• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Influence of CL-20 Particle Size on the Thermal Decomposition and Combustion Performances of 3D Printed Photocurable Propellants

    2023-05-12 01:09:26LIManmanWURuohengGAOYuchenYANGWeitaoHURuiWANGQionglin
    火炸藥學(xué)報(bào) 2023年4期

    LI Man-man, WU Ruo-heng, GAO Yu-chen, YANG Wei-tao, HU Rui, WANG Qiong-lin

    (1.Xi′an Modern Chemistry Research Institute, Xi′an 710065, China;2.School of Electronic Information, Northwestern Polytechnical University, Xi′an 710119, China)

    Abstract:In order to clarify the influence of CL-20 particle size on the thermal decomposition and combustion behaviors of 3D printed gun propellants, the photocurable gun propellants containing 24, 56 and 152μm CL-20 particles were fabricated by extrusion 3D printing, and the thermal behavior of 3D-printed propellants was studied by the non-isothermal DSC (differential scanning calorimetry) method. The decomposition activation energy was obtained by the modified Kissinger-Akahira-Sunose (KAS) method. It was found that all the CL-20-based propellants presented a two-step decomposition process. The first decomposition step is considered an accelerated process resulting from reducing the crystal quality of CL-20 affected by the photocurable binder. The critical temperatures of thermal explosion (Tpe) of the CL-20/PUA (polyurethane acrylate) composites was decreased about 27℃ compared with pure CL-20. Regarding the influence of particle size, the experimental results indicated that the fine CL-20 was affected more by the binder than the other particle sizes due to the greater surface area. Propellant samples containing finer CL-20 particles presented lower activation energy and critical temperature. The combustion results also indicated that the propellant containing fine CL-20 presented higher burning rate and lower pressure exponent. It is recommended to use fine CL-20 to construct the photocurable propellants for 3D printing.

    Keywords:physical chemistry; CL-20; HNIW; photocurable propellant; 3D printing; particle size; thermal decomposition

    Introduction

    Gun propellants are a kind of chemical substance used in producing energy or pressurized gas that is subsequently used to generate propulsion of projectiles or other objects. The performance of a propellant charge depends on the gas generation rate, which is mainly controlled by the propellant geometry and burn rate[1]. In recent years, 3D printing has been vigorously studied to promote 3D-printed gun propellants into practice[2]. Sun and Zhou[3-4]studied the 3D extrusion printing of a nitrocellulose-based solution. Schaller studied the GAP(Glycidyl azide polymer)-based EPTE (energetic thermoplastic elastomers) filaments which can be printed by the fused deposition modeling (FDM) 3D printer[5]. TNO scientists studied the 3D printing of epoxy/RDX propellants using the DLP (digital light processing) printer and extrusion 3D printer[6].

    The energetic content is improved by using 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20 or HNIW) in propellant formulations, making it an attractive candidate[7-9]. CL-20 based energetic inks for 3D printing, including HTPB/CL-20 based[10], polyurethane acrylate (PUA)/CL-20 explosive ink[11-13], epoxy acrylate (EA)/nitrocellulose (NC)/CL-20 explosive ink[14], PUA/EA/NC/CL-20 based explosive ink[15]and PVA/EC/CL-20[16]have been studied. In our previous study, photocurable PUA/CL-20 and APNIMMO/CL-20 ink were printed by the SLA (Stereolithography) printer and 3D extrusion printer to fabricate gun propellant[17-18].

    Thermal decomposition and combustion performance of these formulations play a vital role in the thermal responses and interior ballistic behavior. Previous work has demonstrated that the decomposition of CL-20 started with a loss of a NO2group of CL-20[19-20]. Unlike RDX or HMX, no experimental evidence was reported that a melting layer emerged from CL-20, revealing a solid-state decomposition process of CL-20[21]. The thermal decomposition mechanism of CL-20 has been studied and published in previous work[22-24].

    By far, there is very scarce data on the influence of the particle size of CL-20 on the decomposition and combustion behavior of 3D-printed propellants. Therefore, it is essential to understand the relationship between the particle and their performance. This paper studied the decomposition and combustion performances of 3D-printed gun propellant composed of CL-20 with different particle sizes and photocurable acrylate polymer.

    1 Experimental

    1.1 Materials

    The ε-CL-20 used was supplied by Qingyang Chemical Industry Corporation, China North Industries Group. TheD50of CL-20-1, CL-20-2 and CL-20-3 is 24, 56 and 152μm, respectively. The PUA-based binder matrix is a photocurable resin including 67% polyurethane acrylate (PUA), 30% acrylic diluent and 3% diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide as photoinitiator. All propellant compositions consisted of 70% CL-20 and 30% PUA resin. The predicted thermal-chemical properties including force constant and flame temperature of the designed propellants are calculated by Ematrix code. The calculated force constant, flame temperature, average gas molecular weight and ratio of specific heats is 1061kJ/kg, 2776K, 21.8g/mol and 1.28, respectively.

    1.2 CL-20/PUA ink preparation and 3D printing

    The schematic illustration of the extrusion 3D printing process of CL-20/PUA ink was shown in Fig.1. The composite propellant slurry (ink) containing PUA resin and CL-20 particles was prepared in an electric stirrer. The slurries were extruded by a piston injector with a 1mm nozzle and deposited on the moving platform. The deposited slurry is cured under exposure of 405nm UV light. The exposure time is about 20s for each layer. At last, the cured propellant slices were taken away from the platform. The density of printed samples was 1.68—1.70g/cm3.

    Fig.1 Schematic illustration of 3D printing process of CL-20/PUA ink

    1.3 SEM and XRD tests

    The 3D-printed sample was fractured in liquid nitrogen, and the inner morphology of composite was observed with a QUANTA FEG 250 scanning electron microscope (SEM).

    The polymorph of 3D-printed propellant was detected by X-ray diffract meter (XRD, Malvern Panalytical, Empyrean instrument) with a tube voltage of 40kV, a tube current of 30mA, and diffraction angle of 5° to 90°.

    1.4 Thermal decomposition

    Six samples CL-20-1, CL-20-2, CL-20-3, CL-20-1/PUA, CL-20-2/PUA, CL-20-3/PUA, are involved in these experiments. The samples were tested by a Mettler-Toledo HP DSC 827e. Temperature range: 50—300℃. Heating rate: 2, 5, 7 and 10℃/min. Sample mass: about 1mg. Dynamic nitrogen atmosphere: 50mL/min.

    Activation energy (Ea) with the conversion rate was obtained by the modified Kissinger-Akahire-Sunose (KAS) method (Eq.1)[25-26].

    (1)

    1.5 Closed bomb tests

    The combustion properties of printed CL-20/PUA composites sheet were investigated by a 102mL closed vessel test with a loading density of 0.12g/cm3. The propellant sheets were 4mm×10mm×100mm. The ignition powder is 1.1g nitrocellulose with 12.6% nitrogen content. The pressure history was recorded, and the burn rate was calculated by the form function of geometry.

    2 Results and Discussion

    2.1 SEM and XRD results

    The internal morphology of each formula was observed first. Differences were observed between the morphology of each propellant formulation. Fig.2 presents the SEM photos of three samples containing different CL-20 particles. It is clear to find the interface between CL-20 particles and polymer binder and CL-20 particles protruding from the formulation. The 24μm CL-20 particles are much more uniform in size and distributed evenly in the binder. In contrast, 152μm CL-20 consists of agglomerated particles with irregular shapes, resulting in a less homogeneous distribution of CL-20 particles.

    Fig.2 Inner stucutre of CL-20/PUA propellants

    Fig.3 presented the XRD spectra of printed CL-20 composites compared with pure CL-20. It can be seen that the main diffraction peaks of the sample are consistent with that of pure ε-CL-20 reported in the literature[3]. The XRD results present strong characteristic peaks at 12.52°, 25.73° and 30.28°, coinciding with pure ε-CL-20. The intensity of XRD was weakened resulting from the binder. The results indicate that the 3D printing did not cause the crystalline phase transition of CL-20.

    Fig.3 XRD spectra of CL-20/PUA propellants and pure CL-20 with various particle sizes

    2.2 Thermal decomposition

    To study the influence of particle size on the thermal behavior of the formulations, Fig.4 presents the DSC curves of CL-20/PUA composites in comparison with the pure CL-20. Table 1 summarizes the thermal behavior characteristics of each exothermic peak, including decomposition enthalpies (ΔH) and peak temperature (Tp). According to the decomposition curves of pure CL-20 in Fig.4(a)—(c), there was only one exothermic peak of 230—250℃ at the heating rate of 2 to 10℃/min. Fig.4(d)—(f )present the DSC curves of CL-20/PUA composites with decreased heat release due to the inert binder. It is noticeable to find two exothermic peaks in the decomposition of CL-20/PUA composites, indicating the accelerated decomposition of some CL-20. The second exothermic peak temperature of CL-20/PUA composites is near to that of pure CL-20 with same particle size, while the first exothermic peak is about 24—31℃ lower.

    Table 1 DSC parameters for (a)—(f) samples

    Fig.4 DSC curves of CL-20 and composites with various particle sizes

    A two-phase decomposition process of CL-20 composites was observed in previous works when polyisobutylene plasticized by dioctyl sebacate and oily material[23-24], GAP[27-28]and HTPB[29]was adopted. It was considered the two-step decomposition was connected with the crystal lattice quality. On the contrary, a single decomposition process was also found when using CAB plasticized by BDNPF/A[30], silicone rubber[31]and Formex matrix[24]. In regard of the influence of particle size, experimental results show that the CL-20 with different sizes had varied influences on the thermal decomposition of the composite samples. The fine CL-20 was affected more by the binder than the other particle sizes due to the greater surface area. Thus, the portion of the first peak heat release becomes bigger during the whole heat release process.

    2.3 Kinetic parameters

    The modified KAS method was used to obtain the dependence of activation energy on the degree of conversion. The activation energies at the conversion rates from 0.1 to 0.9 were determined. The dependence of the extent of conversion on the temperature with the linear fitting curves at different conversion rates (0.1—0.9) was presented in Fig.5. It is obviously observed from Fig.5 that there are overlapped steps on the curves of CL-20/PUA at the conversion range of 0.4—0.6, indicating a strong mutual interaction between the two decomposiiton steps. The dependence of activation energy of studied CL-20 and its composites on the extent of conversion is represented in Fig.6.

    Fig.5 The α—T curves of different CL-20 and CL-20/PUA samples at different heating rates

    Fig.6 The dependence of activation energy on conversion rate for thermal decomposition of CL-20/PUA compared with pure CL-20

    Based on theEa—αcurves, it can be seen that the pure CL-20 used in this study has almost constant activation energy with extent of conversion with an average value of 175.28, 181.49 and 190.52kJ/mol for CL-20-1, CL-20-2 and CL-20-3. As to the effect of particle size, Lee[31]reportedEaof 160.88kJ/mol for CL-20 with small particle size (under 44μm) andEaof 226.83kJ/mol with large particle size (under 246μm) and the influence of particle size are coincident with the results in this study.

    As for CL-20/PUA composites, the mean activation energy atαof 0.1—0.3 is 150.45, 161.12 and 174.40kJ/mol, while the mean activation energy atαof 0.7—0.9 increased to 218.98, 199.62 and 181.92kJ/mol for CL-20-1/PUA, CL-20-2/PUA and CL-20-3/PUA composites. The lower activation energy values in the initial decomposition stage are indicative of its inferior thermal stability. The reuslts indicated that the CL-20-1/PUA composite presents the lowest thermal decomposition energy barrier. The high activation energy in the second step also infers the thermal stability of CL-20 residues because of the formation of nitrogen heterocyclic compounds after the N—NO2homolysis[32].

    3 Influence of CL-20 Particle Size on Combustion Performance

    The combustion performances of propellants with different CL-20 particle sizes were investigated by closed bomb test. Fig.7 presents thep—t,u—pand dynamic vivacity (L—B) curves of the CL-20/PUA samples.

    Fig.7 p—t, u—p and L—B curves of CL-20/PUA composites with various CL-20 particle sizes

    Table 2 presents the combustion parameters of three samples. It shows clearly that the combustion behaviors were also affected by the particle size of CL-20. With the decrease of CL-20 particle size, the burning time decreased from 50 to 22ms, and the maximum pressure increased from 112 to 121MPa. The maximum pressure varied because the heat loss reduced as the burn times decreased. Meanwhile, the CL-20-1/PUA propellant presents higher burning rate compared with other propellants. As mentioned above, the propellant with lower activation energy during the first decomposition step is more easily ignited by heat. As regards to the burning rate coefficient and pressure exponent, the burning rate coefficient increased with the increase of CL-20 particle size from 24 to 152μm. The pressure exponent of propellants containing 24μm CL-20 particles is 1.03, which is acceptable. While, the propellants containing 152μm CL-20 presents a pressure exponent value of 2.37, which is unacceptable for a gun propellant. It is speculated that the increased temperature in the gas phase and the com-bustion surface area of the propellant grains increased pressure exponent. With the increase of pressure, CL-20 particles with larger particle size are difficult to completely decompose in the condensed phase, and then escaped to the gas phase. Meanwhile, the CL-20 particle size also influenced the dynamic vivacity of propellants. Propellants with smaller CL-20 presented higher maximum dynamic vivacity value. While, the propellants with larger CL-20 presented smaller maximum dynamic vivacity value and flatL—Bcurve for the very low burning rate coefficient. According to the combustion results, fine CL-20 particle is recommended.

    Table 2 Combustion parameters

    4 Conclusions

    (1) The thermal decomposition process of ε-CL-20 and its composites with various particle sizes were evaluated based on non-isothermal DSC techniques. The thermal decompositions of CL-20 and CL-20/PUA present a two-step decomposition process, and the initial step is partially controlled by the physical morphology of CL-20, which was mainly affected by the acrylate binder.

    (2) The particle size has little effect on the critical temperatures of thermal explosion (Tpe). It indicates that the PUA acrylate binder could promote decomposition of CL-20 about 27℃ lower.

    (3) The activation energy of propellant containing fine CL-20 is smaller and more easily ignited. Fine CL-20 particle is also recommended for lower pressure exponent.

    久久精品国产鲁丝片午夜精品| 日日爽夜夜爽网站| 亚洲欧美中文字幕日韩二区| 午夜影院在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区在线观看av| 观看美女的网站| 亚洲五月色婷婷综合| 亚洲国产看品久久| 满18在线观看网站| 中文精品一卡2卡3卡4更新| 9191精品国产免费久久| 日韩 亚洲 欧美在线| 精品亚洲成a人片在线观看| 看免费成人av毛片| 日韩中字成人| 黄色毛片三级朝国网站| 亚洲av综合色区一区| 18禁国产床啪视频网站| 亚洲av中文av极速乱| 啦啦啦在线观看免费高清www| 王馨瑶露胸无遮挡在线观看| 亚洲av在线观看美女高潮| 伦精品一区二区三区| 麻豆av在线久日| 亚洲国产欧美在线一区| 久久久久网色| 国产精品香港三级国产av潘金莲 | 国产av一区二区精品久久| 黄频高清免费视频| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久av不卡| 晚上一个人看的免费电影| 黄片小视频在线播放| 老鸭窝网址在线观看| 国产成人精品婷婷| 欧美日韩av久久| 免费少妇av软件| 精品国产乱码久久久久久男人| 亚洲伊人久久精品综合| 一本久久精品| 免费少妇av软件| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 亚洲精品日本国产第一区| 91成人精品电影| 久久国产精品大桥未久av| 国产麻豆69| 亚洲婷婷狠狠爱综合网| 涩涩av久久男人的天堂| 美女脱内裤让男人舔精品视频| 国产成人91sexporn| 又粗又硬又长又爽又黄的视频| 婷婷色综合www| 高清在线视频一区二区三区| 欧美日韩综合久久久久久| av片东京热男人的天堂| 亚洲欧美清纯卡通| 在线观看免费视频网站a站| 在线看a的网站| 日韩中文字幕视频在线看片| 夜夜骑夜夜射夜夜干| 精品人妻一区二区三区麻豆| 熟女电影av网| 如日韩欧美国产精品一区二区三区| 七月丁香在线播放| 观看美女的网站| 国产黄色视频一区二区在线观看| 日本91视频免费播放| 国产一区二区激情短视频 | av片东京热男人的天堂| 亚洲色图综合在线观看| 亚洲av免费高清在线观看| 99热全是精品| 美女午夜性视频免费| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频| 少妇人妻精品综合一区二区| 宅男免费午夜| 99香蕉大伊视频| 久久97久久精品| 亚洲精品国产av蜜桃| 国产白丝娇喘喷水9色精品| 亚洲国产av新网站| 国产精品嫩草影院av在线观看| 日本欧美视频一区| 最新的欧美精品一区二区| 久久综合国产亚洲精品| av线在线观看网站| 亚洲第一区二区三区不卡| 久久久久视频综合| 国产黄色视频一区二区在线观看| 十八禁网站网址无遮挡| 一级毛片 在线播放| 高清欧美精品videossex| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品视频女| 亚洲精品国产色婷婷电影| 精品少妇一区二区三区视频日本电影 | av在线播放精品| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 中国三级夫妇交换| 亚洲国产最新在线播放| 97人妻天天添夜夜摸| 亚洲精品一区蜜桃| 欧美精品一区二区大全| 两个人看的免费小视频| www.自偷自拍.com| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 久久久久久人人人人人| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品av麻豆av| 亚洲精品国产av蜜桃| 国产av精品麻豆| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻熟女aⅴ| 免费久久久久久久精品成人欧美视频| 国产精品国产三级国产专区5o| 欧美人与善性xxx| 69精品国产乱码久久久| 最近手机中文字幕大全| 国产精品国产av在线观看| 国产精品无大码| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| 免费观看在线日韩| 制服人妻中文乱码| 欧美 日韩 精品 国产| 成人亚洲欧美一区二区av| 可以免费在线观看a视频的电影网站 | 人妻系列 视频| 国产成人一区二区在线| 人人妻人人澡人人看| 亚洲欧美一区二区三区久久| 亚洲视频免费观看视频| 欧美bdsm另类| 欧美国产精品va在线观看不卡| 男人添女人高潮全过程视频| 久久精品国产亚洲av涩爱| 亚洲四区av| 一二三四在线观看免费中文在| 免费黄频网站在线观看国产| 久久久久久久久久人人人人人人| 菩萨蛮人人尽说江南好唐韦庄| 亚洲情色 制服丝袜| 久久人人爽人人片av| videos熟女内射| 国产欧美亚洲国产| 视频区图区小说| 两个人看的免费小视频| 国产精品久久久久久精品电影小说| 日韩视频在线欧美| 天堂中文最新版在线下载| 99热网站在线观看| 欧美 亚洲 国产 日韩一| av线在线观看网站| 欧美最新免费一区二区三区| 国产成人91sexporn| 亚洲 欧美一区二区三区| 久久精品夜色国产| 国产精品蜜桃在线观看| 热99久久久久精品小说推荐| 纵有疾风起免费观看全集完整版| 七月丁香在线播放| 日本爱情动作片www.在线观看| 日本欧美国产在线视频| av线在线观看网站| 黄片小视频在线播放| 国产成人精品久久久久久| 99香蕉大伊视频| 黑人猛操日本美女一级片| av国产久精品久网站免费入址| 国产精品一二三区在线看| 美女午夜性视频免费| 成人亚洲欧美一区二区av| 日韩不卡一区二区三区视频在线| 高清不卡的av网站| 日韩一区二区视频免费看| 欧美精品一区二区免费开放| 午夜福利影视在线免费观看| 国产成人一区二区在线| 中文字幕色久视频| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线| av天堂久久9| 老熟女久久久| 成人手机av| 亚洲欧美清纯卡通| 欧美黄色片欧美黄色片| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| 天天操日日干夜夜撸| 看免费av毛片| av视频免费观看在线观看| 精品国产乱码久久久久久小说| 2021少妇久久久久久久久久久| 欧美黄色片欧美黄色片| 午夜激情久久久久久久| 久久久久久人人人人人| 丝袜人妻中文字幕| 久久国内精品自在自线图片| 成年人免费黄色播放视频| 大码成人一级视频| 黑人巨大精品欧美一区二区蜜桃| 欧美亚洲 丝袜 人妻 在线| videossex国产| 午夜福利一区二区在线看| 少妇被粗大猛烈的视频| 97人妻天天添夜夜摸| 女性生殖器流出的白浆| 亚洲国产精品一区三区| 精品一品国产午夜福利视频| 一级毛片 在线播放| 亚洲三区欧美一区| 一级毛片黄色毛片免费观看视频| 99热网站在线观看| 人人妻人人添人人爽欧美一区卜| 香蕉国产在线看| 最黄视频免费看| 午夜91福利影院| 久久狼人影院| 亚洲欧美精品自产自拍| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 国产老妇伦熟女老妇高清| 久久国产精品男人的天堂亚洲| 最近最新中文字幕大全免费视频 | 午夜精品国产一区二区电影| 在线天堂中文资源库| 国产国语露脸激情在线看| 国产免费视频播放在线视频| 久久精品国产亚洲av天美| 亚洲精品一二三| 天堂中文最新版在线下载| 日韩中文字幕视频在线看片| 精品第一国产精品| 777久久人妻少妇嫩草av网站| 国产免费又黄又爽又色| 天天操日日干夜夜撸| 日韩中文字幕视频在线看片| 久久青草综合色| 99热全是精品| 国产精品国产av在线观看| 亚洲成色77777| 这个男人来自地球电影免费观看 | 日本色播在线视频| 精品午夜福利在线看| 大码成人一级视频| 中国国产av一级| 女人被躁到高潮嗷嗷叫费观| 亚洲三级黄色毛片| 国产精品.久久久| 免费播放大片免费观看视频在线观看| 天堂8中文在线网| 国产老妇伦熟女老妇高清| 女人被躁到高潮嗷嗷叫费观| h视频一区二区三区| 麻豆av在线久日| 丰满乱子伦码专区| 国产老妇伦熟女老妇高清| 亚洲国产看品久久| 精品国产露脸久久av麻豆| 人人妻人人爽人人添夜夜欢视频| 日韩一本色道免费dvd| 伦理电影免费视频| 一级黄片播放器| 国产精品香港三级国产av潘金莲 | 精品国产一区二区三区四区第35| 精品一区二区三区四区五区乱码 | 日本爱情动作片www.在线观看| 久久这里有精品视频免费| 一区二区av电影网| 成人二区视频| 青草久久国产| 亚洲三区欧美一区| 亚洲精品aⅴ在线观看| 99九九在线精品视频| 久久久久精品人妻al黑| 青春草亚洲视频在线观看| 国产免费又黄又爽又色| 最近最新中文字幕免费大全7| 中文字幕亚洲精品专区| 日产精品乱码卡一卡2卡三| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 午夜福利视频精品| 久久鲁丝午夜福利片| 久久久精品94久久精品| 巨乳人妻的诱惑在线观看| 亚洲国产av影院在线观看| 在线观看www视频免费| 电影成人av| 亚洲四区av| 波野结衣二区三区在线| 精品少妇内射三级| 亚洲经典国产精华液单| 人人妻人人添人人爽欧美一区卜| 国产伦理片在线播放av一区| 久久热在线av| 欧美老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 可以免费在线观看a视频的电影网站 | 亚洲国产精品国产精品| 久久这里只有精品19| 18禁动态无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 久久久久精品性色| 一级片免费观看大全| 99久国产av精品国产电影| 国产男女超爽视频在线观看| 亚洲国产最新在线播放| 国产av精品麻豆| 国产成人a∨麻豆精品| 日韩,欧美,国产一区二区三区| 久久影院123| 80岁老熟妇乱子伦牲交| 男人添女人高潮全过程视频| 女人精品久久久久毛片| tube8黄色片| 色婷婷av一区二区三区视频| 新久久久久国产一级毛片| 少妇人妻 视频| 久久久久久久大尺度免费视频| 国产精品成人在线| 蜜桃国产av成人99| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 久久久久国产精品人妻一区二区| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| 精品少妇一区二区三区视频日本电影 | 女性生殖器流出的白浆| 男男h啪啪无遮挡| 国产成人一区二区在线| 看免费av毛片| 国产一区二区激情短视频 | 一级毛片黄色毛片免费观看视频| 国产在视频线精品| 午夜福利在线观看免费完整高清在| 人妻人人澡人人爽人人| 国产有黄有色有爽视频| 亚洲四区av| 日本-黄色视频高清免费观看| 丰满少妇做爰视频| 叶爱在线成人免费视频播放| 一级毛片我不卡| 亚洲成人av在线免费| 午夜日韩欧美国产| 亚洲成人av在线免费| 大片免费播放器 马上看| 看十八女毛片水多多多| 9191精品国产免费久久| 日本免费在线观看一区| 超碰成人久久| 久久99一区二区三区| 国产在视频线精品| 在线看a的网站| 中文乱码字字幕精品一区二区三区| 制服丝袜香蕉在线| 国产 精品1| 久久免费观看电影| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 久久久精品区二区三区| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 欧美日韩一级在线毛片| 亚洲图色成人| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成国产av| 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 午夜激情久久久久久久| 亚洲人成网站在线观看播放| 国产日韩一区二区三区精品不卡| 久久av网站| 黑人欧美特级aaaaaa片| 亚洲精品美女久久av网站| av在线播放精品| 国产一区二区三区综合在线观看| 久久精品久久精品一区二区三区| videosex国产| 欧美 亚洲 国产 日韩一| 国产成人精品久久久久久| 国产老妇伦熟女老妇高清| 成人毛片a级毛片在线播放| a 毛片基地| 久久久亚洲精品成人影院| 麻豆乱淫一区二区| 欧美人与性动交α欧美精品济南到 | 亚洲成av片中文字幕在线观看 | 赤兔流量卡办理| 国产人伦9x9x在线观看 | 99九九在线精品视频| 99国产综合亚洲精品| 免费在线观看视频国产中文字幕亚洲 | 高清不卡的av网站| 国产av精品麻豆| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| www日本在线高清视频| 亚洲一码二码三码区别大吗| 日韩 亚洲 欧美在线| 这个男人来自地球电影免费观看 | 伦精品一区二区三区| av国产精品久久久久影院| 九草在线视频观看| 丰满少妇做爰视频| 亚洲av日韩在线播放| 欧美精品亚洲一区二区| 国产精品国产三级专区第一集| 日韩中文字幕欧美一区二区 | 亚洲一区二区三区欧美精品| 婷婷色av中文字幕| 精品一区二区三区四区五区乱码 | 久久国内精品自在自线图片| 亚洲国产精品一区二区三区在线| 一边摸一边做爽爽视频免费| 日韩中字成人| 国产野战对白在线观看| av网站在线播放免费| 80岁老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 免费高清在线观看日韩| 女性被躁到高潮视频| 亚洲精品视频女| 啦啦啦啦在线视频资源| 久久久精品国产亚洲av高清涩受| 日韩视频在线欧美| 91久久精品国产一区二区三区| 欧美激情 高清一区二区三区| 91在线精品国自产拍蜜月| 国产精品一区二区在线观看99| 欧美av亚洲av综合av国产av | 欧美日韩国产mv在线观看视频| 永久网站在线| 亚洲五月色婷婷综合| 国产一区二区三区av在线| 久久久久久人妻| 国产精品亚洲av一区麻豆 | 在线天堂最新版资源| 国产精品久久久久久精品电影小说| 国产黄色免费在线视频| 亚洲精品国产av蜜桃| 女人精品久久久久毛片| 午夜免费观看性视频| 久久人人爽av亚洲精品天堂| 老司机影院毛片| 热99国产精品久久久久久7| 精品人妻偷拍中文字幕| 亚洲精品中文字幕在线视频| 日日撸夜夜添| 赤兔流量卡办理| 免费观看性生交大片5| 亚洲成人av在线免费| 日本欧美国产在线视频| 大香蕉久久成人网| 亚洲av在线观看美女高潮| 一级片'在线观看视频| 久久亚洲国产成人精品v| 中文字幕av电影在线播放| 中文字幕人妻丝袜制服| 免费黄色在线免费观看| 视频区图区小说| 午夜影院在线不卡| 久久热在线av| 夫妻性生交免费视频一级片| 欧美日韩精品网址| 欧美日韩精品成人综合77777| 国产野战对白在线观看| 91久久精品国产一区二区三区| 久久久久国产网址| 不卡av一区二区三区| freevideosex欧美| 国产欧美日韩一区二区三区在线| 大码成人一级视频| 欧美人与善性xxx| 王馨瑶露胸无遮挡在线观看| 老鸭窝网址在线观看| 欧美成人精品欧美一级黄| 日韩大片免费观看网站| 亚洲欧美成人精品一区二区| 99久久综合免费| 精品福利永久在线观看| 久久久久久人人人人人| 国产亚洲欧美精品永久| 99国产精品免费福利视频| 国产精品女同一区二区软件| 日韩在线高清观看一区二区三区| 人体艺术视频欧美日本| 国产亚洲欧美精品永久| 国产亚洲av片在线观看秒播厂| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花| 中文字幕av电影在线播放| 99国产综合亚洲精品| 久久久久国产精品人妻一区二区| 国产国语露脸激情在线看| 日韩精品免费视频一区二区三区| 看免费av毛片| 午夜福利在线观看免费完整高清在| 久久精品夜色国产| 一区二区av电影网| 在线观看免费视频网站a站| 天美传媒精品一区二区| 亚洲第一区二区三区不卡| 久久久精品区二区三区| 日韩大片免费观看网站| 国产成人一区二区在线| 春色校园在线视频观看| 视频在线观看一区二区三区| 伊人久久国产一区二区| 有码 亚洲区| 伦理电影大哥的女人| 美女国产高潮福利片在线看| 日韩伦理黄色片| 欧美在线黄色| 亚洲,一卡二卡三卡| 国产女主播在线喷水免费视频网站| 欧美亚洲日本最大视频资源| 亚洲国产欧美在线一区| 99re6热这里在线精品视频| 99久久精品国产国产毛片| 最新的欧美精品一区二区| 精品亚洲乱码少妇综合久久| 成人影院久久| 精品国产露脸久久av麻豆| 韩国高清视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产伦理片在线播放av一区| 又黄又粗又硬又大视频| 国产精品无大码| 国产又爽黄色视频| 一区二区三区四区激情视频| 国产福利在线免费观看视频| 午夜精品国产一区二区电影| 午夜久久久在线观看| 五月开心婷婷网| 国产成人aa在线观看| 国产麻豆69| 国产不卡av网站在线观看| 亚洲欧美一区二区三区久久| 久久99蜜桃精品久久| 亚洲国产毛片av蜜桃av| 精品少妇久久久久久888优播| 最近最新中文字幕大全免费视频 | 99久久综合免费| 亚洲精品视频女| 国产亚洲精品第一综合不卡| 亚洲av电影在线观看一区二区三区| 叶爱在线成人免费视频播放| 久久久久久免费高清国产稀缺| 国产精品人妻久久久影院| 亚洲国产日韩一区二区| 欧美日韩av久久| 视频区图区小说| kizo精华| 我要看黄色一级片免费的| 69精品国产乱码久久久| 久久这里有精品视频免费| 王馨瑶露胸无遮挡在线观看| 亚洲精品,欧美精品| 日本欧美视频一区| 久久国产亚洲av麻豆专区| a级毛片在线看网站| 国产日韩欧美亚洲二区| 色视频在线一区二区三区| 天天操日日干夜夜撸| 韩国精品一区二区三区| 国产一区二区 视频在线| 日本-黄色视频高清免费观看| 亚洲国产成人一精品久久久| www.熟女人妻精品国产| 成人亚洲欧美一区二区av| 免费看av在线观看网站| 日本猛色少妇xxxxx猛交久久| 夫妻性生交免费视频一级片| 热re99久久精品国产66热6| 高清av免费在线| 国产高清不卡午夜福利| 蜜桃国产av成人99| 黑人猛操日本美女一级片| 精品国产乱码久久久久久男人| 香蕉精品网在线| 91久久精品国产一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 黄色 视频免费看| 男女高潮啪啪啪动态图| av.在线天堂| 18禁观看日本| 精品第一国产精品| 人成视频在线观看免费观看| 高清在线视频一区二区三区| 精品少妇久久久久久888优播| 日韩人妻精品一区2区三区| 丝袜喷水一区| av国产精品久久久久影院| 1024视频免费在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久精品精品| 久久免费观看电影| 欧美精品高潮呻吟av久久| 黄色毛片三级朝国网站| 亚洲精品,欧美精品| 日韩精品免费视频一区二区三区| 性色avwww在线观看| 日韩中字成人| 亚洲第一青青草原|