• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一類廣義Schur型多項式的不可約性

    2023-04-29 15:36:53尹軒睿吳榮軍朱光艷
    關(guān)鍵詞:榮軍收稿正整數(shù)

    尹軒睿 吳榮軍 朱光艷

    設(shè)n為一個正整數(shù),a1,…,an均為整數(shù). Schur通過素理想分解證明:當(dāng)an=±1時,多項式1+a1x+a2x22!+…+an-1xn-1n-1!+anxnn! 是不可約多項式. 隨后,Coleman利用p-adic Newton多邊形重新證明了Schur的結(jié)果. 本文研究了一類特殊的廣義 Schur 型多項式1+x+x22+x36+…+xpapapa-1的不可約性.借助p-adic Newton 多邊形工具,本文基于局部整體原則證明:當(dāng) p 為素數(shù), a為正整數(shù)時該多項式在有理數(shù)域上不可約.

    不可約; p-adic牛頓多邊形; 局部整體原則

    O156.2A2023.031004

    收稿日期: 2022-03-24

    基金項目: 西南民族大學(xué)科研啟動金資助項目(RQD2021100);四川省自然科學(xué)基金(2022NSFSC1830)

    作者簡介: 尹軒睿, 男, 山西太原人, 碩士研究生,主要研究方向為數(shù)論. E-mail: 434307608@qq.com

    通訊作者: 吳榮軍. E-mail: eugen_woo@163.com

    On the irreducibility of a class of generalized? Schur-type polynomials

    YIN Xuan-Rui1,2, WU Rong-Jun3, ZHU Guang-Yan4

    (1.School of Mathematics, Sichuan University, Chengdu 610064, China;

    2.Chengdu No.7 High School, Chengdu 610000, China;

    3. School of Mathematics, Southwest Minzu University, Chengdu 610041, China;

    4. School of Teacher Education, Hubei Minzu University, Enshi 445000, China)

    Let n be a positive integer and a1,…,an∈Z. Schur proved that the polynomial 1+a1x+a2x22!+…+an-1xn-1n-1!+anxnn! is irreducible over Q by using the factorization of prime ideal, where an=±1. Then Coleman reproved Schur's result by using the method of p-adic Newton polygon. In this paper, we study the irreducibility of the generalized Schur-type polynomial 1+x+x22+x36+…+xpapapa-1. By using the tool of p-adic Newton polygon and applying the local-global principle, we prove the irreducibility of this polynomial, where p is a prime number and a is a positive integer.

    Irreducibility; p-adic Newton polygon; Local-global principle

    (2000 MSC 11R09, 11R04)

    1 Introduction

    Let Z and Q denote the ring of integers and the field of rational numbers respectively. The so-called Schur-type polynomial is a polynomial f(x) of the following form:

    fx1+a1x+a2x22!+…+

    an-1xn-1n-1!±xnn?。?)

    where n∈Z+ and ai∈Z. If ai=1 for all 1≤i≤n-1 and the positive sign is taken for the term xnn!, then? (1) becomes the n-th truncated exponential Taylor polynomial enx∑ni=0xii!. In 1929, Schur proved that any Schur-type polynomial is irreducible over Q. He also computed the Galois group of enx over Q. Coleman[1] reproved Schur's result by the p-adic Newton polygon. We call the following polynomial a generalized Schur-type polynomial if it has the form

    尹軒睿, 等: 一類廣義Schur型多項式的不可約性

    fx=1+a1x+a2x22!+…+

    an-1xn-1n-1!+anxnn?。?)

    whereai∈Z for 1≤i≤n. On the irreducibility of (2), Filaseta[2] showed the following two results.

    (i) If the leading coefficient of the generalized Schur-type polynomial (2) satisfies that 0

    (ii) If an=n, then either fxis irreducible or fx is x±1 times an irreducible polynomial of degree n-1.

    Meanwhile, Filaseta[3-5] also do some extension over the result of Schur.

    Naturally, we may ask about the irreducibility of other kinds of generalized Schur-type polynomials. We may notice that given ai=i!, 1≤i≤n, we have some new polynomials such as f(x)=1+x+…+xn=xn+1-1x-1. In this case we simply know that fx is irreducible over the field of rational numbers Q if and only if n+1 is a prime by the knowledge of cyclotomic field. Another example is that given ai=i-1!, (2) recovers the n-th truncated polynomial of the Taylor expansion of? 1-log1-x at the original point. Monsef and coworkers[6] proved that the polynomial Lx=1+x+x22+…+xnn is irreducible over Q and further computed the Galois group of Lx for some special cases.

    Motivated by these works, we in this paper consider a generalized Schur-type polynomial

    fnx1+x+x22+x36+…+xnnn-1

    by settinga1=1 and ai=i-2! for 2≤i≤n. Since f′nx=Ln-1x, it is quite interesting to discuss the irreducibility of this polynomial. In fact, we obtain the following result.

    Theorem 1.1 If n is a prime power, the polynomial fnx is irreducible over Q.

    This paper is organized as follows. We present the definitions of p-adic valuation and p-adic Newton polygon, and introduce the main theorem of p-adic Newton polygon as well as some other preliminary lemmas in Section 2. In Section 3, we give the proof of Theorem 1.1. Finally, Section 4 is devoted to some concluding remarks.

    2 Preliminaries

    In this section we give some definitions and lemmas needed in the proof of Theorem 1.1.

    Definition 2.1 The p-adic valuation of an integer m with respect to p, denoted by vpm, is defined as

    vpm=max{k:pk∣m}, m≠0,

    ∞, m=0.

    Clearly, we can extend Definition 2.1 to the rational field Q and the local field Qp.

    We recall the definition of p-adic Newton polygons as follows.

    Definition 2.2 The p-adic Newton polygon NPpf of a polynomial fx=∑nj=0cjxj∈Qx is the lower convex hull of the set of points Spf={j,vpcj∣0≤j≤n}. It is the highest polygonal line passing on or below the points in Spf. The vertices x0,y0,x1,y1,…,xr,yr where the slope of the Newton polygon changes are called the corners of NPpf; their x-coordinates 0=x0

    For a given polynomial, by the definition of lower convex hull, all points ofSpf lies above NPpf. In other words, although Spf contains all information of the coefficients of fx, NPpf reflects the arithmetic properties of all roots of fx over the local field Qp.

    We shall introduce the main theorem of the p-adic? Newton polygon below. This theorem provides a rough factorizationof fx over Qp.

    Lemma 2.3[7] Let x0,y0,x1,y1,…,xr,yr denote the successive vertices of NPpf. Then there exist polynomials f1,…,fr in Qpx such that

    (i) fx=f1xf2x…frx;

    (ii)? The degree of fi is xi-xi-1;

    (iii)? All the roots of fi in Qp have p-adic valuations -yi-yi-1xi-xi-1.

    The following lemma is a generalization of the famous Eisenstein irreducibility criterion over Qp, which provides an upper bound for the number of irreducible factors of a polynomial over Qp according to its p-adic Newton polygon. For the following lemma plays an important role in supporting of Theorem 1.1, we also give its proof in this paper.

    Lemma 2.4[8] Let xi-1,yi-1 and xi,yi be two consecutive vertices of NPpf, and let di=gcdxi-xi-1,yi-yi-1. Then for each i, fix has at most di irreducible factors in Qp and the degree of the factors of fix is a multiple ofxi-xi-1di. Particularly, if di=1, then fix is irreducible over Qp.

    Proof Let xi-xi-1=ui and yi-yi-1=vi. By Lemma 2.3, we have degfi=ui and all the roots of fix in Qp have p-adic valuation -viui. Let hx∈Qpx with deg hx=t such that hx∣fix, and α1,…,αt be roots of hx in Qp. Since h0∈Qp, we have

    vp∏tj=1αj=vp-1th0∈Z.

    Noticing that for each i and j, we have vpαi=vpαj. Therefore, we derive that -tviui∈Z. Since gcdui,vi=di, one writes ui=u′idi,vi=v′idi, where gcdu′i,v′i=1. It follows that u′i∣t, and one claims that the degree of every factor of fix is a multiple of u′i. Since ui=u′idi, it follows that fix has at most di irreducible factors in Qp. This finishes the proof of Lemma 2.4.

    We also need the following lemma which give a result of the existence of prime number between two real numbers.

    Lemma 2.5[9] There exists a prime p satisfying x

    Lemma 2.6 For any real number x>6, there exist distinct primes p1 and p2 satisfying that

    x≤x

    Proof The proof of Lemma 2.6 is divided into the following two cases.

    Case 1 x≥25. By Lemma 2.5, there exist primes p1 and p2 satisfying that x

    Case 2 6

    3 Proof of Theorem 1.1

    We first consider the cases that n<12. For the cases n=2,3,5,7,11, one can check the conclusion of the theorem via Eisenstein criterion directly.

    It follows thatf4(x)=F1(x)F2(x) in Q3, where degF1(x)=3 and degF2x=1, by Lemma 2.4, we have both F1x and F2x are irreducible over Q3. Then consider the 2-adic Newton polygon of f4x, its vertices are 0,0,4,-2. Hence we have either f4x is irreducible over Q2 or f4x=G1xG2x over Q2 with degG1x=degG2x=2 by Lemma 2.4. If f4(x) is reducible over Q, it leads a contradiction with the factorization of f4x over the local field Q2 and Q3 by local-global principle. It follows that Theorem 1.1 is true for n=4. Similarly, we take the 2-adic and 7-adic Newton polygon into account for f8x. For f9x, we consider the 3-adic and 7-adic Newton polygon. By the same argument as in the case n=4, we can always arrive at a contradiction by local-global principle. We omitted the tedious details here.

    Now we may assume that n≥12. We first prove that if fnx is reducible over Q, then one has fnx=x+agx, where a is a rational number. Since n>12, by Lemma 2.6, there exist distinct prime numbers p1 and p2 satisfying that n2

    degF1x=p1,? degF2x=n-p1-1.

    Similarly, the vertices of the p2-adic Newton polygon of fnx are given by 0,0,p2,-1,p2+1,-1,n,0. By (i) of Lemma 2.3 and Lemma 2.4 again, one has

    fnx=x+a1G1xG2x

    in Qp2, where G1x and G2x are both irreducible over Qp2 with degG1x=p2 and degG2x=n-p2-1. If fnx is reducible over Q, the local-global principle implies that fnx has at most 3 factors in Q. Clearly, fnx cant have exactly 3 factors in Q, otherwise the factorization of fnx in the local field Qp1 and Qp2 cant coincide. Hence, we have the factorization fnx=g(x)hx in Q, where both gx and hx are irreducible over Q.

    Without loss of generality, it is natural for us to assume that deggx≤n/2. Noticing that 6≤n/2

    degF2x

    by comparing the degree of the polynomialsfnx in Q and Qp1, it follows that hx=F1xF2x,which implies that deg gx=1. This proves that fnx=x+agx as desired.

    In what follows, we prove that such linear factor doesn't exist. Since n is a prime power, we may let n=pf, where p is a prime number and f is a positive integer. The p-adic Newton polygon of fnx has vertices

    (0,0),(p,-1),...,(pf,-f), p≠2,(0,0),(4,-2),...,(2f,-f), p=2.

    If p≠2, then by (i) of Lemma 2.3 and Lemma 2.4, we have fnx=∏fi=1gix, where gix are irreducible over Qp with degg1x=p and

    deggix=pi-pi-1, i=2,…,f.

    It follows that fnx cant have a linear factor in Qp. Furtherly, by local-global principle fnx cant have a linear factor in Q either.

    If p=2, by (i) of Lemma 2.3 and Lemma 24, we have fnx=∏fi=1gix, where g1x has at most two irreducible factors in Q2 and the degree of each factor of g1x is greater than or equal to 2. For i=2,…,f, gix are irreducible over Q2 and deggix=2i-2i-1. Thus fnx cant be with a linear factor in Q2. This finishes the proof of Theorem 1.1.

    4 Conclusions

    In this paper we have studied the irreducibility of a class of generalized Schur-type polynomial (2) with a1=1 and ai=i-2!for 2≤i≤n=pa. By introducing the tool of p-adic Newton polygon and local-global principle, the irreducibility of the polynomial over Q was given. Here we point out that one can characterize the irreducibility and other properties of some more generalized Schur-type polynomials by relaxing the restrictions on coefficients of the polynomial (2).

    References:

    [1] Coleman R F. On the Galois groups of the exponential Taylor polynomials [J]. Enseign Math, 1987, 33: 183.

    [2] Filaseta M. A generalization of an irreducibility theorem of I. Schur [M]. Boston: Birkhuser, 1996.

    [3] Filaseta M. On an irreducibility theorem of I. Schur [J]. Acta Arith, 1991, 58: 251.

    [4] Allen M, Filaseta M. A generalization of a third irreducibility theorem of I. Schur [J]. Acta Arith, 2004, 114: 183.

    [5] Allen M, Filaseta M. A generalization of a second irreducibility theorem of I. Schur [J]. Acta Arith, 2003, 109: 65.

    [6] Monsef K, Shaffaf J, Taleb R. The Galois groups of the Taylor polynomials of some elementary functions [J]. Int J Number Theory, 2019, 15: 1127.

    [7] Koblitz N. p-Adic numbers, p-adic analysis, and Zeta-functions [M]. Berlin: Springer-Verlag, 1984.

    [8] Ao L F, Hong S F. On the Galois group of three classes of trinomials [J]. AIMS Math, 2022, 7: 212.

    [9] Harborth H, Kemnitz A. Calculations for Bertrands postulate [J]. Math Mag, 1981, 54: 33.

    引用本文格式:

    中 文:? 尹軒睿, 吳榮軍, 朱光艷. 一類廣義Schur型多項式的不可約性[J]. 四川大學(xué)學(xué)報:? 自然科學(xué)版, 2023, 60:? 031004.

    英 文:? Yin X R, Wu R J, Zhu G Y. On the irreducibility ofa class of generalized? Schur-type polynomials [J]. J Sichuan Univ:? Nat Sci Ed, 2023, 60:? 031004.

    猜你喜歡
    榮軍收稿正整數(shù)
    Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
    Traffic flow prediction based on BILSTM model and data denoising scheme
    An extended smart driver model considering electronic throttle angle changes with memory
    Stabilization strategy of a car-following model with multiple time delays of the drivers?
    被k(2≤k≤16)整除的正整數(shù)的特征
    周期數(shù)列中的常見結(jié)論及應(yīng)用*
    方程xy=yx+1的全部正整數(shù)解
    Standardized Manipulations of Heat-sensitive Moxibustion Therapy Specialty Committee of Heat-sensitive Moxibustion of WFCMS
    Perspectives on China′s General Medicine Education,Training,Development and Challenges
    一類一次不定方程的正整數(shù)解的新解法
    avwww免费| 老汉色av国产亚洲站长工具| 老司机影院毛片| 国产成人影院久久av| 夫妻午夜视频| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看| 色老头精品视频在线观看| 国产精品一区二区在线观看99| 精品国内亚洲2022精品成人 | 一级黄色大片毛片| 日韩视频一区二区在线观看| 美国免费a级毛片| 如日韩欧美国产精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 高清av免费在线| 一区福利在线观看| 久久久久久久久免费视频了| 少妇粗大呻吟视频| 叶爱在线成人免费视频播放| 成年女人毛片免费观看观看9 | 久久精品成人免费网站| 亚洲专区中文字幕在线| 国产精品av久久久久免费| 这个男人来自地球电影免费观看| 国精品久久久久久国模美| 久热爱精品视频在线9| 亚洲av国产av综合av卡| 黄网站色视频无遮挡免费观看| 欧美精品一区二区免费开放| 男人舔女人的私密视频| 国产一区二区 视频在线| 国产亚洲av高清不卡| 一区二区三区精品91| 美女大奶头黄色视频| 亚洲第一青青草原| 国产在线观看jvid| 亚洲激情五月婷婷啪啪| 天堂8中文在线网| 午夜免费成人在线视频| 亚洲人成电影观看| 欧美日韩国产mv在线观看视频| 亚洲欧美色中文字幕在线| 大码成人一级视频| 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 亚洲综合色网址| 嫩草影视91久久| 国产黄色免费在线视频| 不卡av一区二区三区| 午夜福利在线免费观看网站| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 老司机午夜福利在线观看视频 | 成人av一区二区三区在线看 | 国产成人av激情在线播放| av视频免费观看在线观看| 大码成人一级视频| 日韩欧美一区视频在线观看| 首页视频小说图片口味搜索| 亚洲伊人色综图| 亚洲色图 男人天堂 中文字幕| 黄色毛片三级朝国网站| 中文字幕人妻丝袜制服| 淫妇啪啪啪对白视频 | 日韩视频一区二区在线观看| 国产精品一区二区免费欧美 | 性色av乱码一区二区三区2| svipshipincom国产片| 久久精品熟女亚洲av麻豆精品| 三级毛片av免费| 国产野战对白在线观看| 亚洲国产av新网站| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区精品| 热re99久久精品国产66热6| 男女边摸边吃奶| av不卡在线播放| 亚洲九九香蕉| 大片免费播放器 马上看| 捣出白浆h1v1| 人人妻人人添人人爽欧美一区卜| 99国产精品免费福利视频| 久久影院123| 欧美老熟妇乱子伦牲交| 欧美大码av| 国产精品九九99| 人人妻人人添人人爽欧美一区卜| 国产成人精品在线电影| 国产免费视频播放在线视频| cao死你这个sao货| 纵有疾风起免费观看全集完整版| 在线看a的网站| 狠狠狠狠99中文字幕| 免费观看av网站的网址| 中文字幕另类日韩欧美亚洲嫩草| 考比视频在线观看| 精品亚洲成国产av| 天天躁狠狠躁夜夜躁狠狠躁| 欧美av亚洲av综合av国产av| 女人高潮潮喷娇喘18禁视频| 亚洲 国产 在线| 亚洲专区中文字幕在线| 99久久人妻综合| 韩国精品一区二区三区| 伊人久久大香线蕉亚洲五| 12—13女人毛片做爰片一| 亚洲精品成人av观看孕妇| 美女国产高潮福利片在线看| 亚洲一区中文字幕在线| 97精品久久久久久久久久精品| 老汉色∧v一级毛片| 秋霞在线观看毛片| 欧美国产精品va在线观看不卡| 精品少妇内射三级| 黑人操中国人逼视频| av电影中文网址| 少妇猛男粗大的猛烈进出视频| 丰满少妇做爰视频| 亚洲午夜精品一区,二区,三区| a 毛片基地| 男人爽女人下面视频在线观看| 丝袜脚勾引网站| 五月天丁香电影| 精品国内亚洲2022精品成人 | 夜夜骑夜夜射夜夜干| 91精品国产国语对白视频| 丁香六月欧美| 久久精品国产综合久久久| 免费一级毛片在线播放高清视频 | 亚洲精品日韩在线中文字幕| 在线观看免费日韩欧美大片| 两性夫妻黄色片| 老司机午夜十八禁免费视频| 一进一出抽搐动态| 国产成人欧美在线观看 | 日韩电影二区| 国产免费av片在线观看野外av| 在线精品无人区一区二区三| 国产在线免费精品| 丝袜美腿诱惑在线| 性色av乱码一区二区三区2| av网站免费在线观看视频| 十八禁人妻一区二区| 狂野欧美激情性bbbbbb| 建设人人有责人人尽责人人享有的| 亚洲伊人色综图| 无遮挡黄片免费观看| 人妻 亚洲 视频| 亚洲国产日韩一区二区| 国产精品久久久久久人妻精品电影 | 国产精品国产av在线观看| 久久人妻熟女aⅴ| 成人三级做爰电影| 国产欧美日韩一区二区三区在线| 亚洲国产欧美一区二区综合| 色播在线永久视频| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区激情| 日本av免费视频播放| 99国产精品99久久久久| 欧美精品高潮呻吟av久久| av超薄肉色丝袜交足视频| 国产一区二区 视频在线| 亚洲精品国产av蜜桃| 久久中文字幕一级| 精品少妇久久久久久888优播| 99久久人妻综合| 69av精品久久久久久 | 日韩一区二区三区影片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩高清在线视频 | 国产有黄有色有爽视频| 久久综合国产亚洲精品| 美女午夜性视频免费| 国产黄频视频在线观看| 欧美人与性动交α欧美软件| 久久久水蜜桃国产精品网| 一本色道久久久久久精品综合| 老司机在亚洲福利影院| 午夜福利免费观看在线| 中文字幕最新亚洲高清| 日本91视频免费播放| 日韩人妻精品一区2区三区| 精品一区二区三区av网在线观看 | 精品人妻在线不人妻| 制服诱惑二区| 亚洲精品一卡2卡三卡4卡5卡 | 丰满人妻熟妇乱又伦精品不卡| 女人被躁到高潮嗷嗷叫费观| 久久久久久久久久久久大奶| 亚洲国产欧美网| 美女中出高潮动态图| 国产精品成人在线| 女性被躁到高潮视频| 午夜福利,免费看| 99热网站在线观看| 婷婷色av中文字幕| 亚洲av欧美aⅴ国产| 黄色毛片三级朝国网站| 亚洲,欧美精品.| 极品人妻少妇av视频| 欧美日韩av久久| 欧美日本中文国产一区发布| 国产精品 欧美亚洲| 老熟妇仑乱视频hdxx| 狠狠狠狠99中文字幕| 人人妻人人添人人爽欧美一区卜| 久久精品国产亚洲av香蕉五月 | 成人手机av| 日韩免费高清中文字幕av| 蜜桃在线观看..| 免费不卡黄色视频| 老汉色∧v一级毛片| 久久99一区二区三区| 黄色怎么调成土黄色| 久久狼人影院| 极品人妻少妇av视频| 国产视频一区二区在线看| 亚洲av电影在线进入| 午夜久久久在线观看| 午夜视频精品福利| 国产精品成人在线| 久久国产精品影院| 99国产精品一区二区蜜桃av | 国产成人av激情在线播放| 日韩制服丝袜自拍偷拍| 人成视频在线观看免费观看| 91精品伊人久久大香线蕉| 午夜免费观看性视频| 精品久久久久久电影网| 老汉色∧v一级毛片| 欧美在线一区亚洲| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 成年女人毛片免费观看观看9 | 精品国内亚洲2022精品成人 | 日韩中文字幕欧美一区二区| a级毛片在线看网站| 亚洲成人手机| 十八禁网站网址无遮挡| 久久久久精品国产欧美久久久 | av福利片在线| 热re99久久精品国产66热6| 亚洲欧美一区二区三区黑人| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 亚洲精品国产一区二区精华液| 日韩欧美国产一区二区入口| 波多野结衣一区麻豆| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 亚洲色图综合在线观看| 国产精品久久久人人做人人爽| 桃花免费在线播放| 乱人伦中国视频| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 精品免费久久久久久久清纯 | 91大片在线观看| av在线老鸭窝| 亚洲国产av影院在线观看| 在线观看www视频免费| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 成人免费观看视频高清| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 国产片内射在线| 在线观看一区二区三区激情| 国产97色在线日韩免费| 精品人妻1区二区| 亚洲天堂av无毛| 欧美日韩av久久| 国产有黄有色有爽视频| 天天躁日日躁夜夜躁夜夜| 亚洲成av片中文字幕在线观看| 欧美中文综合在线视频| 国产精品香港三级国产av潘金莲| 777米奇影视久久| 亚洲精品一区蜜桃| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 一级,二级,三级黄色视频| 高清欧美精品videossex| 性高湖久久久久久久久免费观看| 国产99久久九九免费精品| 蜜桃在线观看..| 国产极品粉嫩免费观看在线| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| av免费在线观看网站| 男女之事视频高清在线观看| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区| 脱女人内裤的视频| 人妻一区二区av| 免费久久久久久久精品成人欧美视频| 亚洲欧美色中文字幕在线| 日韩制服骚丝袜av| 一边摸一边做爽爽视频免费| 日韩大码丰满熟妇| 亚洲欧美激情在线| 日韩人妻精品一区2区三区| 老司机亚洲免费影院| 老司机影院毛片| 久久99热这里只频精品6学生| 日韩欧美一区二区三区在线观看 | 国产福利在线免费观看视频| 国产精品久久久久成人av| 午夜福利免费观看在线| 亚洲av片天天在线观看| 老司机影院毛片| 国产成人免费无遮挡视频| 久久av网站| 伦理电影免费视频| 欧美变态另类bdsm刘玥| 国产片内射在线| 日韩精品免费视频一区二区三区| 亚洲国产中文字幕在线视频| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 久久久国产欧美日韩av| 国产成人免费观看mmmm| 人人妻,人人澡人人爽秒播| 日韩有码中文字幕| 韩国精品一区二区三区| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 麻豆国产av国片精品| 麻豆乱淫一区二区| 青草久久国产| 妹子高潮喷水视频| 成年人黄色毛片网站| 建设人人有责人人尽责人人享有的| 麻豆av在线久日| 亚洲午夜精品一区,二区,三区| 国产免费福利视频在线观看| 欧美国产精品va在线观看不卡| 肉色欧美久久久久久久蜜桃| 国产成+人综合+亚洲专区| 91成年电影在线观看| 亚洲 欧美一区二区三区| 91精品三级在线观看| 久久久久久久久免费视频了| 深夜精品福利| 一区二区三区四区激情视频| 国产欧美亚洲国产| 国产成人a∨麻豆精品| 国产精品九九99| av国产精品久久久久影院| 亚洲精品美女久久久久99蜜臀| 亚洲av电影在线观看一区二区三区| 国产欧美日韩一区二区三 | 无遮挡黄片免费观看| 国产区一区二久久| av在线老鸭窝| 2018国产大陆天天弄谢| 国产精品久久久人人做人人爽| 多毛熟女@视频| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看 | 搡老乐熟女国产| 久久精品国产亚洲av香蕉五月 | 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成国产av| 成人三级做爰电影| 国产主播在线观看一区二区| 国产高清国产精品国产三级| www.999成人在线观看| 久久综合国产亚洲精品| 国产欧美亚洲国产| netflix在线观看网站| 成人亚洲精品一区在线观看| netflix在线观看网站| 黄色视频,在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 99国产综合亚洲精品| 国产免费一区二区三区四区乱码| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 高清黄色对白视频在线免费看| 欧美性长视频在线观看| cao死你这个sao货| 麻豆乱淫一区二区| 午夜精品久久久久久毛片777| 国产成人欧美| 日韩制服骚丝袜av| 在线观看一区二区三区激情| 免费av中文字幕在线| 日韩欧美一区视频在线观看| 亚洲国产精品一区三区| 亚洲精品粉嫩美女一区| 午夜91福利影院| 黄色视频,在线免费观看| 国产成+人综合+亚洲专区| 欧美xxⅹ黑人| av免费在线观看网站| 久久久久国内视频| 超碰97精品在线观看| 99精品久久久久人妻精品| 久久人人97超碰香蕉20202| 日韩一卡2卡3卡4卡2021年| 国产野战对白在线观看| 美女扒开内裤让男人捅视频| 国产精品久久久人人做人人爽| 91大片在线观看| 精品少妇黑人巨大在线播放| 亚洲国产欧美网| 91av网站免费观看| 日韩 亚洲 欧美在线| 中国美女看黄片| 久久久久久免费高清国产稀缺| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 日本vs欧美在线观看视频| 男女午夜视频在线观看| 亚洲第一欧美日韩一区二区三区 | 国产在线免费精品| 日本91视频免费播放| 在线av久久热| 一区二区日韩欧美中文字幕| 天堂8中文在线网| 91精品三级在线观看| 美女福利国产在线| 免费观看av网站的网址| 欧美激情久久久久久爽电影 | 精品一区二区三区av网在线观看 | 永久免费av网站大全| 国产精品1区2区在线观看. | 亚洲av美国av| 久久 成人 亚洲| 国内毛片毛片毛片毛片毛片| 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 999久久久国产精品视频| 精品一区二区三区四区五区乱码| 日韩视频在线欧美| 久久热在线av| 在线天堂中文资源库| 欧美乱码精品一区二区三区| 久久99一区二区三区| 亚洲精品成人av观看孕妇| 亚洲天堂av无毛| av天堂在线播放| 可以免费在线观看a视频的电影网站| 两个人免费观看高清视频| av天堂久久9| 亚洲精品粉嫩美女一区| av不卡在线播放| 中国美女看黄片| 飞空精品影院首页| 成人国语在线视频| 午夜福利一区二区在线看| 日本av手机在线免费观看| 免费高清在线观看日韩| 水蜜桃什么品种好| 黑人巨大精品欧美一区二区蜜桃| 成人国产av品久久久| www.999成人在线观看| 午夜日韩欧美国产| 99国产精品一区二区蜜桃av | 手机成人av网站| 十八禁人妻一区二区| 999久久久国产精品视频| 国产麻豆69| 国产淫语在线视频| 亚洲精品久久午夜乱码| 狠狠婷婷综合久久久久久88av| 丝袜脚勾引网站| 欧美日韩视频精品一区| 十八禁高潮呻吟视频| av网站在线播放免费| 亚洲精品一二三| 国产av国产精品国产| 俄罗斯特黄特色一大片| 亚洲五月色婷婷综合| 国产熟女午夜一区二区三区| 国产成人系列免费观看| 欧美大码av| 色94色欧美一区二区| 一边摸一边抽搐一进一出视频| 超色免费av| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 欧美av亚洲av综合av国产av| 两个人看的免费小视频| 叶爱在线成人免费视频播放| 国产日韩欧美视频二区| 老司机午夜十八禁免费视频| 在线永久观看黄色视频| 丝袜美足系列| 亚洲黑人精品在线| 亚洲精品国产av蜜桃| 亚洲综合色网址| 91精品三级在线观看| 夜夜骑夜夜射夜夜干| 欧美日韩成人在线一区二区| 国产日韩欧美亚洲二区| 丰满人妻熟妇乱又伦精品不卡| 大香蕉久久网| 欧美日韩精品网址| 女警被强在线播放| 日韩欧美一区视频在线观看| 真人做人爱边吃奶动态| 老鸭窝网址在线观看| 国产成人欧美| 中文精品一卡2卡3卡4更新| 亚洲久久久国产精品| 91九色精品人成在线观看| 国产精品 国内视频| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 国产亚洲欧美在线一区二区| 午夜激情av网站| 一进一出抽搐动态| 两个人免费观看高清视频| 在线观看免费高清a一片| 啪啪无遮挡十八禁网站| 亚洲专区中文字幕在线| 国产精品欧美亚洲77777| 亚洲国产日韩一区二区| 国产精品久久久久久精品电影小说| 如日韩欧美国产精品一区二区三区| 久久久国产欧美日韩av| 国产成人av激情在线播放| 久久人妻熟女aⅴ| 婷婷色av中文字幕| 亚洲综合色网址| 在线天堂中文资源库| 一边摸一边抽搐一进一出视频| av福利片在线| 80岁老熟妇乱子伦牲交| 国产免费一区二区三区四区乱码| a在线观看视频网站| 国产野战对白在线观看| 青青草视频在线视频观看| 丝袜美腿诱惑在线| 超碰97精品在线观看| 亚洲国产欧美在线一区| 啦啦啦 在线观看视频| 一边摸一边抽搐一进一出视频| 亚洲人成电影免费在线| 久久狼人影院| 中文字幕高清在线视频| 最新的欧美精品一区二区| 亚洲精品一区蜜桃| 久久国产精品人妻蜜桃| 精品国产乱码久久久久久男人| 国产精品国产三级国产专区5o| 性少妇av在线| 高清视频免费观看一区二区| 亚洲欧美一区二区三区久久| 国产成人影院久久av| 新久久久久国产一级毛片| 9色porny在线观看| 满18在线观看网站| 亚洲国产成人一精品久久久| 亚洲精品国产一区二区精华液| 亚洲av日韩精品久久久久久密| 日韩 亚洲 欧美在线| 免费不卡黄色视频| 99re6热这里在线精品视频| 色老头精品视频在线观看| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三 | 久久久国产精品麻豆| 国产视频一区二区在线看| 国产成人欧美在线观看 | 黄片小视频在线播放| 99国产精品一区二区三区| 在线观看免费午夜福利视频| 日韩欧美一区二区三区在线观看 | 大码成人一级视频| 美女高潮到喷水免费观看| 国产精品99久久99久久久不卡| 99久久精品国产亚洲精品| 免费在线观看完整版高清| 岛国在线观看网站| 日本一区二区免费在线视频| 日韩欧美一区二区三区在线观看 | 人妻久久中文字幕网| 国产一区二区激情短视频 | 亚洲国产av新网站| 亚洲国产精品999| 男人爽女人下面视频在线观看| 亚洲国产av新网站| 中文字幕人妻丝袜一区二区| 午夜激情av网站| 成人国产av品久久久| 十八禁人妻一区二区| 日本欧美视频一区| 国产成人精品久久二区二区免费| 91国产中文字幕| 亚洲精品久久成人aⅴ小说| 色播在线永久视频| 制服诱惑二区| av视频免费观看在线观看| 亚洲自偷自拍图片 自拍| 日本一区二区免费在线视频| 18禁国产床啪视频网站| 五月天丁香电影| 菩萨蛮人人尽说江南好唐韦庄| 在线精品无人区一区二区三| 国产精品1区2区在线观看. | 满18在线观看网站| 国产在线一区二区三区精| 9色porny在线观看| 国产精品 国内视频| 欧美av亚洲av综合av国产av| 精品高清国产在线一区|