賓羽,張琦,王春慶,趙曉春,宋震,周常勇
利用酵母雙雜交系統(tǒng)篩選與柑橘黃化脈明病毒CP互作的寄主因子
賓羽,張琦,王春慶,趙曉春,宋震,周常勇
西南大學柑桔研究所/國家柑桔工程技術研究中心,重慶 400712
【目的】柑橘黃化脈明病毒(citrus yellow vein clearing virus,CYVCV)是威脅我國柑橘產業(yè)穩(wěn)定發(fā)展的主要病毒,但其在柑橘上的侵染和致病機制尚不清楚。本文以CYVCV的外殼蛋白(coat protein,CP)為誘餌篩選尤力克檸檬(Burm. f.)cDNA文庫,利用生物信息學方法分析與其互作的寄主因子在病毒侵染和致病過程中可能發(fā)揮的作用?!痉椒ā縏rizol法提取尤力克檸檬葉片總RNA,用SMART法反轉錄合成First-Strand cDNA,以其為模板通過Long-Distance PCR獲得ds cDNA,均一化處理后與線性化pGADT7質粒重組鏈接構建尤力克檸檬初級cDNA文庫,重組質粒轉化大腸桿菌DH10B獲得尤力克檸檬大腸桿菌cDNA文庫并對文庫質量進行鑒定;PCR擴增CYVCV的序列并構建到載體pGBKT7上,鑒定誘餌質粒對酵母細胞的毒性以及CP蛋白對酵母報告基因的自激活性。將尤力克檸檬cDNA文庫質粒轉化含有誘餌質粒pGBKT7-CP的Y2H Gold酵母菌株,共轉化子依次涂布SD/-Leu-Trp、SD/-Leu-Trp-His/X--Gal和SD/-Leu-Trp-His-Ade/X--Gal平板,最終篩選藍色且長勢較好的陽性菌落,提取酵母質粒并測序比對獲得候選基因,利用Uniprot在線網站的gene ontology(GO)注釋候選基因,分析候選互作蛋白的生物學功能。根據分析結果,選取可能參與寄主抗病或癥狀發(fā)展的候選因子,擴增其CDS全長序列并構建到靶標載體pGADT7后分別與pGBKT7-CP共轉化酵母細胞進行點對點酵母雙雜交互作驗證?!窘Y果】尤力克檸檬大腸桿菌cDNA文庫滴度為1.02×108cfu/mL,庫容符合試驗標準;成功構建酵母雙雜交誘餌載體pGBKT7-CP,該載體沒有自激活性且對酵母菌沒有毒性;在SD/-Leu-Trp-His-Ade/X--Gal平板上篩選得到41個酵母陽性克隆,經序列相似性比對,去除重復,共篩得32個候選寄主因子;GO通路注釋結果表明這些寄主因子參與多個葉綠體相關的生物過程,包括碳水化合物代謝、光合作用、光刺激反應、代謝分解和生物合成等過程;這32個寄主因子的分子功能多樣,包括催化活性、水解酶活性、轉移酶活性、蛋白質結合、轉錄因子活性和翻譯因子活性等,其細胞組分涉及葉綠體、類囊體、膜、細胞質、細胞核和高爾基體等。從候選寄主因子中選取14個重要的蛋白與CP的一對一酵母雙雜交驗證結果表明,CP與這14個蛋白均發(fā)生互作。【結論】成功構建了尤力克檸檬cDNA文庫,篩選出32個與CYVCV CP互作的尤力克檸檬寄主因子,分析重要的寄主蛋白功能,推測CYVCV CP通過與光系統(tǒng)II放氧強化復合物組分蛋白(PsbP)、光系統(tǒng)I葉綠素結合蛋白(Lhca3)和1,5-二磷酸核酮糖羧化酶小亞基(RbcS)等多個葉綠體相關蛋白的互作,影響光系統(tǒng)穩(wěn)定、類囊體結構和葉綠素合成,從而導致光合作用降低以及葉綠體形態(tài)和功能受損,酵母點對點驗證了CP與這些葉綠體相關因子的互作,這為揭示CYVCV CP參與病毒致病的分子機制提供了理論依據。
柑橘黃化脈明病毒;尤力克檸檬;酵母雙雜交;外殼蛋白;寄主因子
【研究意義】由柑橘黃化脈明病毒(citrus yellow vein clearing virus,CYVCV)引起的柑橘黃脈病是對我國柑橘生產最具威脅性的新發(fā)病毒病之一[1]。該病毒自2009年在我國云南檢出以來,傳播迅速,目前在我國各柑橘主產區(qū)均有分布,且各類柑橘栽培品種均已發(fā)現有不同程度的帶毒,其中以檸檬受害最為嚴重。該病毒引起檸檬葉片黃化、脈明、脫落,樹勢衰弱,產量逐年降低,甚至絕收,給我國四川、云南等檸檬產地已造成嚴重的經濟損失[1-2]。此外,近年來在江西、福建等地的部分溫州蜜柑果園,以及廣西的砂糖橘果園和雜柑園,此病毒所造成的危害損失也日趨嚴重[1]。因此,研究CYVCV的致病機制是防控該病毒、保障我國柑橘產業(yè)可持續(xù)發(fā)展的迫切需求。Rehman等[3]研究發(fā)現CYVCV編碼的外殼蛋白(coat protein,CP)是RNA沉默抑制子。本實驗室前期研究發(fā)現柑橘在感染CYVCV早期,病毒滴度與柑橘癥狀的嚴重程度呈正相關[4],CP在病毒侵染寄主和致病過程中起重要作用[5]。因此明確與CYVCV CP互作的寄主因子,對解析CYVCV致病機制具有重要意義?!厩叭搜芯窟M展】CYVCV為正義單鏈RNA病毒,是蕪菁黃花葉病毒目(Tymovirales)甲型線狀病毒科()印度柑橘病毒屬()的新成員[6]。在發(fā)現CYVCV之前,印度柑橘病毒屬的唯一代表種為印度柑橘環(huán)斑病毒(Indian citrus ringspot virus,ICRSV),目前對于ICRSV致病機制的認識較淺薄,因此對于CYVCV致病機制研究的參考較少。CYVCV基因組包括5′端UTR,6個開放閱讀框(open reading frame,ORF)、3′端UTR以及Poly(A)尾[6]。ORF1編碼依賴RNA的RNA聚合酶(RNA-dependent RNA polymerase,RdRp)包含復制相關蛋白結構域。ORF2、ORF3和ORF4序列依次部分重疊,編碼三基因連鎖蛋白(triple gene block protein,TGB),ORF5編碼34 kDa的外殼蛋白CP,包含馬鈴薯X病毒屬()和香石竹潛隱病毒屬()的保守結構域(pfam00286:aa 140—278)。ORF6與ORF5的3′端有部分序列重疊,編碼一個23 kDa蛋白,包含正義單鏈RNA病毒核酸結合蛋白的保守結構域[6-7]。Rehman等[3]利用酵母雙雜交(yeast two-hybrid system,Y2H)研究發(fā)現,CYVCV的CP與自身TGB1、TGB2以及TGB三基因連鎖蛋白整體均發(fā)生互作,可能參與該病毒的運動,而且CP是一個強RNA沉默抑制子(RNA silencing suppressor,RSS)。以往研究表明,植物病毒編碼的RSS通常作為病毒的致病決定因子或癥狀決定因子[8]。本實驗室前期研究表明,不同柑橘品種在感染CYVCV的早期,植株的癥狀嚴重程度均與病毒滴度正相關[4],同時CP參與該病毒的侵染與致病[5],但關于CYVCV CP與寄主因子的互作研究尚未見報道。近年來,Y2H系統(tǒng)廣泛應用于病毒蛋白與寄主因子互作研究,通過構建寄主cDNA文庫,再以病毒蛋白作為誘餌從而篩選出與其互作的寄主因子,可為進一步研究病毒與寄主的互作機理提供理論依據[9]?!颈狙芯壳腥朦c】植物病毒與寄主的互作研究是了解病毒致病機制的關鍵,也是植物病理學的研究熱點[10]。以往研究表明,Y2H篩選可為解析植物病毒的侵染和致病機制提供重要理論依據。筆者實驗室前期研究已證明CYVCV的CP參與病毒侵染與致病,而目前關于CP與寄主因子的互作研究尚未見報道。因此,篩選出與CP互作的寄主因子是探明CYVCV致病機理的關鍵。【擬解決的關鍵問題】構建尤力克檸檬葉片cDNA文庫,以CYVCV CP蛋白為誘餌,通過酵母雙雜交體系篩選出與CP互作的寄主因子,進而分析寄主因子的生物學功能,為解析病毒與寄主互作的生物學意義,探明CYVCV致病機理提供依據。
試驗于2021—2022年在西南大學柑桔研究所脫毒中心實驗室完成。
尤力克檸檬種子由國家柑桔工程技術研究中心提供;CYVCV侵染性克隆pCY-CYVCV221由西南大學柑桔研究所脫毒中心實驗室構建保存;酵母菌株Y2H gold,pGADT7、pGBKT7質粒,cDNA文庫構建試劑盒購自Clontech公司;I、H I限制性內切酶,Infusion無縫連接試劑盒購自賽默飛世爾科技(中國)有限公司;酵母質粒小提試劑盒,大腸桿菌DH10B感受態(tài)細胞等購自北京索萊寶科技有限公司;引物合成與序列測序由生工生物工程(上海)股份有限公司完成。
1.2.1 尤力克檸檬接種CYVCV及cDNA文庫的構建 將尤力克檸檬種子剝去內外種皮,播于植物MS固體培養(yǎng)基上,26 ℃黑暗培養(yǎng),待種子萌發(fā)根長至3—5 cm(相應苗齡一般為7—10 d)即可用于接種。以CYVCV全長cDNA侵染性克隆pCY-CYVCV221通過農桿菌介導真空浸潤接種尤力克檸檬幼苗,具體步驟參照文獻[4,11]。接種后6個月,選取被感染檸檬植株頂端表現黃化脈明癥狀的嫩葉,Trizol法提取葉片總RNA,具體步驟詳見說明書,使用1%瓊脂糖凝膠電泳檢測RNA的完整性,將RNA樣本送武漢金開瑞生物工程有限公司構建尤力克檸檬cDNA文庫。cDNA文庫構建具體方法如下:尤力克檸檬葉片總RNA經SMART法反轉錄合成First-Stand cDNA,以其為模板通過Long-Distance PCR獲得ds cDNA,均一化處理后與線性化獵物質粒pGADT7經Iufusion重組酶重組鏈接構建尤力克檸檬初級cDNA文庫,重組質粒轉化大腸桿菌DH10B獲得尤力克檸檬大腸桿菌cDNA文庫并對文庫質量進行鑒定。
1.2.2 誘餌載體pGBKT7-CP的構建 設計CYVCV CP特異性引物(CPI-F/CP-H I-R),以pCY-CYVCV221質粒為模板擴增,膠回收基因片段,經I/H I雙酶切后通過T4 DNA連接酶與線性化的pGBKT7連接并轉化大腸桿菌DH10B,經菌落PCR及序列測定獲得誘餌載體的陽性克隆,命名為pGBKT7-CP。
1.2.3 pGBKT7-CP毒性及自激活檢測 pGBKT7-CP與pGADT7質粒通過LiAc法共轉化酵母菌株Y2H gold后,涂布于一缺平板(SD/-Trp),30 ℃倒置培養(yǎng)3—5 d,挑取長勢良好的單菌落,擴繁后提取酵母質粒轉化大腸桿菌DH10B,以其為模板進行PCR鑒定,分析誘餌載體pGBKT7-CP(引物:CP-I-F/CP-H I-R)與pGADT7獵物空載質粒(引物:pGADT7- F/pGADT7-R)是否成功轉化至Y2H gold。將含有pGBKT7-CP與pGADT7的酵母Y2H gold分別涂布二缺平板(SD/-Leu-Trp)、含有X--Gal的二缺平板(SD/ -Leu-Trp/X--Gal)和三缺平板(SD/-Leu-Trp-His)平板,30 ℃倒置培養(yǎng)3—5 d,觀察平板菌落生長情況,分析pGBKT7-CP對酵母是否有毒性和自激活活性。
1.2.4 酵母雙雜交篩選與CP互作的寄主蛋白 提取連接至pGADT7的尤力克檸檬cDNA文庫質粒,并轉化至含有pGBKT7-CP的Y2H gold酵母菌感受態(tài)細胞,涂布于二缺平板(SD/-Leu-Trp),30 ℃下倒置培養(yǎng)至克隆菌落出現,將共轉化子涂布含有X--Gal的三缺平板,30 ℃下倒置培養(yǎng)3—5 d后,挑取平板上的藍色單克隆,轉接于新的含有X--Gal的四缺平板(SD/-Leu-Trp-His-Ade/X--Gal),30 ℃倒置培養(yǎng)3—5 d,觀察酵母的生長和顯色情況。
1.2.5 陽性克隆的鑒定 挑取四缺平板(X--Gal)上顯藍色的酵母單菌落,分別接入四缺液體培養(yǎng)基擴繁后提取質粒。以引物pGADT7-F/pGADT7-R對酵母質粒進行PCR鑒定,以PGADT7-T為陽性模板質粒,PGADT7空載為陰性模板。
1.2.6 陽性克隆的測序和生物信息學分析 將瓊脂糖電泳檢測條帶大于陰性對照的酵母質粒轉化大腸桿菌DH10B,送生工生物工程(上海)股份有限公司測序。將測序結果在NCBI數據庫(http://blast.ncbi. nlm.nih.gov/Blast.Cgi)中進行Blast分析,通過Uniprot在線網站GO通路注釋(http://www.uniprot.org/)對寄主候選因子進行功能注釋。
1.2.7 酵母雙雜交驗證CP與寄主因子的互作 根據測序對比和GO分析結果,選取32個候選寄主因子中的14個重要蛋白(克隆號:1—3、5、6、9、20—25、27和29),根據NCBI中的序列設計特異引物(表1)。利用TaKaRa公司的反轉錄酶AMV將1.2.1中的尤力克檸檬總RNA反轉錄成cDNA,以cDNA為模板分別擴增這14個蛋白的CDS全長序列,然后分別將其插入pGADT7載體構建靶標質粒。將需要驗證互作的靶標和誘餌質粒共轉化酵母菌涂布于二缺平板,30 ℃倒置培養(yǎng)3—5 d至菌落出現;從二缺培養(yǎng)基中挑取酵母單菌落,懸浮于50 μL ddH2O中,使OD600約為1.0,再倍比稀釋成濃度為1.0×10-1、1.0×10-2、1.0×10-3、1.0×10-4的菌液,各取10 μL的菌液點滴培養(yǎng)于含有5 mmol·L-13-AT(3-amino-1,2,4-triazole)的三缺培養(yǎng)基上,30 ℃倒置培養(yǎng)3—5 d,觀察酵母生長情況確定互作結果。
提取感病尤力克檸檬總RNA,瓊脂糖凝膠電泳顯示18S和28S條帶清晰,完整性好(圖1-A)。NanoDrop檢測RNA OD260/OD280=2.13,OD260/OD230=2.11,RNA濃度為488.5 ng·μL-1,說明RNA質量較好,可以用于文庫構建。將總RNA反轉錄并經Long-Distance PCR獲得ds cDNA,均一化處理后的ds cDNA進行瓊脂糖凝膠電泳顯示其呈彌散狀分布,其片段大小分布范圍為1—10 kb(圖1-B)。文庫質粒轉入大腸桿菌DH10B,隨機挑取16個克隆,PCR擴增插入片段,平均長度>1.5 kb(圖1-C)。尤力克檸檬大腸桿菌cDNA文庫庫容鑒定結果顯示,文庫滴度為1.02×108cfu/mL(>1 ×107cfu/mL),庫容符合后續(xù)酵母雙雜交試驗標準。
以pCY-CYVCV221為模板,用引物CP-I-F/CP-H I-R進行PCR擴增,可擴增出條帶約1 000 bp的特異性條帶,片段大小與預期結果相符。將此特異性條帶克隆到誘餌載體pGBKT7上,PCR篩選pGBKT7-CP陽性克隆,通過測序驗證基因序列和插入方向正確,說明正確構建到pGBKT7載體上。pGBKT7-CP質粒轉化酵母菌株Y2H gold,提取酵母質粒,PCR擴增得到大小約為1 000 bp的特異性條帶,表明pGBKT7-CP質粒已成功轉化到Y2H gold。
表1 PCR引物
pGBKT7-CP與pGADT7共轉化酵母Y2H gold感受態(tài)細胞,轉化子涂布SD/-Leu-Trp平板有菌落生長,菌落長勢良好,pGBKT7-CP質粒對酵母細胞無毒性;轉化子涂布SD/-Leu-Trp/X--Gal平板有菌落生長不變藍,涂布SD/-Leu-Trp-His平板無菌落生長(圖2),表明誘餌載體不能激活酵母細胞報告基因的表達,可進行后續(xù)篩庫試驗。
A:總RNA瓊脂糖凝膠電泳Total RNA of lemon。B:檸檬ds cDNA純化后的電泳圖Electrophoresis of purified ds cDNA of lemon,1:純化后的ds cDNA Purified ds cDNA。C:cDNA文庫插入片段的PCR鑒定PCR identification of inserts in the cDNA library,1—16:隨機挑選的16個文庫克隆16 clones of cDNA library picked randomly;17:陽性對照Positive control;18:H2O。M:DNA分子標記DNA Marker
A:二缺培養(yǎng)基SD/-Leu-Trp medium;B:含有X-α-Gal的二缺培養(yǎng)基SD/-Leu-Trp/X-α-Gal medium;C:三缺培養(yǎng)基SD/-Leu-Trp-His medium
將尤力克檸檬cDNA文庫質粒轉化到含有pGBKT7-CP誘餌載體的酵母菌Y2H gold感受態(tài)細胞中,轉化產物經二缺、三缺(含X--Gal)和四缺(含X--Gal)平板順次篩選后,最終在四缺(含X--Gal)培養(yǎng)基上篩選到72個生長狀況良好且顯藍色的菌落(圖3)。
擴繁72個顯藍色的菌落,分別提取質粒,PCR篩選陽性克隆,共獲得42個陽性克隆(圖4)。PCR產物測序并進行序列比對,除去重復后,共獲得32個與CP互作的候選蛋白(表2)。利用Uniprot在線網站的GO通路注釋這32個檸檬寄主因子(圖5),發(fā)現這32個寄主因子參與了16種生物過程,包括光合作用、光刺激反應、脅迫反應、碳水化合物代謝過程、轉運、化學刺激響應、蛋白質代謝過程、代謝過程、代謝產物前體和能量的合成、細胞過程、細胞成分組織、分解代謝過程、生物合成過程、含堿基化合物的代謝過程、細胞穩(wěn)態(tài)和其他生物過程;其分子功能有13種,包括催化活性、綁定、水解酶活性、核苷酸綁定、轉運體活性、蛋白質結合、轉移酶活性、DNA 結合、DNA結合轉錄因子活性、RNA綁定、翻譯因子活性、酶調節(jié)活性和其他分子功能;其涉及11種細胞組分,包括細胞質、膜、葉綠體、類囊體、核仁、細胞質、細胞外區(qū)域、內小體、高爾基體和其他細胞成分。
A:含有X-α-Gal的三缺培養(yǎng)基SD/-Leu-Trp-His/X-α-Gal medium。B、C:含有X-α-Gal的四缺培養(yǎng)基SD/-Leu-Trp-His-Ade/X-α-Gal medium;+:陽性對照Positive control;-:陰性對照Negative control
M:DNA分子標記DNA Marker;1—72:72個酵母雙雜交克隆質粒Plasmids of 72 clones obtained by Y2h;+:陽性對照Positive control;-:陰性對照Negative control
結合植物蛋白功能研究的已有報道,從32個候選寄主因子中選取了可能參與檸檬抗病和癥狀發(fā)展的14個蛋白,分別擴增其CDS全長序列并測序驗證后構建到靶標載體pGADT7上,與誘餌質粒pGBKT7-CP進行一對一酵母雙雜交互作驗證。將不同質粒組合分別共轉化酵母,再將其點種到二缺和三缺平板上驗證CP與特定寄主蛋白的互作情況。pGADT7-1代表的是表2中1號克隆對應的寄主因子靶標質粒,其余靶標質粒名稱對應的寄主因子以此類推。結果如圖6所示,含有誘餌質粒pGBKT7-CP和靶標質粒pGADT7-寄主因子的酵母菌能夠在三缺篩選培養(yǎng)基上生長,其長勢和陽性對照pGBKT7-53+pGADT7接近,而pGBKT7-CP與靶標空載質粒pGADT7和陰性對照都不能在該培養(yǎng)基上生長,表明CP與這14個寄主蛋白在酵母體內確實存在互作。
表2 以CYVCV CP為誘餌對檸檬cDNA文庫酵母雙雜交篩選所獲互作候選蛋白
分子功能Molecular function:1:催化活性catalytic activity;2:結合binding;3:水解酶活性hydrolase activity;4:其他分子功能other molecular function;5:核苷酸結合nucleotide binding;6:轉運活性transporter activity;7:蛋白結合protein binding;8:轉移酶活性transferase activity;9:DNA結合DNA binding;10:DNA結合翻譯因子活性DNA-binding transcription factor activity;11:RNA結合RNA binding;12:轉錄因子活性Translation factor activity;13:酶調節(jié)活性Enzyme regulator activity。代謝過程Biological process:14:代謝過程Metabolic process;15:碳水化合物代謝過程Carbohydrate metabolic process;16:其他生物過程Other biological process;17:運輸Transport;18:應激響應Response to stress;19:對化學刺激的反應Response to chemical;20:蛋白質代謝過程protein metabolic process;21:光合作用photosynthesis;22:前體代謝物和能量的生成generation of precursor metabolites and energy;23:細胞過程cellular process;24:細胞成分組織cellular component organization;25:分解代謝過程Catabolic process;26:生物合成過程Biosynthetic process;27:對光刺激的反應Response to light stimulus;28:含核酶的化合物代謝過程Nucleobase-containing compound metabolic process;29:胞內穩(wěn)態(tài)Cellular homeostasis。細胞組分Cellular component:30:其他細胞組分other cellular component;31:細胞質cytoplasm;32:膜membrane;33:葉綠體chloroplast;34:類囊體thylakoid;35:核仁nucleolus;36:胞漿cytosol;37:胞外區(qū)域extracellular region;38:細胞核nucleus;39:內涵體endosome;40:高爾基體golgi apparatus
植物病毒的外殼蛋白(CP)作為病毒粒子的結構蛋白,其經典功能是包被病毒基因組[12]。隨著對植物病毒的深入研究,越來越多的科研人員發(fā)現CP在許多植物病毒中是作為多功能蛋白,幾乎參與病毒侵染的全過程[8]。CYVCV CP是一個強沉默抑制子,與自身TGB蛋白互作可能參與病毒運動[3],同時CP是該病毒的致病相關因子[5],但目前CP參與該病毒侵染和致病的作用機理尚不清楚。本研究建立了高質量的尤力克檸檬cDNA文庫,以CYVCV CP為誘餌蛋白,從感染CYVCV的尤力克檸檬酵母cDNA文庫中篩選與CP互作的寄主因子,為闡明CP參與CYVCV致病的作用機理,解析該病毒致病的分子機制打下了理論基礎。
本研究共篩得與CP互作的32個后續(xù)寄主因子,基于寄主因子GO功能注釋選取了14個可能參與寄主抗病和癥狀發(fā)展的寄主蛋白分別與CP進行了一對一酵母雙雜交驗證,結果表明CP與這14個蛋白均存在互作。寄主因子GO功能注釋顯示,與CP發(fā)生互作的寄主蛋白多數為葉綠體相關因子。本研究室馬丹丹[13]與鄧雨青[14]前期研究發(fā)現,尤力克檸檬感染CYVCV后,顯癥葉片葉綠體出現畸形、類囊體結構模糊、片層結構散亂和基粒排列紊亂等亞細胞病理變化,結合本研究結果進一步表明葉綠體是CYVCV的重要靶標。植物病毒與寄主葉綠體的互作是植物病理學研究的熱點和難點。葉綠體是植物細胞中最有活力的細胞器之一,其進行光合作用、合成植物主要激素,在植物防御病毒反應中發(fā)揮著重要的積極作用[3,8,10,15]。在植物細胞內,病毒面臨最嚴重的威脅之一是植物的RNA沉默,為了對抗這一機制,缺乏沉默機制且具有雙膜結構的葉綠體就是許多病毒的靶標,當病毒突破葉綠體防御后,通常造成葉綠體結構和功能的破壞,進而導致寄主病癥的形成。因此,植物病毒與寄主葉綠體的互作通常在病毒致病與寄主抗病的競備賽中起著關鍵作用[10,16]。馬鈴薯X病毒(potato virus X,PVX)的CP可與寄主葉綠體質體藍素發(fā)生互作,進一步研究發(fā)現二者的互作導致寄主癥狀的形成[17]。番茄花葉病毒(tomato mosaic virus,ToMV)的CP可與寄主鐵氧還蛋白1(Fd I)互作從而誘導寄主癥狀的形成[18]。
1, 5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)在植物中含量豐富,占葉綠體可溶蛋白的50%以上[19]。RubisCO是卡爾文循環(huán)的起始酶,也是光呼吸反應中的第一個酶,調節(jié)光合作用和光呼吸的效率,其催化活性的降低可誘導葉綠體走向衰老降解[20-21]。在高等植物中,RubisCO是由8個大亞基(RbcL)和8個小亞基(RbcS)組成的多聚體。其中,RbcL由葉綠體基因組編碼;RbcS由核基因編碼,在細胞質中合成后轉運進葉綠體,最終定位在葉綠體中以完成RubisCO的組裝[22]。RbcS在細胞中的有效含量可正向調節(jié)的基因表達量并決定RubisCO全酶的組裝量,影響光合作用效率,對葉綠體發(fā)育具有重要作用[23]。洋蔥黃矮病毒(onion yellow dwarf virus,OYDV)、大豆花葉病毒(soybean mosaic virus,SMV)、蕪菁花葉病毒(turnip mosaic virus,TuMV)和胡蔥黃條病毒(shallot yellow stripe virus,SYSV)編碼的P3蛋白可與寄主RbcS互作,互作可能影響RubisCO的正常功能,從而有助于癥狀的發(fā)展[24]。ToMV編碼的運動蛋白(MP)可與煙草RbcS互作,沉默的煙草接種ToMV后局部感染癥狀加重,接種葉片壞死,但病毒運動受限制,系統(tǒng)性癥狀推遲,表明RbcS在ToMV的運動和煙草抗病毒防御中起著至關重要的作用[25]。在植物學和植物病理學中對RbcL研究較多,對RbcS了解較少,同時尚無RbcS與植物病毒外殼蛋白互作的研究報道。本研究以CYVCV CP為誘餌蛋白對尤力克檸檬cDNA文庫進行酵母雙雜交篩選并通過一對一酵母雙雜交驗證了CP與檸檬RbcS的互作,擴寬了對植物病毒CP與寄主因子互作的認知。
葉綠體光系統(tǒng)II(PSII)放氧強化蛋白2(PsbP)是PSII中放氧復合體(OEC)的組分之一,與PSII的類囊體膜固有蛋白結合,面向類囊體腔內,其積累量直接影響PSII的活性[26-28]。沉默煙草的PSII復合體雖仍能積累但活性顯著降低,而沉默擬南芥的PSII復合體不僅活性顯著降低且組裝受阻?;虺聊仓昱c野生型相比葉色偏白或褪綠,植株生長遲緩,葉綠體結構紊亂,出現類囊體膜結構異變,類囊體片層模糊以及基粒垛疊顯著紊亂等[29-31]。苜蓿花葉病毒(alfalfa mosaic virus,AMV)CP可與擬南芥PsbP互作,互作發(fā)生在細胞質中;過表達可顯著減少AMV在擬南芥中的積累,表明AMV CP與PsbP互作可能限制了PsbP介導的抗病毒作用從而有利于病毒復制[32]。水稻條紋病毒(rice stripe virus,RSV)編碼的致病特異性蛋白(SP)可與水稻和本氏煙的PsbP互作,沉默這兩種植物中的可導致植株感染RSV后癥狀增強及其體內病毒積累量增加;PsbP在野生型本氏煙中主要積累定位于葉綠體中,而在RSV SP表達的情況下,大多數PsbP被招募聚集于細胞質中,表明SP限制了PsbP進入葉綠體中,導致PsbP功能受阻從而誘導RSV癥狀的形成[33]。此外,前期轉錄學研究發(fā)現檸檬在CYVCV侵染早期下調表達[34],表明CYVCV不僅在蛋白水平與PsbP互作,還在轉錄水平影響表達,PsbP的功能受阻可能與CYVCV的癥狀發(fā)生有關。
本研究通過酵母雙雜交篩選到尤力克檸檬的RbcS和PsbP等多個葉綠體相關蛋白為CYVCV CP的寄主互作候選因子,表明葉綠體是CYVCV CP的主要靶標,推測CP通過與多個葉綠體相關蛋白互作,導致葉綠體結構和功能的改變進而限制葉綠體介導的抗病毒作用,從而誘導CYVCV癥狀的發(fā)生并增強CYVCV在植株體內的積累,這種推測以及CP與葉綠體相關蛋白互作的分子機制需進一步的試驗驗證。
成功構建了高質量的尤力克檸檬cDNA文庫,篩選得到32個與CYVCV CP互作的寄主因子,這些寄主因子生物功能多樣,且其中多數為葉綠體相關蛋白,它們可能在協(xié)助寄主抵御病毒侵染、減輕發(fā)病癥狀等方面發(fā)揮重要作用。CYVCV CP可能通過與這些寄主因子互作,影響寄主因子功能,這為深入探討CYVCV CP與寄主互作的分子機制以及解析二者互作在病毒侵染和癥狀發(fā)展中的生物學意義提供了理論依據。
[1] Zhou Y, Chen H M, Cao M J, Wang X F, Jin X, Liu K H, Zhou C Y. Occurrence, distribution, and molecular characterization of citrus yellow vein clearing virus in China. Plant Disease, 2017, 101(1): 137-143.
[2] Chen H M, Li Z A, Wang X F, Zhou Y, Tang K Z, Zhou C Y, Zhao X Y, Yue J Q. First report of citrus yellow vein clearing virus on lemon in Yunnan, China. Plant Disease, 2014, 98(12): 1747.
[3] Rehman A U, Li Z R, Yang Z K, Waqas M, Wang G P, Xu W X, Li F, Hong N. The coat protein of citrus yellow vein clearing virus interacts with viral movement proteins and serves as an RNA silencing suppressor. Viruses, 2019, 11(4): 329.
[4] Bin Y, Xu J, Duan Y, Ma Z, Zhang Q, Wang C, Su Y, Jiang Q, Song Z, Zhou C. The titer of citrus yellow vein clearing virus is positively associated with the severity of symptoms in infected citrus seedlings. Plant disease, 2022, 106(3): 828-834.
[5] 賓羽, 宋震, 崔甜甜, 周常勇. 柑橘黃化脈明病毒突變體及其構建方法: ZL201910939750.8[P]. (2019-12-31) [2023-03-02].
BIN Y, SONG Z, CUI T T, ZHOU C Y. Citrus yellow vein clearing virus mutant and its construction method: ZL201910939750.8[P]. (2019-12-31) [2023-03-02]. (in Chinese)
[6] Loconsole G, Onelge N, Potere O, Giampetruzzi A, Bozan O, Satar S, De Stradis A, Savino V, Yokomi R K, Saponari M. Identification and characterization of citrus yellow vein clearing virus, a putative new member of the genus. Phytopathology, 2012, 102(12): 1168-1175.
[7] Song Z, Kurth E G, Peremyslov V V, Zhou C Y, Dolja V V. Molecular characterization of a citrus yellow vein clearing virus strain from China. Archives of Virology, 2015, 160(7): 1811-1813.
[8] Ma X F, Hong N, Moffett P, Zhou Y J, Wang G P. Functional analysis of apple stem pitting virus coat protein variants. Virology Journal, 2019,16(1): 20.
[9] 李帥, 蔣西子, 梁偉芳, 陳思涵, 張享享, 左登攀, 胡亞會, 江彤. 利用酵母雙雜交系統(tǒng)篩選與草莓鑲脈病毒P6蛋白互作的森林草莓寄主因子. 中國農業(yè)科學, 2017, 50(18): 3519-3528. doi: 10.3864/j.issn.0578-1752.2017.18.008.
LI S, JIANG X Z, LIANG W F, CHEN S H, ZHANG X X, ZUO D P, HU Y H, JIANG T. Screening of the host factors of woodland strawberry interacting with P6 of strawberry vein banding virus by yeast two-hybrid system. Scientia Agricultura Sinica, 2017, 50(18): 3519-3528. doi: 10.3864/j.issn.0578-1752.2017.18.008. (in Chinese)
[10] Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in plant-virus interaction. Frontiers in Microbiology, 2016, 7: 1565.
[11] Cui T, Bin Y, Yan J, Mei P, Li Z, Zhou C, Song Z. Development of infectious cDNA clones of citrus yellow vein clearing virus using a novel and rapid strategy. Phytopathology, 2018, 108(10): 1212-1218.
[12] Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X, Zhu S. Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Scientific Reports, 2018, 8(1): 1205.
[13] 馬丹丹. 柑橘黃化脈明病毒在尤力克檸檬中的時空分布及細胞結構變化研究[D]. 重慶: 西南大學, 2016.
MA D D. Spatial and temporal distribution of citrus yellow vein clearing virus and cell structural changes in infected Euneka lemon[D]. Chongqing: Southwest University, 2016. (in Chinese)
[14] 鄧雨青. 柑橘黃化脈明病毒誘導尤力克檸檬細胞程序性死亡研究[D]. 重慶: 西南大學, 2017.
DENG Y Q. Study on programmed cell death in Euneka lemon induced by citrus yellow vein clearing virus[D]. Chongqing: Southwest University, 2017. (in Chinese)
[15] Mathioudakis M M, Rodriguez-Moreno L, Sempere R N, Aranda M A, Livieratos I. Multifaceted capsid proteins: Multiple interactions suggest multiple roles for pepino mosaic virus capsid protein. Molecular Plant-Microbe Interactions, 2014, 27(12): 1356-1369.
[16] Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. Molecular Plant Pathology, 2018, 19(2): 504-518.
[17] Qiao Y, Li H F, Wong S M, Fan Z F. Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Molecular Plant-Microbe Interactions, 2009, 22(12): 1523-1534.
[18] Sun X, Li Y, Shi M, Zhang N, Wu G, Li T, Qing L, Zhou C.binding and bimolecular fluorescence complementation assays suggest an interaction between tomato mosaic virus coat protein and tobacco chloroplast ferredoxin I. Archives of Virology, 2013, 158(12): 2611-2615.
[19] Gruber A V, Feiz L. Rubisco assembly in the chloroplast. Frontiers in Molecular Biosciences, 2018, 5: 24.
[20] Kawakami N, Watanabe A. Translatable mRNAs for chloroplast- targeted proteins in detached radish cotyledons during senescence in darkness. Plant and Cell Physiology, 1993, 34(5): 697-704.
[21] Roy H. Rubisco assembly: A research memoir//Biswal B, Krupinska K, Biswal U C. Plastid Development in Leaves during Growth and Senescence. Dordrecht: Springer Netherlands, 2013: 117-129.
[22] Atkinson N, Leitao N, Orr D J, Meyer M T, Carmo-Silva E, Griffiths H, Smith A M, McCormick A J. Rubisco small subunits from the unicellular green algacomplement Rubisco-deficient mutants of. New Phytologist, 2017, 214(2): 655-667.
[23] Suzuki Y, Makino A. Availability of Rubisco small subunit up-regulates the transcript levels of large subunit for stoichiometric assembly of its holoenzyme in rice. Plant Physiology, 2012, 160(1): 533-540.
[24] Lin L, Luo Z P, Yan F, Lu Y W, Zheng H Y, Chen J P. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 2011, 43(1): 90-92.
[25] Zhao J P, Liu Q, Zhang H L, Jia Q, Hong Y G, Liu Y L. The Rubisco small subunit is involved in tobamovirus movement and-2-mediated extreme resistance. Plant Physiology, 2013, 161(1): 374-383.
[26] Barber J, Nield J. Organization of transmembrane helices in photosystem II: comparison of plants and cyanobacteria. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2002, 357(1426): 1329-1335.
[27] Ifuku K, Yamamoto Y, Ono T, Ishihara S, Sato F. PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology, 2005, 139(3): 1175-1184.
[28] Ifuku K, Ishihara S, Shimamoto R, Ido K, Sato F. Structure, function, and evolution of the PsbP protein family in higher plants. Photosynthesis Research, 2008, 98(1/3): 427-437.
[29] Ido K, Ifuku K, Yamamoto Y, Ishihara S, Murakami A, Takabe K, Miyake C, Sato F. Knockdown of the PsbP protein does not prevent assembly of the dimeric PSII core complex but impairs accumulation of photosystem II supercomplexes in tobacco. Biochimica et Biophysica Acta-Bioenergetics, 2009, 1787(7): 873-881.
[30] Ifuku K. The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. Plant Physiology and Biochemistry, 2014, 81: 108-114.
[31] Ifuku K, Noguchi T. Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Frontiers in Plant Science, 2016, 7: 84.
[32] Balasubramaniam M, Kim B S, Hutchens-Williams H M, Loesch-Fries L S. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Molecular Plant-Microbe Interactions, 2014, 27(10): 1107-1118.
[33] Kong L, Wu J, Lu L, Xu Y, Zhou X. Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 2014, 7(4): 691-708.
[34] Bin Y, Zhang Q, Su Y, Wang C, Jiang Q, Song Z, Zhou C. Transcriptome analysis ofinfected with citrus yellow vein clearing virus. BMC Genomics, 2023, 24(1): 65.
Screening of the Host Factors Interacting with CP of Citrus yellow vein clearing virus by Yeast Two-Hybrid System
BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong
Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712
【Objective】Citrus yellow vein clearing virus (CYVCV) is one of the viruses mostly threatening the stable development of citrus industry in China, but its infection and pathogenic mechanism in citrus is still unclear. In this study, the coat protein (CP) of CYVCV was used as a bait to screen the Eureka lemon (Burm. f.) cDNA library, and the function of obtained host factors in the interaction between host and virus was analyzed by bioinformatics method.【Method】The total RNA of Eureka lemon leaves was extracted by the Trizol method, and then reversely transcribed to the first-stand cDNA with SMART method, which was used as a template for obtaining ds cDNA through long-distance PCR. After homogenization, the ds cDNA fragments were ligated to pGADT7 plasmid vector by recombination junctions to construct the primary cDNA library of Eureka lemon. The recombinant plasmids were transfected intoDH10B to obtain thecDNA library of Eureka lemon, and its quality was identified. Simultaneously, thesequence of CYVCV was amplified by PCR and ligated into the yeast two-hybrid (Y2H) bait vector pGBKT7, and the plasmids of pGBKT7-CP and pGADT7 were co-transfected into yeast Y2H Gold. The positive yeast clones were grown on the plate of SD/-Trp, SD/-Leu-Trp, SD/-Leu-Trp/X--Gal and SD/-Leu-Trp-His medium, respectively, and then the growth situation of the yeast was tested to identify the toxicity of pGBKT7-CP on yeast Y2H Gold and the self-activating effect of pGBKT7-CP on the reporter gene of yeast was analyzed. Then the Y2H Gold containing bait vector pGBKT7-CP was transformed with the primary cDNA library of Eureka lemon, the co-transformed yeasts were coated on the plate of SD/-Leu-Trp, SD/-Leu-Trp-His/X--Gal and SD/-Leu-Trp-His-Ade/X--Gal medium in turn. Finally, the blue and well grown positive clones were selected. The plasmids of positive yeast clones were extracted and sequenced. The candidate genes were preliminarily compared in the GenBank, and the interacted protein factors were annotated and the protein’s biological functions were analyzed with gene ontology (GO) pathway of Uniprot online websites. According to the results of the analysis, candidate factors that may be involved in host disease resistance or symptom development were selected, their CDS full-length sequences were amplified and constructed into the target vector pGADT7 and then were verified with pGBKT7-CP by one for one in yeast, respectively.【Result】The titer of the Eureka lemon-cDNA library was 1.02×108cfu/mL, and it demonstrated that the cDNA library measured up to the experiment standard. The bait vector of pGBKT7-CP was constructed, which had no ability to activate the reporter gene and had no virulence to the yeast. The 41 positive clones were finally selected by using the SD/-Leu-Trp-His-Ade/X--Gal medium. After sequence similarity comparison, removing the repetitive sequences, the vector sequences and the frameshift sequences,the 32 host factors that interacted with CYVCV CP were screened. The GO pathway annotation results indicated that these host factors were involved in several chloroplast-related biological processes, including photosynthesis, metabolic process, carbohydrate metabolic process, response to light stimulus, etc. The molecular functions of the 32 host factors were multiple, including catalytic activity, hydrolase activity, transferase activity, protein binding, dna-binding transcription factor activity, and translation factor activity, etc. Moreover, the cell components of the 32 host factors were involved in the cytoplasm, membrane, chloroplast, thylakoid, nucleolus, and golgi apparatus, etc. Validation of one-to-one yeast two-hybrid crosses of 14 important proteins selected from candidate host factors with CP showed that CP interacted with all 14 proteins.【Conclusion】The cDNA library of Eureka lemon was constructed successfully, and 32 host factors of Eureka lemon interacted with CYVCV CP were preliminarily screened. According to the results, the function of the important proteins was analyzed. It was presumed that CYVCV CP affects photosystem stability, thylakoid structure and chlorophyll synthesis by interacting with multiple chloroplast-related proteins such as oxygen-evolving enhancer protein 2 (PsbP), chlorophyll a-b binding protein 8 (Lhca3) and ribulose bisphosphate carboxylase small subunit (RbcS), resulting in reduced photosynthesis and damaged chloroplast morphology and function. The interaction of CP with these chloroplast-associated factors was separately verified one-to-one in yeast, which will provide a theoretical basis for revealing the molecular mechanism of CYVCV CP in viral pathogenicity.
citrus yellow vein clearing virus (CYVCV); Eureka lemon; yeast two-hybrid; coat protein; host factor
10.3864/j.issn.0578-1752.2023.10.006
2023-03-02;
2023-03-08
重慶市自然科學基金(CSTB2022NSCQ-MSX0752)、重慶市自然科學基金博士后項目(cstc2021jcyj-bshX0017)
賓羽,E-mail:bin20196040@swu.edu.cn。通信作者宋震,E-mail:songzhen@cric.cn。通信作者周常勇,E-mail:zhoucy@cric.cn
(責任編輯 岳梅)