‰; δ15Nboiling 5 min yak milk, 40 ℃ fermentation for 6 h, yak yogurt>δ15Nyak milk, fractionation coefficient was between 0.9993 and 1, and ΔYak milk-yak yogurtwas -0.61‰. The correlations between the stable carbon and nitrogen isotopes at some key sampling points were significant. During milk dregs processing, δ13Cyak milk, boiled 10 h skimmed sample, yak milk dregs>δ13CSkimmed yak milk, fractionation coefficient was between 0.9995 and 1.0005, ΔYak milk-yak dregswas 0. A significantly negative correlation was observed in δ13C at some key sampling points, while no significant difference was observed in δ15N for each key point sample and the fractionation values were 0. The stable carbon and nitrogen isotopes of dairy products from different origins significantly differed, with δ13C and δ15N being enriched in yak dairy products from Nerong County compared to Jiali County. 【Conclusion】The fractionation of δ13C and δ15N was observed during yak dairy products processing. The addition of strains, fermentation, and centrifugal defatting processes resulted in different δ13C ratios, while heating induced changes in the sample δ13C and δ15N. Although stable isotope fractionation occurred during yak dairy products processing, its influence was less than the origin. Therefore, the stable carbon and nitrogen isotopes could be applied to trace the origin of yak dairy products.
yak milk; yogurt; milk dregs; yak dairy products; stable carbon isotope; stable nitrogen isotope
10.3864/j.issn.0578-1752.2023.10.013
2022-10-02;
2022-11-15
西藏自治區(qū)自然科學(xué)基金(XZ202101ZR0098G)、區(qū)域科技協(xié)同創(chuàng)新專項(QYXTZX-NQ2021-03,QYXTZX-NQ2022-01)
李繼榮,Tel:18089980869;E-mail:ljr18697179656@163.com。通信作者次頓,Tel:13989086593;Fax:0891-6868491;E-mail:13989086593@163.com
(責(zé)任編輯 趙伶俐)