• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Serum Sodium Fluctuation Prediction among ICU Patients Using Neural Network Algorithm:Analysis of the MIMIC-IV Database

    2023-05-13 09:25:00HaotianYuTongpengGuanJiangZhuXiaoLuXiaoluFeiLanWeiYanZhangYiXin

    Haotian Yu, Tongpeng Guan, Jiang Zhu, Xiao Lu, Xiaolu Fei,Lan Wei, Yan Zhang, Yi Xin

    Abstract: Sodium homeostasis disorder is one of the most common abnormal symptoms of elderly patients in intensive care unit (ICU), which may lead to physiological disorders of many organs.The current prediction of serum sodium in ICU is mainly based on the subjective judgment of doctors’experience.This study aims at this problem by studying the clinical retrospective electronic medical record data of ICU to establish a machine learning model to predict the short-term serum sodium value of ICU patients.The data set used in this study is the open-source intensive care medical information set Medical Information Mart for Intensive Care (MIMIC)-IV.The time point of serum sodium detection was selected from the ICU clinical records, and the ICU records of 25 risk factors related to serum sodium were extracted from the patients within the first 12 h for statistical analysis.A prediction model of serum sodium value within 48 h was established using a feedforward neural network, and compared with previous methods.Our research results show that the neural network learning model can predict the development of serum sodium in patients using physiological indicators recorded in clinical electronic medical records within 12 h, and has better prediction effect than the serum sodium formula and other machine learning models.

    Keywords: serum sodium; structured electronic medical record; hypernatremia; hyponatremia; neural network; machine learning

    1 Introduction

    Sodium is the main extracellular cation and the most active solute in human body [1].Sodium ion concentration is the main determinant of blood osmotic pressure.Under normal circumstances,although the daily intake of sodium and water varies, serum sodium remains stable within the physiological range.Sodium metabolism is strictly regulated by the kidney through the interaction of many neurohormone mechanisms,including aldosterone-angiotensin-renin system,sympathetic nervous system, atrial natriuretic peptide and brain natriuretic peptide mechanisms [2].The normal range of human serum sodium is 135-145 mmol/L.

    Abnormal serum sodium is divided into hypernatremia and hyponatremia.Medically,hyponatremia is defined as serum sodium concentration < 135 mmol/L, and hypernatremia is defined as serum sodium concentration >145 mmol/L [3].Abnormality of serum sodium is the most common electrolyte disorder in clinic,and also one of the most common abnormal symptoms of intensive care unit (ICU) patients[4].Due to pathophysiological disorder or iatrogenic intervention, elderly people in ICU are particularly vulnerable to sodium metabolism disorder, with the prevalence rate between 25% and 45% [5].Because of its impact on incidence rate and mortality, abnormal serum sodium has caused a considerable burden on medical resources [6].

    Abnormality of serum sodium is often accompanied by central diseases, which is a common feature of acute diseases, such as acute cerebrovascular disease, acute stroke, medical diseases, etc.[7] Serum sodium concentration will affect the conformation of proteins and enzymes,the transmission of impulses and the excitation of nerves and muscles.Even a small range of changes in sodium concentration may cause physiological disorders in many organs, including the heart and brain.Some studies have shown that the occurrence of abnormal serum sodium is related to significantly higher mortality and longer hospital stay [8].The mortality of mild and severe sodium disorders in patients with acquired sodium metabolism disorder (IAD) in ICU is close to 30% and 45% respectively, while the mortality of patients with normal serum sodium level is 16%.

    At present, the serum sodium test in clinic depends on serum sampling test, and only the current and past serum sodium status of ICU patients can be obtained.If the development trend of serum sodium in ICU patients can be correctly predicted, intervention programs such as infusion therapy can be planned in advance to correct the abnormal serum sodium and maintain the patient’s electrolyte balance.

    2 Literature Review

    Although some researchers have proposed some calculation formulas to evaluate serum sodium through the input of serum sodium, whole body water, sodium and potassium within 24 hours,such as the Adrogu é-Madias formula, hope to guide infusion therapy to correct serum sodium[9–11].However, most of these formulas are from strict clinical controlled trials and have not been evaluated in large-scale clinical studies, and some studies have pointed out that the results of these formulas in the clinical environment are not accurate [12].

    At present, in clinical practice, the monitoring of serum sodium still needs regular and continuous blood sampling and test.The prediction of serum sodium mainly depends on doctors’judgment, which is subjective and very dependent on doctors’experience.Inappropriate liquid management will directly promote acquired sodium metabolism disorder in ICU, and attempts to correct sodium disorder based on empirical calculation will easily lead to high fluctuations in serum sodium concentration, thus increasing the incidence rate and mortality of patients [13].If the development trend of serum sodium in ICU patients can be correctly predicted in advance, it will provide help for the design of medical intervention in advance, the clinical correction of sodium metabolism disorder,and the prevention of complications of infusion treatment.

    The rapid development of electronic medical records makes it possible to apply machine learning data mining methods to the prediction of serum sodium.Recently, the application of machine learning methods in clinical electronic medical records has established many accurate prediction models for acute renal failure, sepsis,diabetes and other diseases [14–19].Moreover, it is reported that some clinical indicators in the electronic medical record are related to abnormal serum sodium [20].The purpose of this paper is to develop a prediction model of serum sodium fluctuation in ICU patients based on structured electronic medical records, to design a prediction software of serum sodium in order to correctly predict the development trend of serum sodium in ICU patients in clinical practice, and to provide reference for medical staff to arrange infusion volume.

    3 Materials and Methods

    3.1 Data Source

    The database used for dynamic serum sodium fluctuation of ICU patients in this study is Medical Information Mart for Intensive Care(MIMIC)-IV database, which is a large relational database provided by the Computational Physiology Laboratory of Massachusetts Institute of Technology (MIT).Data was collected from MetaVision clinical information system,which included the actual inpatient clinical records of more than 40 000 patients from Beth Israel Deaconess Medical Center from 2008 to 2019.

    In our study, patients under 18 years of age were excluded.Among our researchers, the proportion of middle-aged and elderly people over 50 years old is more than 84%.

    3.2 Pretreatment

    In the same process, we searched the electronic medical record for the first time that the patient had hyponatremia in the ICU ward (the serum sodium value was less than 135 mmol/L), and extracted the normal serum sodium record of the same order of magnitude as the control.

    Fig.1 shows our strategy for building vectors.We first searched through the ICU records for the first time that the patient had hypernatremia in the ICU ward (the serum sodium value was greater than 145 mmol/L), and recorded the time point of the occurrence of hypernatremia at momentA.Extract the ICU test records of the patient within 12 h before timeA, take the average of the physiological index test values measured many times within 12 h, and sum the urine volume recorded within 12 h of the patient.Retrieve the time of the patient’s last serum sodium test within 48 h after timeA, and record it as timeB.Extract the infusion records between timeAand timeB, and take the serum sodium detection value at timeBas the target of model prediction.Sum up the infusion volume during this period, which is the total infusion volume for infusion treatment after the occurrence of abnormal serum sodium.Extract basic information such as age and sex of patients with hypernatremia.Finally, we link tables to build one-dimensional vectors.

    Fig.1 Schematic diagram of vector construction scheme

    Fig.2 shows the construction and processing steps of vectors.

    Fig.2 Flow diagram of vector extraction

    The gender of the patient is binary, 0 represents male and 1 represents female.The missing data may lead to deviation from the machine learning model, so variables with missing values greater than 40% are excluded.Use the box diagram method and combine with the physiological reality to delete the outliers.For other variables with less missing values, the average value is used to fill in the missing values.

    3.3 Model

    The structure of the fully connected feedforward neural network established in this study is shown in Fig.3.

    Fig.3 Structure diagram of neural network

    The network consists of two dense layers and a dropout layer.The number of hidden neurons in each layer is 64.The activation function is designated as Rectified linear unit (ReLU).The optimizer specified by the network is root mean square propagation (RMSProp), and the loss function is the mean square error.The validation method of the model is tenfold cross-validation.

    4 Result and Discussion

    In this paper, MIMIC-IV are utilized to evaluate the performance of the proposed method.The relevant information and the corresponding results are as follows.

    4.1 Participants

    According to the vector extraction scheme described above, 5 581 samples were obtained in this study.A total of 3 cases were screened out through outlier processing, and a total of 5 578 samples were collected in the final data set.See Tab.1 for the basic information of cases.

    This paper selected 25 physiological indexes.They are: gender, age, systolic blood pressure,diastolic blood pressure, Fahrenheit temperature,heart rate, mean arterial blood pressure, colloid infusion, crystal infusion, arterial carbon dioxide partial pressure, arterial oxygen partial pressure,urea nitrogen, bilirubin, phosphate ion, chloride ion, hematocrit, creatinine, glucose, platelet count, blood calcium, serum sodium, blood potassium, blood magnesium, and urine volume.Among them, the item of serum sodium includes the initial value of serum sodium, the average value of serum sodium and the current value of serum sodium, with a total of 27 characteristics.The colloidal infusion mentioned in this article includes: whole blood, plasma, albumin, levo-dextran, glycoside, etc., which are mainly used to expand blood volume, while the crystal infusion includes: hypotonic and isotonic physiological saline, 5%, 10% glucose solution, balance solution, etc.It is mainly to supplement water and electrolyte.

    Tab.2 shows the descriptive statistics and correlation coefficients of various physiological characteristics.

    4.2 Implementation Details

    Our model is implemented on a computer equipped with Intel Core i5-10200h central processing unit (CPU), 128 GB random access memory (RAM) and NVIDIA GeForce GTX 1 650 graphics processing unit (GPU) using Python language based on the open source deep learning library Tensorflow.In the parameter adjustment stage, the training verification and parameter adjustment through K-fold cross-validation are carried out.Finally, the best hyperparameters of the model are obtained.

    Tab.1 Statistical results of selected samples

    Tab.2 Correlation coefficients of various physiological characteristics

    Tab.2 Correlation coefficients of various physiological characteristics(Continued)

    4.3 Model Results

    In this study, the extracted data are put into multiple linear regression, Lasso regression, Ridge regression, decision tree regression, ensemble model and feedforward neural network model for training according to the ratio of training set:test set=8 : 2.The performance of the algorithm is evaluated by five indicators: average absolute error, root mean square error, average relative error, correlation coefficient, and sample proportion of error within 5 mmol/L.Tab.3 shows the results of feedforward neural network and other machine learning methods on the test set, and compares them with the prediction results of traditional formula method.The results of the traditional formula method come from Gregor Lindner’s study, and the data comes from 681 samples from 66 ICU patients who have been strictly screened and included in the clinical prospective experiment [12].

    It can be seen from Tab.3 that machine learning and deep learning methods are better than traditional formula methods in predicting serum sodium.The feedforward neural network has the best prediction performance.Its average absolute error and root mean square error are 3.29 and 4.41 respectively, the relative average error is 2.33%, and the correlation coefficient between the predicted value and the true value is 0.727.Among the traditional machine learning methods, bagging classifier has the best performance.Its average absolute error and root mean square error are 3.36 and 0.02 respectively.The results confirmed that the correlation features of serum sodium extracted in this paper can be used to predict the fluctuation of serum sodium in ICU patients, and also confirmed the superiority of neural network prediction model in prediction performance compared with traditional formula method and traditional machine learning method.

    Tab.3 Prediction effect of traditional formula method, machine learning method and deeplearning method in test set

    Fig.4 shows the scatter diagram of the predicted value and the true value of the neural network model on the test set, and the points between the green dotted lines are the samples with the difference between the predicted value and the true value of the test set less than 3 mmol/L.

    Fig.4 The scatter diagram of the predicted value and the true value

    4.4 Model Interpretation

    We used Shapley Additive exPlanations (SHAP)for model interpretation, and Fig.5 reflects the weights of various features in our neural network.

    Fig.5 Importance of independent variable

    As can be seen from Fig.5, platelets and current and past blood sodium values have the highest weight, indicating the impact of platelets and current and past blood sodium values on future blood sodium fluctuations.At the same time, partial pressures of carbon dioxide, bilirubin, mean arterial blood pressure, and urea nitrogen also have important effects on blood sodium fluctuations.

    4.5 Effect of Changing the Time Intercept Length on the Results

    The interception of time length in this study is to take the physiological index information within 12 h before the patient’s serum sodium concentration point to construct a vector.The length of the time window in the vector construction method described in section 3.1.1 is now changed from 12 h to 4 h, 8 h, 24 h and 48 h respectively to analyze the impact of the time intercept length on the prediction performance of the model, as shown in Fig.6.

    It can be seen from Tab.4 that when the time intercept length increases to 24 h or 48 h,the prediction performance of the model on the test set decreases, which shows that the information reflecting the latest physiological condition of the patient is diluted with the time period.However, when the interception time is reduced to 8 h or 4 h, the prediction performance also decreases.This may be due to the short time window and the lack of effective detection records of patients, resulting in the increase of missing values, which reduces the prediction performance of the model.Based on the above reasons, this paper selects 12 h as the time intercept length.

    Our research results show that models such as full connection network can solve the prediction problem of serum sodium in ICU.Moreover,we believe that these models can be applied to more clinical prediction problems.The limitation of this study is that we only analyzed patients with acquired serum sodium abnormalities in ICU, and our data are incomplete.In our study,due to the complexity of the type and inconsistent size, we were unable to collect complete information about drug information and patient fluid input/output.This has a certain impact on our analysis and model performance.However,we have achieved satisfactory results.

    Fig.6 Changing the time intercept length to construct a vector

    Tab.4 Effect of changing the time intercept length on prediction performance

    5 Conclusion

    To sum up, the research generated by this hypothesis shows that the physiological indicators recorded in the clinical electronic medical record within 12 h can be used to predict the development of the patient’s serum sodium, and the neural network learning model can accurately predict the patient’s serum sodium status and serum sodium value within the next 48 hours.And it has better prediction effect than other machine learning models.Further epidemiological studies will help us verify our results and determine the risk of serum sodium imbalance in ICU patients.

    亚洲国产欧美日韩在线播放 | 国产有黄有色有爽视频| 久久6这里有精品| av网站免费在线观看视频| 老熟女久久久| 国产精品99久久99久久久不卡 | 黑人巨大精品欧美一区二区蜜桃 | 男人舔奶头视频| 久久人妻熟女aⅴ| 在线观看av片永久免费下载| 人妻夜夜爽99麻豆av| 亚洲激情五月婷婷啪啪| 伦理电影大哥的女人| 亚洲久久久国产精品| 不卡视频在线观看欧美| 少妇被粗大的猛进出69影院 | 人人妻人人添人人爽欧美一区卜| 免费观看a级毛片全部| av在线观看视频网站免费| 亚洲精品乱码久久久久久按摩| 久久久久久久久久久久大奶| 欧美xxⅹ黑人| 中文天堂在线官网| 国产精品无大码| 欧美三级亚洲精品| av网站免费在线观看视频| 22中文网久久字幕| 欧美精品一区二区免费开放| 美女主播在线视频| 七月丁香在线播放| 色吧在线观看| 少妇人妻一区二区三区视频| 国产永久视频网站| 夫妻性生交免费视频一级片| 精品一品国产午夜福利视频| 秋霞在线观看毛片| 午夜老司机福利剧场| 18禁在线播放成人免费| 一本—道久久a久久精品蜜桃钙片| 这个男人来自地球电影免费观看 | 亚洲激情五月婷婷啪啪| 国产探花极品一区二区| videos熟女内射| 国产在视频线精品| 久久人人爽av亚洲精品天堂| 欧美日韩综合久久久久久| 尾随美女入室| 亚洲av在线观看美女高潮| 亚洲欧美日韩另类电影网站| 嫩草影院入口| 国产黄片视频在线免费观看| 欧美少妇被猛烈插入视频| av福利片在线| 国产黄频视频在线观看| 成人亚洲精品一区在线观看| 国产在线男女| av在线老鸭窝| 国产在线一区二区三区精| 人妻系列 视频| 91久久精品国产一区二区成人| √禁漫天堂资源中文www| 国产极品天堂在线| a级片在线免费高清观看视频| 亚洲精品国产av蜜桃| 国产精品久久久久成人av| 色视频在线一区二区三区| 亚洲av成人精品一二三区| 美女脱内裤让男人舔精品视频| 亚洲,欧美,日韩| 欧美一级a爱片免费观看看| 麻豆乱淫一区二区| 国产淫片久久久久久久久| 午夜老司机福利剧场| 午夜久久久在线观看| 日本wwww免费看| 美女主播在线视频| 国产精品人妻久久久影院| 美女主播在线视频| 男女免费视频国产| 亚洲欧美日韩东京热| 久久久精品免费免费高清| 国产午夜精品一二区理论片| 精品视频人人做人人爽| 男女无遮挡免费网站观看| 久久精品国产亚洲av天美| 亚洲精品国产av成人精品| 日韩强制内射视频| 精华霜和精华液先用哪个| 人体艺术视频欧美日本| 久久久a久久爽久久v久久| 国产精品久久久久久精品电影小说| 18禁在线播放成人免费| av免费在线看不卡| 日产精品乱码卡一卡2卡三| 久久99一区二区三区| a级一级毛片免费在线观看| 少妇熟女欧美另类| 人妻人人澡人人爽人人| 女性被躁到高潮视频| 国产亚洲精品久久久com| 国产精品国产三级国产专区5o| 另类精品久久| 97在线人人人人妻| 人妻 亚洲 视频| 成人亚洲精品一区在线观看| 亚洲精品亚洲一区二区| 成人国产麻豆网| 免费播放大片免费观看视频在线观看| 国产精品国产三级国产av玫瑰| 人人妻人人添人人爽欧美一区卜| av国产久精品久网站免费入址| 女性被躁到高潮视频| 麻豆成人午夜福利视频| 能在线免费看毛片的网站| 国产精品久久久久久av不卡| 丰满少妇做爰视频| 在线观看免费高清a一片| 久久午夜综合久久蜜桃| 久久99热这里只频精品6学生| 只有这里有精品99| 日韩熟女老妇一区二区性免费视频| 免费少妇av软件| 亚洲成人一二三区av| 男人和女人高潮做爰伦理| 欧美性感艳星| 国产精品国产三级国产av玫瑰| 日韩av不卡免费在线播放| 麻豆成人av视频| 国产色爽女视频免费观看| 老女人水多毛片| 久久精品熟女亚洲av麻豆精品| 国产精品人妻久久久久久| 色网站视频免费| 日韩av不卡免费在线播放| 中文欧美无线码| 亚洲欧洲国产日韩| av播播在线观看一区| 久久久久久伊人网av| 日本av免费视频播放| 国产一区二区在线观看日韩| 一级,二级,三级黄色视频| 99视频精品全部免费 在线| 99国产精品免费福利视频| 亚洲av在线观看美女高潮| 男人爽女人下面视频在线观看| 高清不卡的av网站| 亚洲高清免费不卡视频| 一区二区三区乱码不卡18| 国产成人a∨麻豆精品| 亚洲精品国产成人久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜av观看不卡| 国产熟女欧美一区二区| 国产又色又爽无遮挡免| 亚洲国产精品国产精品| 热re99久久精品国产66热6| 日韩免费高清中文字幕av| 青青草视频在线视频观看| 国产伦精品一区二区三区视频9| 婷婷色麻豆天堂久久| av在线观看视频网站免费| 最新的欧美精品一区二区| 如日韩欧美国产精品一区二区三区 | 亚洲av欧美aⅴ国产| 高清黄色对白视频在线免费看 | 狂野欧美激情性xxxx在线观看| 又粗又硬又长又爽又黄的视频| 最新的欧美精品一区二区| 久久99精品国语久久久| 国产免费福利视频在线观看| 色94色欧美一区二区| av黄色大香蕉| 内地一区二区视频在线| 免费看日本二区| 久久久久国产精品人妻一区二区| 亚洲欧美日韩卡通动漫| 国产男女内射视频| 日本午夜av视频| 五月开心婷婷网| 波野结衣二区三区在线| 在线看a的网站| 一级毛片黄色毛片免费观看视频| 精品人妻偷拍中文字幕| 亚洲熟女精品中文字幕| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av| 欧美精品国产亚洲| 国产高清国产精品国产三级| 大码成人一级视频| 99久久中文字幕三级久久日本| 五月玫瑰六月丁香| 又大又黄又爽视频免费| 哪个播放器可以免费观看大片| 亚洲精品,欧美精品| 国产极品粉嫩免费观看在线 | 欧美成人精品欧美一级黄| 久久久久网色| 精品久久久精品久久久| 啦啦啦视频在线资源免费观看| 精品久久久久久久久av| 久久久久视频综合| 高清av免费在线| 美女国产视频在线观看| 少妇人妻一区二区三区视频| 日本与韩国留学比较| 天天躁夜夜躁狠狠久久av| 九九在线视频观看精品| 亚洲av在线观看美女高潮| 观看美女的网站| 国产高清有码在线观看视频| 2021少妇久久久久久久久久久| 性色av一级| 极品教师在线视频| 国产av一区二区精品久久| 亚洲成色77777| 日韩一本色道免费dvd| 亚洲精品日韩av片在线观看| 最近最新中文字幕免费大全7| 国产精品三级大全| 国产国拍精品亚洲av在线观看| 国产亚洲91精品色在线| 亚洲欧洲精品一区二区精品久久久 | 一级av片app| 亚洲欧美中文字幕日韩二区| 在线观看免费高清a一片| 中国国产av一级| 久久久久人妻精品一区果冻| 日本vs欧美在线观看视频 | 亚洲成人一二三区av| 精品99又大又爽又粗少妇毛片| 精品视频人人做人人爽| 看免费成人av毛片| 汤姆久久久久久久影院中文字幕| 亚洲怡红院男人天堂| 免费av中文字幕在线| 天堂8中文在线网| 久久久久久久精品精品| 久久精品久久精品一区二区三区| 免费大片18禁| 一区二区三区四区激情视频| 日本欧美国产在线视频| 99九九在线精品视频 | 亚洲无线观看免费| 大香蕉久久网| 你懂的网址亚洲精品在线观看| 欧美日韩综合久久久久久| 久久久久久久久久人人人人人人| .国产精品久久| 插逼视频在线观看| av福利片在线观看| 国产有黄有色有爽视频| 人体艺术视频欧美日本| 成年人免费黄色播放视频 | 国产成人freesex在线| 99re6热这里在线精品视频| 五月开心婷婷网| 久久女婷五月综合色啪小说| 成人亚洲欧美一区二区av| 亚洲电影在线观看av| 久久免费观看电影| 一级毛片 在线播放| 国产高清有码在线观看视频| 大片免费播放器 马上看| 免费看日本二区| 亚洲国产毛片av蜜桃av| 久久国产精品男人的天堂亚洲 | 22中文网久久字幕| 精品久久久久久久久亚洲| 亚洲欧洲国产日韩| √禁漫天堂资源中文www| 中文精品一卡2卡3卡4更新| 高清av免费在线| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片| 国产精品99久久久久久久久| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| 国产成人aa在线观看| 人妻一区二区av| 精品久久久久久电影网| 日韩 亚洲 欧美在线| 亚洲欧美成人精品一区二区| 亚洲欧洲国产日韩| 亚洲av免费高清在线观看| 亚洲精品一二三| 午夜福利在线观看免费完整高清在| a级毛片在线看网站| 午夜久久久在线观看| 亚洲色图综合在线观看| 国产成人aa在线观看| 啦啦啦啦在线视频资源| 18禁动态无遮挡网站| 久久久久久久亚洲中文字幕| 日韩在线高清观看一区二区三区| 成人亚洲欧美一区二区av| 纵有疾风起免费观看全集完整版| 欧美日韩在线观看h| 26uuu在线亚洲综合色| 国产熟女午夜一区二区三区 | 欧美精品人与动牲交sv欧美| 亚洲美女黄色视频免费看| 少妇丰满av| 亚洲av福利一区| 青青草视频在线视频观看| 夜夜骑夜夜射夜夜干| 亚洲av.av天堂| 美女主播在线视频| 久久久久久伊人网av| 多毛熟女@视频| av一本久久久久| 91在线精品国自产拍蜜月| 国语对白做爰xxxⅹ性视频网站| 国产精品99久久99久久久不卡 | 美女脱内裤让男人舔精品视频| 久久免费观看电影| 69精品国产乱码久久久| 七月丁香在线播放| 精品一区在线观看国产| av在线播放精品| 亚洲av免费高清在线观看| 女的被弄到高潮叫床怎么办| 美女中出高潮动态图| 国产成人午夜福利电影在线观看| 国产av精品麻豆| 亚洲av中文av极速乱| 99久久中文字幕三级久久日本| 久久人人爽av亚洲精品天堂| 最近手机中文字幕大全| 99热6这里只有精品| 在线观看一区二区三区激情| 日韩,欧美,国产一区二区三区| 欧美精品一区二区大全| 精品久久国产蜜桃| 丰满少妇做爰视频| 国产日韩欧美亚洲二区| 亚洲精品aⅴ在线观看| 午夜久久久在线观看| 国产69精品久久久久777片| 99精国产麻豆久久婷婷| 亚洲欧洲精品一区二区精品久久久 | 午夜免费观看性视频| av播播在线观看一区| 成人漫画全彩无遮挡| 欧美xxxx性猛交bbbb| 中文字幕制服av| 赤兔流量卡办理| 插逼视频在线观看| 五月伊人婷婷丁香| av国产精品久久久久影院| 国产中年淑女户外野战色| 乱码一卡2卡4卡精品| 精品少妇黑人巨大在线播放| 亚洲欧美精品专区久久| 深夜a级毛片| 久久久国产一区二区| 美女福利国产在线| 免费黄网站久久成人精品| 欧美精品高潮呻吟av久久| 国产探花极品一区二区| 久久99精品国语久久久| 久久久久视频综合| 久久午夜综合久久蜜桃| 成人无遮挡网站| 丰满饥渴人妻一区二区三| 夜夜爽夜夜爽视频| 国产精品99久久久久久久久| 天天躁夜夜躁狠狠久久av| 各种免费的搞黄视频| 黄色毛片三级朝国网站 | 黄色日韩在线| 亚洲美女黄色视频免费看| 91久久精品国产一区二区三区| 国内精品宾馆在线| 精品久久久噜噜| 欧美三级亚洲精品| 午夜激情久久久久久久| 色婷婷久久久亚洲欧美| 观看免费一级毛片| 国产免费福利视频在线观看| 精品午夜福利在线看| 久久午夜福利片| 精品亚洲成国产av| 制服丝袜香蕉在线| 午夜久久久在线观看| 日本黄色片子视频| 看十八女毛片水多多多| 亚洲内射少妇av| 极品教师在线视频| 亚洲欧美精品自产自拍| 91精品伊人久久大香线蕉| 日本91视频免费播放| 免费大片黄手机在线观看| 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| av专区在线播放| 免费播放大片免费观看视频在线观看| 人妻少妇偷人精品九色| 一个人看视频在线观看www免费| 色吧在线观看| 免费黄色在线免费观看| 人妻制服诱惑在线中文字幕| 亚洲精品日韩在线中文字幕| 久久人人爽人人爽人人片va| 日本黄色片子视频| 久久久久久久久久人人人人人人| av在线播放精品| 大又大粗又爽又黄少妇毛片口| 日产精品乱码卡一卡2卡三| 久久 成人 亚洲| 国产日韩欧美亚洲二区| 日韩av不卡免费在线播放| 最近手机中文字幕大全| 岛国毛片在线播放| 七月丁香在线播放| 简卡轻食公司| 国产爽快片一区二区三区| av有码第一页| 黄片无遮挡物在线观看| 伦理电影免费视频| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 你懂的网址亚洲精品在线观看| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 久久人人爽人人片av| 久久国产精品男人的天堂亚洲 | 成人毛片60女人毛片免费| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线 | 成人亚洲精品一区在线观看| 黑人高潮一二区| 国产精品一区www在线观看| 成人综合一区亚洲| 成年美女黄网站色视频大全免费 | 黄片无遮挡物在线观看| a级毛片免费高清观看在线播放| 纯流量卡能插随身wifi吗| 人妻夜夜爽99麻豆av| 大片电影免费在线观看免费| 久久午夜福利片| 国产精品福利在线免费观看| 日日摸夜夜添夜夜爱| 日韩成人伦理影院| 久久久久视频综合| 欧美丝袜亚洲另类| 欧美区成人在线视频| 久久ye,这里只有精品| videos熟女内射| 在线观看免费日韩欧美大片 | 青青草视频在线视频观看| 乱人伦中国视频| 两个人的视频大全免费| 青青草视频在线视频观看| 国产色婷婷99| 日韩伦理黄色片| 国产精品久久久久久精品电影小说| 黄色配什么色好看| 激情五月婷婷亚洲| 国产色婷婷99| www.色视频.com| 热re99久久精品国产66热6| 国产免费福利视频在线观看| 亚洲精品久久午夜乱码| 亚洲第一av免费看| 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 熟女电影av网| 亚洲av男天堂| 亚洲精品一区蜜桃| 一区二区av电影网| 国产精品久久久久久久久免| 婷婷色麻豆天堂久久| 亚洲精品国产av成人精品| 国产一区二区三区综合在线观看 | 久久午夜福利片| 日韩电影二区| 日本与韩国留学比较| 91久久精品国产一区二区成人| 丁香六月天网| 国产极品天堂在线| 少妇猛男粗大的猛烈进出视频| 亚洲三级黄色毛片| 黄片无遮挡物在线观看| 王馨瑶露胸无遮挡在线观看| 青春草视频在线免费观看| 国产一区二区三区av在线| 国产精品久久久久久av不卡| 欧美一级a爱片免费观看看| 汤姆久久久久久久影院中文字幕| 毛片一级片免费看久久久久| 国产成人精品一,二区| 国产精品偷伦视频观看了| av国产久精品久网站免费入址| 日韩精品免费视频一区二区三区 | 在线观看三级黄色| 在线观看www视频免费| 免费av不卡在线播放| 97在线视频观看| 免费黄网站久久成人精品| 边亲边吃奶的免费视频| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 免费观看性生交大片5| av在线app专区| av有码第一页| 草草在线视频免费看| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄| 久久99热这里只频精品6学生| 中文字幕制服av| 日本-黄色视频高清免费观看| 一区二区av电影网| 一本一本综合久久| 国产成人一区二区在线| 丰满人妻一区二区三区视频av| 亚洲精品成人av观看孕妇| 久久久久久久久久久免费av| 男女边吃奶边做爰视频| 久久久久久久国产电影| 伊人亚洲综合成人网| 久久6这里有精品| 免费看不卡的av| 国产欧美另类精品又又久久亚洲欧美| 国产69精品久久久久777片| 人妻夜夜爽99麻豆av| 亚洲精品久久午夜乱码| 黄色欧美视频在线观看| av免费观看日本| 色婷婷久久久亚洲欧美| 欧美日本中文国产一区发布| h视频一区二区三区| 亚洲精品日韩在线中文字幕| 大片免费播放器 马上看| 国产精品国产av在线观看| 极品人妻少妇av视频| 最近的中文字幕免费完整| 高清黄色对白视频在线免费看 | 亚洲欧美日韩东京热| 精品一区在线观看国产| 一级爰片在线观看| 国产欧美另类精品又又久久亚洲欧美| 99久久人妻综合| 日本午夜av视频| 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线| 好男人视频免费观看在线| 久久狼人影院| 美女国产视频在线观看| 嘟嘟电影网在线观看| 日日啪夜夜撸| 一本一本综合久久| 成人亚洲欧美一区二区av| 热re99久久国产66热| 亚洲人成网站在线观看播放| xxx大片免费视频| 国产高清三级在线| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| 免费人妻精品一区二区三区视频| 在线 av 中文字幕| 国产有黄有色有爽视频| 六月丁香七月| 色5月婷婷丁香| 91久久精品国产一区二区三区| 国产淫语在线视频| 成人国产av品久久久| 亚洲av成人精品一二三区| 色视频www国产| 纵有疾风起免费观看全集完整版| 好男人视频免费观看在线| 久久精品国产亚洲av涩爱| 日韩强制内射视频| 精品久久久噜噜| 日韩大片免费观看网站| 老熟女久久久| 亚洲欧美成人综合另类久久久| 美女视频免费永久观看网站| 亚洲精品,欧美精品| 99热6这里只有精品| 在线观看av片永久免费下载| 老司机亚洲免费影院| 肉色欧美久久久久久久蜜桃| 久久午夜福利片| 黄色日韩在线| 国模一区二区三区四区视频| 三级经典国产精品| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看| 99国产精品免费福利视频| 在线观看美女被高潮喷水网站| 少妇高潮的动态图| 99久久综合免费| h日本视频在线播放| 热re99久久国产66热| 成人免费观看视频高清| av卡一久久| 欧美日韩一区二区视频在线观看视频在线| 一本一本综合久久| a级毛片在线看网站| 亚洲精品456在线播放app| 亚洲国产精品专区欧美| 日韩电影二区| 在线观看国产h片| 国产一区二区三区综合在线观看 | 精品少妇黑人巨大在线播放| 国产综合精华液| 久久鲁丝午夜福利片| 亚洲国产最新在线播放| 男女免费视频国产| 少妇人妻精品综合一区二区|