趙奕博 田水承 黃劍 張鐸
摘 要:為研究寧夏靈新礦不粘煤的孔隙結(jié)構(gòu)特征對CO吸附的影響,開展了低溫液氮吸附試驗(yàn)和CO吸附試驗(yàn),分析了不粘煤在不同粒徑下的孔隙結(jié)構(gòu)特征,討論了比表面積和孔容分布對CO吸附的影響;利用FHH模型計算了煤樣孔隙的分形維數(shù),建立了分形維數(shù)與Langmuir參數(shù)VL、PL之間的關(guān)系,明確了煤樣孔隙分形特征對CO吸附的影響。結(jié)果表明:在各類孔隙結(jié)構(gòu)中,微孔數(shù)量最多;隨著煤樣粒徑減小,煤樣總比表面積和總孔容均增加,煤樣總比表面積、總孔容與VL呈正相關(guān);煤樣在低、中、高3個壓力階段具有不同的吸附特性和分形特征,煤樣對CO吸附受分形維數(shù)D1和D2影響,隨著D1增大,煤樣對CO的吸附能力增強(qiáng),隨著D2增大,煤樣對CO的吸附能力逐漸減弱;分形維數(shù)D1與VL呈正相關(guān),與PL呈負(fù)相關(guān),分形維數(shù)D2與VL和PL之間相關(guān)性不明顯。研究結(jié)果對礦井煤自燃火災(zāi)指標(biāo)性氣體的精準(zhǔn)監(jiān)測具有指導(dǎo)意義。關(guān)鍵詞:分形維數(shù);CO吸附;液氮吸附;粒徑;孔隙結(jié)構(gòu)中圖分類號:TD 752
文獻(xiàn)標(biāo)志碼:
A
文章編號:1672-9315(2023)06-1071
-08
DOI:10.13800/j.cnki.xakjdxxb.2023.0605開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Adsorption of CO in Ningxia Lingxin non-caking
coal based on fractal dimension
ZHAO Yibo1,TIAN Shuicheng2,HUANG Jian2,ZHANG Duo2
(1.Science & Technology Research Center Branch of Shaanxi Coal Industry NewEnergy Technology Co.,Ltd.,Xian 710060,China;
2.College of Safety Science and Engineering,Xian University of Science and Technology,Xian 710054,China)
Abstract:In order to study the influence of fractal dimension on the adsorption of CO by non-caking coal in Lingxin coal mine of Ningxia,low temperature liquid nitrogen adsorption test and CO adsorption test were carried out.The pore structure characteristics of non-caking coal under different particle sizes were analyzed,and the effects of specific surface area and pore volume distribution on CO adsorption were discussed.The FHH model was used to calculate the fractal dimension of the pore of the coal sample,and the relationship between the fractal dimension and the Langmuir parameters VLand PL was established,and the influence of the fractal characteristics of the pore of the coal sample on the CO adsorption was clarified.The results show that the number of micro-pores is the largest in all kinds of pore structures.With the decrease of coal particle size,the total specific surface area and total pore volume of coal samples increase.The total specific surface area and total pore volume of coal are positively correlated with VL.Coal samples have different adsorption characteristics and fractal characteristics at low,medium and high pressure stages.The adsorption of CO by coal samples is affected by fractal dimension D1 and D2.With the increase of D1,the adsorption capacity of coal samples to CO increases.With the increase of D2,the adsorption capacity of coal samples to CO gradually decreases.The fractal dimension D1 is positively correlated with VL and negatively correlated with PL.The correlation between fractal dimension D2 and VL and PL is not obvious.The research results can provide a theoretical basis for the accurate monitoring of index gas in coal spontaneous combustion fires.Key words:fractal dimension;CO adsorption;liquid nitrogen adsorption;particle size;pore structure
化過程中常伴隨CO氣體產(chǎn)生,且CO氣體生成量大、易于檢測,常作為預(yù)測煤自燃的標(biāo)志性氣體之一[1-2]。近年來,礦井采空區(qū)封閉火區(qū)內(nèi)常出現(xiàn)CO氣體在產(chǎn)生一段時間后濃度開始降低甚至消失的情況,這給工程技術(shù)人員監(jiān)測封閉火區(qū)煤自燃情況帶來了干擾[3]。煤為大分子復(fù)合結(jié)構(gòu),對氣體具有吸附作用[4]。煤對CO氣體的吸附是影響封閉火區(qū)CO濃度的因素之一,因此,深入研究煤的孔隙結(jié)構(gòu)參數(shù)以及煤對CO氣體的吸附規(guī)律對準(zhǔn)確監(jiān)測封閉火區(qū)氣體濃度變化具有重要意義。煤是一種非均質(zhì)多孔介質(zhì),對氣體的吸附能力受煤變質(zhì)程度、煤階、孔隙結(jié)構(gòu)和化學(xué)結(jié)構(gòu)等影響[5]。陳向軍等通過壓汞法對9組煤孔隙結(jié)構(gòu)進(jìn)行測試,研究不同變質(zhì)程度煤的孔隙結(jié)構(gòu)對瓦斯吸附的影響,結(jié)果表明隨著變質(zhì)程度增加,煤對瓦斯的吸附量先減小后增大[6];MENG等基于等溫吸附試驗(yàn),對低、高階煤的氣體吸附-擴(kuò)散差異進(jìn)行研究,發(fā)現(xiàn)低階煤和高階煤的甲烷吸附-擴(kuò)散隨吸附平衡壓力增加而增加[7];張九零等為研究低階煤中不同顯微組分對CO氣體的吸附性能,進(jìn)行了不同溫度下的等溫吸附試驗(yàn),發(fā)現(xiàn)當(dāng)溫度T<50 ℃時,煤對CO的吸附量與壓力之間的關(guān)系可用Langmuir方程來描述,當(dāng)T>50 ℃時,煤對CO的吸附量與壓力之間呈線性增加關(guān)系[8];高飛等聯(lián)合常溫常壓吸附與孔徑分析試驗(yàn),研究孔隙結(jié)構(gòu)、礦物質(zhì)含量和含水率對采空區(qū)遺煤吸附CO2的影響[9];李全中等利用壓汞法、低溫CO2吸附法與低溫液氮吸附試驗(yàn),對比三者對甲烷吸附的規(guī)律,發(fā)現(xiàn)甲烷吸附能力順序?yàn)槊海卷搸r>砂巖[10];ZHANG等采用液氮吸附對3種不同尺寸的樣品進(jìn)行孔隙結(jié)構(gòu)特征和CO吸附熱力學(xué)分
析,
發(fā)現(xiàn)高壓低溫條件有利于CO吸附,樣品粒徑越小,吸附能力越強(qiáng),煤對CO的吸附是一個自發(fā)過程[11]。近年來,分形維數(shù)已經(jīng)廣泛應(yīng)用于研究煤對氣體的吸附特性。ZHU等研究了13種不同煤樣的分形特征,結(jié)果表明D1主要受中、大孔比表面積影響,D2主要受微孔孔段占比影響[12];劉紀(jì)坤等將低溫液氮吸附與高壓容量法等溫吸附試驗(yàn)相結(jié)合,研究氣煤的分形維數(shù)與瓦斯吸附性能的關(guān)系,發(fā)現(xiàn)D1與VL、PL線性相關(guān),D2與VL、PL不相關(guān)[13];ZHU等基于壓汞法與液氮吸附試驗(yàn),根據(jù)分形維數(shù)與煤體積應(yīng)變之間的關(guān)系,發(fā)現(xiàn)分形維數(shù)與朗繆爾吸附參數(shù)呈正相關(guān)[14];劉懷謙等聯(lián)合壓汞法與低溫液氮吸附試驗(yàn),研究煤孔隙結(jié)構(gòu)和全孔徑分形特征,闡述不同煤樣孔徑分布的復(fù)雜程度[15];王觀宏等采用低溫液氮吸附試驗(yàn)對無煙煤孔隙結(jié)構(gòu)特征進(jìn)行測定,發(fā)現(xiàn)分形維數(shù)D1和D2與吸附曲線具有明顯的相關(guān)性[16]。上述研究現(xiàn)狀較多是研究分形維數(shù)對CH4和CO2吸附的影響,鮮有學(xué)者研究其對CO吸附的影響。因此,文中開展了低溫液氮吸附試驗(yàn)、CO吸附試驗(yàn),分析了寧夏靈新礦不粘煤的孔隙結(jié)構(gòu)特征,利用FHH模型計算了煤樣孔隙的分形維數(shù),討論了分形維數(shù)與Langmuir參數(shù)之間的關(guān)系,明確煤樣孔隙分形特征對CO吸附的影響。
1 取樣與方法
1.1 煤樣制備及工業(yè)分析為了研究破碎作用對煤孔隙結(jié)構(gòu)的影響,選取寧夏靈新煤礦061404工作面不粘煤進(jìn)行試驗(yàn)。將采集回的煤樣置于錘式破碎機(jī)中進(jìn)行粉碎,利用標(biāo)準(zhǔn)篩篩選出粒徑分別為40~60目、60~80目和80~100目的顆粒,放入60 ℃真空干燥箱干燥24 h,去除煤樣水分,密封保存以備使用。根據(jù)GB/T212—2008《煤的工業(yè)分析方法》,采用5E-MAG6700型自動工業(yè)分析儀,將粉碎篩選出的干燥煤樣進(jìn)行水分、灰分、揮發(fā)分、固定碳和視密度比例測定,測試煤樣基本信息見表1。
1.2 煤樣孔隙結(jié)構(gòu)測定試驗(yàn)
采用ASAP 2020HD88全自動物理吸附儀
測試煤樣孔隙結(jié)構(gòu)參數(shù),液
氮吸附在77 K溫度下進(jìn)行,其能測定的孔徑范圍為0.80~200 mm,比表面積范圍為0.01~2 000 m2/g。將煤樣脫氣去除雜質(zhì),然后放置在杜瓦瓶中分析處理,根據(jù)不同壓力下氮?dú)獾奈搅康玫矫簶游降葴鼐€。
1.3 煤粒對CO的吸附試驗(yàn)采用高壓容量吸附裝置進(jìn)行CO吸附試驗(yàn)的測定,整個過程按照MT/T752—1997標(biāo)準(zhǔn)進(jìn)行。每次試驗(yàn)分別選取粒徑為40~60目、60~80目和80~100目的煤樣100 g,在同一溫度333.15 K條件下,按照CO的吸附試驗(yàn)步驟進(jìn)行試驗(yàn)。
2 試驗(yàn)結(jié)果及分析
2.1 孔隙結(jié)構(gòu)特征
2.1.1 液氮吸附等溫線與孔隙形狀根據(jù)相關(guān)學(xué)者的試驗(yàn)總結(jié),可以將孔隙形狀劃分為5類,孔隙連通類型劃分為4類[17-18]。
不同粒徑煤樣的低溫液氮吸附等溫線如圖1
所示,圖中P/P0為相對壓強(qiáng);P為氮?dú)鈮毫Γ籔0為試驗(yàn)溫度條件下氮?dú)獾娘柡驼羝麎毫Α?/p>
從圖1可以看出,不同粒徑煤樣的液氮吸附曲線形態(tài)變化不大。其中,40~60目、60~80目和80~100目煤樣最大吸附量分別為9.12,12.60和16.81 cm3/g。隨著粒徑減小,煤樣對液氮吸附能力增強(qiáng),對比不同粒徑煤樣的液氮吸、脫附等溫線,吸附等溫線和脫附等溫線不完全重合,在相對壓力較低階段與較高階段,吸、脫附等溫線基本重合,說明煤樣內(nèi)部存在大量的通孔和半封閉孔[19]。在第1階段(0
2.1.2 比表面積與孔容基于低溫液氮吸附試驗(yàn)數(shù)據(jù),運(yùn)用DFT和BJH理論計算出微孔、過渡孔和中孔的比表面積、孔容和孔徑。計算結(jié)果見表2、表3。
從表2可以看出,微孔比表面積占總比表面積的75.6%以上,過渡孔和中孔比表面積占比分別低于21.55%和2.81%。這表明在煤樣的各類孔隙中,微孔最為發(fā)育,主要占據(jù)了孔隙表面積。從表3可以看出,微孔孔容占比均高于40.25%,過渡孔和中孔孔容占比分別低于37.11%和22.64%,表明微孔對煤樣孔容起主導(dǎo)作用。隨著粒徑的減小,煤樣的總比表面積和總孔容均在增加。表明顆粒的破碎會改變煤的孔隙結(jié)構(gòu),粒徑減小可以增加煤樣的總孔容和總比表面積,提高煤中微孔所占的比例[21]。
2.1.3 孔徑分布不同粒徑煤樣微孔、過渡孔和中孔孔徑分布如圖2、圖3所示。其中,微孔范圍內(nèi)出現(xiàn)多個峰值,3種不同粒徑煤樣的主峰大約都位于1~5 nm。峰值越大對應(yīng)煤樣吸附能力越強(qiáng)。在微孔級別上,80~100目的煤樣吸附量最大,微孔數(shù)量最多,孔隙發(fā)育程度最高。40~60目的煤樣吸附量最小,與液氮吸附等溫線結(jié)果相一致,表明微孔對氮?dú)馕降挠绊懽畲螅?2]。隨著粒徑的減小,煤樣的峰值和峰面積均增大,說明破碎作用促進(jìn)了煤樣微孔的發(fā)育。在過渡孔和中孔范圍內(nèi),沒有出現(xiàn)明顯的峰,變化趨勢平緩。
2.2 CO吸附試驗(yàn)結(jié)果分析不同粒徑煤樣CO吸附試驗(yàn)結(jié)果如圖4所示,采用Langmuir模型[23]進(jìn)行擬合,表達(dá)式為
V=VLP
P+PL
(1)
將其變換為P/V關(guān)于P的表達(dá)式
P/V=P/VL+PL/VL
(2)
式中 P為吸附平衡壓力,MPa;V為CO吸附量,mL/g;PL為Langmuir壓力,代表CO吸附量達(dá)到VL一半時對應(yīng)的吸附壓力,MPa;VL為Langmuir體積,代表最大單分子層的吸附能力,mL/g。根據(jù)擬合結(jié)果求得VL和PL擬合結(jié)果見表4。
從表4可以看出,R2>0.988,擬合效果較好。VL值在15.632~23.691 mL/g,PL值在2.482 8~2.921 5? MPa。從圖4可以看出,CO吸附曲線符合 Ⅰ 型吸附等溫線[24]。在同一溫度下,CO的吸附量與壓力呈正相關(guān)關(guān)系,且有3個變化階段:CO吸附等溫線在低壓階段快速增長;中壓階段緩慢增長;在高壓階段,由于煤吸附CO體積接近最大吸附量,煤吸附CO曲線趨于平緩。
2.3 比表面積和孔容分布對CO吸附的影響煤的總比表面積、總孔容與VL的關(guān)系如圖5所示。
從圖5可以看出,煤的總比表面積、總孔容與VL均呈正相關(guān)關(guān)系,擬合系數(shù)分別達(dá)到0.835 1和0.951 5,表明孔容是影響煤吸附CO的主要因素,比表面積的增加對吸附量也有積極影響[25]。隨著總比表面積和總孔容增加,煤體所提供的吸附點(diǎn)位越多,煤吸附CO的能力越強(qiáng)。
2.4 孔隙分形特征分形維數(shù)是描述孔隙結(jié)構(gòu)的不規(guī)則性,并評估孔隙結(jié)構(gòu)復(fù)雜性的一種強(qiáng)有力的工具[26]。液氮吸附試驗(yàn)數(shù)據(jù)的分形維數(shù)計算模型有多種,如熱力學(xué)模型、BET模型和FHH模型等[27]。其中
FHH模型計算簡便,應(yīng)用范圍最廣。計算公式為
lnV=βln
ln
P0/P
+K
(3)
D=β+3
(4)
式中 V為平衡壓力下N2的吸附量,MPa;P0為N2的飽和蒸汽壓力,MPa;P為N2吸附壓力,MPa;β為擬合曲線的斜率;K為常數(shù)。根據(jù)公式作出lnV-ln(lnP0/P)曲線并進(jìn)行擬
合,
通過擬合斜率可求出分形維數(shù)D。如圖6所
示,
可以發(fā)現(xiàn)不同粒徑煤樣的左側(cè)擬合系數(shù)大于右側(cè)
擬合系數(shù),且兩者擬合效果較好,相關(guān)系數(shù)R2大于0.97。煤樣孔隙具有2種分形特征:①P/P0<0.5。在此壓力下,氮?dú)獾奈街饕Q于范德華力,吸附量與孔隙表面粗糙度相關(guān)。因此,D1可用于描述與孔表面分形特征相關(guān)的單層吸附;②P/P0>0.5。在該壓力下,氮?dú)獾奈绞芏鄬游娇刂?,由孔隙的體積結(jié)構(gòu)決定,孔隙體積結(jié)構(gòu)越復(fù)雜,對氮?dú)獾奈侥芰υ綇?qiáng)。因此,D2可用于表示與孔體積粗糙度相關(guān)的多層吸附[28]。
根據(jù)式(3)和式(4)對分形維數(shù)進(jìn)行計算,計算結(jié)果見表5。從表5可以看出,D1的范圍為2.36~2.43,而D2的范圍為2.76~2.80,D2總體上大于D1,表明孔隙體積粗糙度的影響大于表面粗糙度。
2.5 分形維數(shù)對CO吸附的影響分形維數(shù)與Langmuir參數(shù)關(guān)系如圖7所示。圖7(a)反映了分形維數(shù)與VL之間的關(guān)系。從圖7可以看出,VL與孔隙表面分形維數(shù)D1存在明顯正相關(guān),與孔隙結(jié)構(gòu)分形維數(shù)D2之間的相關(guān)性不明顯。出現(xiàn)這一現(xiàn)象的原因是隨著D1的增加,煤樣孔隙表面粗糙度增加,孔隙表面產(chǎn)生的褶皺為CO吸附提供了更多的位置,吸附量VL也隨之增加[29]。D2主要反映煤樣過渡孔和中孔的結(jié)構(gòu)特征,CO的吸附主要存在于微孔中,因而與過渡孔和中孔的特征關(guān)系不大[30]。從圖7(b)分形維數(shù)與PL之間的關(guān)系可以看出,PL與D1總體呈負(fù)相關(guān),PL代表CO吸附量達(dá)到VL一半時對應(yīng)的吸附壓力,由于孔隙表面褶皺的出現(xiàn),使得過渡孔和中孔被分割成微孔,分子間作用力增強(qiáng),達(dá)到最大吸附量的壓力降低,從而引起PL隨D1的增大而減小。PL與D2之間的關(guān)系不明顯。
3 結(jié) 論
1)靈新煤礦不粘煤液氮吸附等溫線主要特征可以分為3個階段:第1階段(0
3)D1和D2對CO吸附的影響作用不同。D1的范圍為2.36~2.43,D2的范圍為2.76~2.80。孔隙表面分形維數(shù)D1與VL呈正相關(guān),與PL呈負(fù)相關(guān),意味著孔隙表面越復(fù)雜,煤對CO的吸附量越大,煤對CO達(dá)到最大吸附量的壓力越小。孔隙結(jié)構(gòu)分形維數(shù)D2與VL和PL之間相關(guān)性不明顯。
參考文獻(xiàn)(References):
[1]
文虎,唐瑞,張鐸,等.CO在煙煤中吸附與擴(kuò)散的分子模擬研究[J].中國安全生產(chǎn)科學(xué)技術(shù),2022,18(7):95-101.WEN Hu,TANG Rui,ZHANG Duo,et al.Molecular simulation study on adsorption and diffusion of CO in bituminous coal[J].Journal of Safety Science and Technology,2022,18(7):95-101.
[2]WANG K,HU L,DENG J,et al.Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time[J].Energy,2023,262:125397.[3]ZHANG D,LIU M X,WEN H,et al.Use of coupled TG-FTIR and Py-GC/MS to study combustion characteristics of conveyor belts in coal mines[J].Journal of Thermal Analysis and Calorimetry,2023,148:4779-4789.
[4]CEHNG W,XUE J,XIE J,et al.A model of lignite macromolecular structures and its effect on the wettability of coal:A case study[J].Energy & Fuels,2017,31(12):13834-13841.
[5]王雙明,申艷軍,孫強(qiáng),等.“雙碳”目標(biāo)下煤炭開采擾動空間CO2地下封存途徑與技術(shù)難題探索[J].煤炭學(xué)報,2022,47(1):45-60.WANG Shuangming,SHEN Yanjun,SUN Qiang.Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J].Journal of China Coal Society,2022,47(1):45-60.[6]陳向軍,趙傘,司朝霞,等.不同變質(zhì)程度煤孔隙結(jié)構(gòu)分形特征對瓦斯吸附性影響[J].煤炭科學(xué)技術(shù),2020,48(2):118-124.CHEN Xiangjun,ZHAO San,SI Zhaoxia,et al.Fractal characteristics of pore structure of coal with different metamorphic degrees and its effect on gas adsorption characteristics[J].Coal Science and Technology,2020,48(2):118-124.[7]MENG Y,LI Z.Experimental comparisons of gas adsorption,sorption induced strain,diffusivity and permeability for low and high rank coals[J].Fuel,2018,234:914-923.
[8]張九零,郭立穩(wěn),王月紅,等.低階煤顯微組分對一氧化碳的吸附性能[J].煤田地質(zhì)與勘探,2008,36(5):1-5.ZHANG Jiuling,GUO Liwen,WANG Yuehong,et al.CO adsorptive characteristies of macerals in low rank coals[J].Coal Geology & Exploration,2008,36(5):1-5.
[9]高飛,王鵬,單亞飛.采空區(qū)遺煤吸附電廠煙氣中CO2影響因素研究[J].煤炭科學(xué)技術(shù),2023,51(9):140-148.
GAO Fei,WANG Peng,SHAN Yafei.Study on influence factors of CO2 in flue gas of coal seam storage power plant in goaf area[J].Coal Science and Technology,2023,51(9):140-148.
[10]李全中,胡海洋,吉小峰.煤、頁巖和砂巖孔隙結(jié)構(gòu)差異性及對甲烷吸附的影響研究[J].煤炭科學(xué)技術(shù),2022,50(5):157-163.LI Quanzhong,HU Haiyang,JI Xiaofeng.Research on differences in pore structures of coal,shale and sandstone and their effects on methane adsorption[J].Coal Science and Technology,2022,50(5):157-163.
[11]ZHANG D,CEN X,WEN H,et al.Effect of particle size on CO adsorption and thermodynamic analysis[J].Journal of Loss Prevention in the Process Industries,2023,84:105127.
[12]ZHU J,LIU J,YANG Y,et al.Fractal characteristics of pore structures in 13 coal specimens:Relationship among fractal dimension,pore structure parameter,and slurry ability of coal[J].Fuel Processing Technology,2016,149:256-267.
[13]劉紀(jì)坤,李成柱,王翠霞.氣煤的孔隙分形特征對瓦斯吸附的影響[J].煤礦安全,2020,51(9):1-5,10.LIU Jikun,LI Chengzhu,WANG Cuixia.Effect of pore fractal characteristics of gas coal on gas adsorption[J].Safety in Coal Mines,2020,51(9):1-5,10.
[14]ZHU J,ZHANG Y,ZHANG R,et al.Surface fractal dimensions as a characterization parameter for methane adsorption-induced coal strains[J].Arabian Journal of Geosciences,2020,13(19):1-11.
[15]劉懷謙,王磊,謝廣祥,等.煤體孔隙結(jié)構(gòu)綜合表征及全孔徑分形特征[J].采礦與安全工程學(xué)報,2022,39(3):458-469,479.LIU Huaiqian,WANG Lei,XIE Guangxiang,et al.Comprehensive characterization and full pore size fractal characteristics of coal pore structure[J].Journal of Mining & Safety Engineering,2022,39(3):458-469,479.
[16]王觀宏,馮睿智,簡闊,等.基于低溫液氮吸附實(shí)驗(yàn)的沁南無煙煤孔隙結(jié)構(gòu)特征[J].中國科技論文,2022,17(5):488-494,515.WANG Guanhong,F(xiàn)ENG Ruizhi,JIAN Kuo,et al.Pore structure characteristics of anthracite coal in Southern Qinshui basin based on low-temperature nitrogen adsorption method[J].China Sciencepaper,2022,17(5):488-494,515.
[17]王飛,邢好運(yùn),李萬春,等.中低階煤的孔隙結(jié)構(gòu)演化特征[J].西安科技大學(xué)學(xué)報,2020,40(3):384-392.WANG Fei,XING Haoyun,LI Wanchun,et al.Evolution characteristics of pore structure in medium and low rank coal[J].Journal of Xian University of Science and Technology,2022,40(3):384-392.
[18]袁梅,李照平,李波波,等.酸化對煤微觀結(jié)構(gòu)及煤層氣解吸-擴(kuò)散的影響[J].天然氣工業(yè),2022,42(6):163-172.YUAN Mei,LI Zhaoping,LI Bobo,et al.Effect of acidification on coal microstructure and CBM desorption and diffusion[J].Natural Gas Industry,2022,42(6):163-172.[19]洪林,王文靜,高大猛,等.低溫氮吸附中煤階對臨界填充孔徑的影響[J].中國安全科學(xué)學(xué)報,2022,32(4):51-58.HONG Lin,WANG Wenjing,GAO Dameng,et al.Influence of coal rank on CPSD in low-temperature N2 adsorption[J].Journal of Safety Science and Technology,2022,32(4):51-58.
[20]降文萍,宋孝忠,鐘玲文.基于低溫液氮實(shí)驗(yàn)的不同煤體結(jié)構(gòu)煤的孔隙特征及其對瓦斯突出影響[J].煤炭學(xué)報,2011,36(4):609-614.CHEN Wenping,SONG Xiaozhong,ZHONG Lingwen.Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J].Journal of China Coal Society,2011,36(4):609-614.
[21]李銘杰,盧守青,司書芳,等.粒徑損傷對原生煤和構(gòu)造煤孔隙結(jié)構(gòu)與分形特征的影響[J].中國安全生產(chǎn)科學(xué)術(shù),2022,18(7):88-94.LI Mingjie,LU Shouqing,SI Shufang,et al.Influence of particle size damage on pore structure and fractal characteristics of intact coal and tectonic coal[J].Journal of Safety Science and Technology,2022,18(7):88-94.[22]李祥春,李忠備,張良,等.不同煤階煤樣孔隙結(jié)構(gòu)表征及其對瓦斯解吸擴(kuò)散的影響[J].煤炭學(xué)報,2019,44(S1):142-156.LI Xiangchun,LI Zhongbei,ZHANG Liang,et al.Pore structure characterization of various rank coals and its effect on gas desorption and diffusion[J].Journal of China Coal Society,2019,44(S1):142-156.[23]王翠霞,李樹剛.低階煤孔隙結(jié)構(gòu)特征及其對瓦斯吸附的影響[J].中國安全科學(xué)學(xué)報,2015,25(10):133-138.WANG Cuixia,LI Shugang.Pore structure characteristics of low rank coal and their influence on gas adsorption[J].China Safety Science Journal,2015,25(10):133-138.[24]顏志豐,沈軍平,李丹,等.脫氣溫度對3種煤階煤氮?dú)馕降挠绊懀跩].煤炭學(xué)報,2022,47(10):3729-3737.YAN Zhifeng,SHEN Junping,LI Dan,et al.Effect of degassing temperature on nitrogen adsorption of three rank coals[J].Journal of Safety Science and Technology,2022,47(10):3729-3737.[25]GUO D,GUO X.The influence factors for gas adsorption with different ranks of coals[J].Adsorption Science & Technology,2018,36(3-4):904-918.
[26]林海飛,羅榮衛(wèi),李博濤,等.液氮凍融含水煤體孔隙損傷規(guī)律實(shí)驗(yàn)研究[J].西安科技大學(xué)學(xué)報,2023,43(1):55-64.LIN Haifei,LUO Rongwei,LI Botao,et al.Experimental research on pore damage law of water-contained coal caused by liquid ni-trogen freeze-thaw[J].Journal of Xian University of Science and Technology,2023,43(1):55-64.[27]CUI X,BUSTIN R M,DIPPLE G.Selective transport of CO2,CH4,and N2 in coals:insights from modeling of experimental gas adsorption data[J].Fuel,2004,83(3):293-303.[28]
蔣明鏡.現(xiàn)代土力學(xué)研究的新視野——宏微觀土力學(xué)[J].巖土工程學(xué)報,2019,41(2):195-254.JIANG Jingming.New paradigm for modern soil mechanics:Geomechanics from micro to macro[J].Chinese Journal of Geotechnical Engineering,2019,41(2):195-254.
[29]WANG Z,CHENG Y,QI Y,et al.Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J].Powder Technology,2019,350:15-25.
[30]劉立航,胡海燕,王士躒,等.吐哈盆地沙爾湖地區(qū)煤巖孔隙分形特征及其對含氣性控制[J].中國科技論文,2022,17(5):495-501.LIU Lihang,HU Haiyan,WANG Shiluo,et al.Fractal characteristics of rock pores and their control on gas-bearing properties in Shaerhu area,Tuha basin[J].China Sciencepaper,2022,17(5):495-501.
(責(zé)任編輯:劉潔)