• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SnP2S6 半導體層數(shù)依賴的壓電效應

    2023-04-29 15:28:19喬玲郭宇周思
    四川大學學報(自然科學版) 2023年5期
    關鍵詞:壓電效應層數(shù)單層

    喬玲 郭宇 周思

    摘要:?二維壓電材料在能源、電子和光電子學方面的應用引起了越來越多的關注. 從實驗合成的壓電晶體SnP ?2 S ?6 出發(fā),我們系統(tǒng)研究了單層、雙層、三層和塊體SnP ?2 S ?6 的壓電效應. 第一性原理計算表明:層狀SnP ?2 S ?6 具有良好的熱力學和動力穩(wěn)定性,其帶隙和載流子有效質量與層數(shù)無關,而壓電性質具有明顯的層數(shù)依賴性;單層SnP ?2 S ?6 的壓電系數(shù)( d ??11 )高達 14.18 pm/V ,遠大于MoS ?2 、 h -BN和InSe的壓電系數(shù),雙層SnP ?2 S ?6 的面外壓電系數(shù)( d ??33 )大于12 pm/V. 優(yōu)異的壓電性能使SnP ?2 S ?6 在二維壓電傳感器和納米發(fā)電機等器件中的應用成為可能.

    關鍵詞:二維材料; SnP ?2 S ?6 半導體; 壓電性質; 電子結構; 層數(shù)

    中圖分類號:?O469? 文獻標識碼:A? DOI:10.19907/j.0490-6756.2023.054001

    收稿日期: ?2023-04-07

    基金項目: ??國家自然科學基金(12004065, 12222403, 11974068); 中央高?;究蒲袠I(yè)務費(DUT22ZD103, DUT22RC(3)009, DUT20LAB110); 遼寧省博士啟動基金(2022-BS-081)

    作者簡介: ??喬玲(1997-), 女, 碩士研究生, 研究方向為計算凝聚態(tài)物理. E-mail: qiaolingling@mail.dlut.edu.cn

    通訊作者: ?郭宇. E-mail: guoyu_dlut@dlut.edu.cn; 周思. E-mail: sizhou@dlut.edu.cn

    Layer-dependent piezoelectric effect in SnP ?2 S ?6 ?semiconductor

    QIAO Ling, GUO Yu, ZHOU Si

    (Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, ?College of Physics, Dalian University of Technology, Dalian 116024, China)

    Piezoelectric two-dimensional (2D) materials draw growing interest for applications in energy harvesting, electronics and optoelectronics. Starting from ?the experimental synthesized piezoelectric SnP ?2 S ?6 ?crystal, we investigate the piezoelectric properties of monolayer, bilayer, trilayer and bulk SnP ?2 S ?6 ??by first-principles calculations. Layered SnP ?2 S ?6 ?is energetically, thermodynamically and dynamically stable. The bandgap and carrier effective mass of SnP ?2 S ?6 ?are independent on the number of layers, while the piezoelectric properties are layered dependent. Monolayer SnP ?2 S ?6 ?possesses piezoelectric coefficients ( d ??11 ) up to 14.18 pm/V, much higher than the values of MoS ?2 , ?h -BN and InSe monolayers. Bilayer SnP ?2 S ?6 ?has out-of-plane piezoelectric coefficients ( d ??33 ) more than 12 pm/V. The prominent piezoelectric effect enables this novel 2D material for the applications of piezoelectric sensors and nanogenerators.

    Two-dimensional materials; SnP ?2 S ?6 ?semiconductor; Piezoelectricity; Electronic structures; Layer-dependency

    1 Introduction

    Piezoelectric materials have a wide range of applications in systems that require robust electrical-mechanical coupling, which includes mechanical stress sensors, actuators, and energy harvesting devices ?[1-6] . Crystals based on the wurtzite structure are well-known piezoelectric materials, such as a-quartz (piezoelectric coefficient is ?2.3 pm/V ), ?GaN (3.1 pm/V) and AlN (5.1 pm/V) , which are widely used in the piezotronic and piezo-phototronic devices ?[7-9] . However, the small piezoelectric coefficients of wurtzite semiconductors limit the mechanical-electrical energy conversion efficiency ?[8, 9] .

    Recently, two-dimensional (2D) materials have sparked interest for the piezoelectric applications because of their high crystallinity and ability to withstand enormous strain ?[10-15] . Experimental studies have detected the piezoelectric signals in 2D materials, such as monolayer MoS ?2 ??[16] , ??h -BN ??[17] ?and SnS ?2 ?nanosheets ?[18] . The piezoelectric effect is inconspicuous, e.g., the measured piezoelectric polarization ?e ??11 ?of monolayer MoS ?2 ?is only around 2.9×10 ?-10 ?C/m ?[19] , and the mechanical-electrical energy conversion rate is limited to be about 5% ?[16] . Theoretical investigations predict that 2D piezoelectric materials, including group-III monochalcogenide ?[6, 20] , MoS ?2 ??[21] ?and ??h -BN ??[21] ?monolayers, have normal piezoelectric coefficients below 10 pm/V. Therefore, finding flexible, stable, and efficient 2D piezoelectric materials is crucial.

    Layered SnP ?2 S ?6 ?crystal has been synthesized by chemical transport reactions ?[22, 23] . The atomic structure of layered SnP ?2 S ?6 ?is presented in Fig.1, which exhibit non-centrosymmetry with ?D ??3 ?and ?C ??3 ?point groups for monolayer and bulk systems, respectively. Bulk SnP ?2 S ?6 ?is a semiconductor with a moderate indirect bandgap of 2.07 eV ?[24] . Moreover, it presents strong piezoelectric signals in the experiments ?[25, 26] . Correspondingly, the nonmonotonic pressure dependence of the structural polarization is observed. The ionic and electronic polarization for the SnP ?2 S ?6 ?crystal reaches maximum at ~2 GPa and ~65 GPa, respectively ?[27] . A strong piezoelectricity occurs in SnP ?2 S ?6 ?due to the following reasons: (1) their stable structures are non-centrosymmetric, allowing them to be piezoelectric; (2) their puckered symmetries are much more flexible, which can further enhance the piezoelectric effect. In view of the piezoelectricity in bulk SnP ?2 S ?6 , 2D SnP ?2 S ?6 ?would be excellent piezoelectric materials.

    Herein, we systematically investigate the piezoelectric properties of layered SnP ?2 S ?6 ?that can be exfoliated from its layered bulk phase. The dynamic and thermal stabilities of layered SnP 2S 6 were assessed, and their electronic properties were explored by first-principles calculations. Importantly, these layered SnP ?2 S ?6 ?are potential piezoelectric materials with high piezoelectric coefficients up to 14.18 pm/V. This layered piezoelectric material represents a new class of nanomaterials for the next generation of ultra-sensitive mechanical detectors, energy conversion devices, and consumer-touch sensors.

    2 Computational methods

    Density functional theory calculations were performed by using the Vienna ?ab initio ?simulation package (VASP) ?[28, 29] , with the plane-wave basis set with an energy cutoff of 500 eV, the projector augmented wave potentials (PAW) ?[30] , and the generalized gradient approximation parameterized by Perdew, Burke and Ernzerhof (GGA-PBE) ?[31] ?for the exchange-correlation functional. The convergence criteria for total energy and residual force on each atom were set to be 10 ?-7 ?eV and 0.01 eV/, respectively. For unit cell of layered SnP ?2 S ?6 , the Brillouin zone was sampled with a Γ-centered 13 × 13 × 1 Monkhorst-Pack k-points grid. Note that the standard GGA functional underestimates band gaps; thus a hybrid functional (HSE06) ?[32] ?was also used to compute the electronic band structures of layered SnP ?2 S ?6 .

    To examine the dynamic stability of layered SnP ?2 S ?6 , phonon dispersion was computed using the Phonopy code based on the density functional perturbation theory (DFPT) ?[33] ?incorporated with VASP. The ?ab initio ?molecular dynamics (AIMD) simulations ?[34] ?with the PAW method and PBE functional were carried out to assess thermal stabilities of layered ?SnP 2S 6 . In the AIMD simulations, the initial configuration of this monolayer with 3 × 3 × 1 supercell was annealed under several temperatures. Each AIMD simulation in the ?NVT ?ensemble ( i.e ., at constant number of particles, volume, and temperature) lasted for 10 ps with a time step of 1.0 fs, and the temperature was controlled by using the Noseé-Hoover method ?[35] .

    3 Results and discussions

    Due to the successful fabrication of layered SnP ?2 S ?6 ?materials ?[22] , the monolayer counterpart can be obtained by mechanical exfoliation ?[36] . As shown in Fig. 1a, bulk SnP ?2 S ?6 ?is a natural pseudo-two-dimensional crystal, possessing planar 2D networks of puckered hexagonal structures in the ?xy ?plane and vdW interlayer stacking along the ?z ?direction. Bulk and trilayer SnP ?2 S ?6 ?have an ABC stacking with each layer laterally shifted by [ -1/3, ?1/3] in fractional coordinates with respect to the lower neighboring layer. For structural models of bilayer SnP 2S 6, the structure forms AB stacking sequences according to the lateral shift mentioned above. To explore the possibility of exfoliating monolayer from the bulk crystal, we calculate the interlayer cohesive energy ?E ??c ?as follows:

    E ??c ?= ( E ??bulk - 3× E ??monolayer )/ n ?0 (1)

    where ?E ??bulk ?and ?E ??monolayer ?are the total energy of bulk and monolayer SnP ?2 S ?6 ?in the unit cell, respectively; ?n ??0 ?is the total number of atoms in the unit cell for the bulk system. The calculated interlayer cohesive energy of layered SnP 2S 6 is ?-0.07 ?eV/atom, comparable to the values of phosphorene (-0.055 eV/atom) ?[37] , graphite and ?h -BN (both are around -0.065 eV/atom) ?[38] .

    These results demonstrate the possible exfoliation of monolayer materials from the bulk solids. The unit cell of SnP ?2 S ?6 ?monolayer has one Sn, two P and six S atoms, with each Sn atom bonded with six S atoms, and each P atom bonded with three S atoms. As shown in Fig. 1, the optimized monolayer, bilayer, trilayer and bulk structure have a lattice constant ( a ) of 6.14, 6.06, 6.08 and ?6.05 , respectively (see Tab. 1). Population analysis ?[39] ?reveals that SnP ?2 S ?6 ?monolayer is made of covalent bonds with bond order of 0.36 for Sn-S bonds and 0.54 for P-S bonds.

    The stability of a 2D crystal is crucial for experimental fabrication and practical applications. To evaluate the energetic stability of SnP ?2 S ?6 ?monolayer, we first calculated the formation energy Δ H ?defined as

    Δ H ?= ( E ??monolayer ???- n ??1 ?× ?E ??1 ?- n ??2 ?× ?E ??2 ?-

    n ??3 ?× E ??3 )/ n ?(2)

    where ?E ??monolayer ?is the total energy of SnP ?2 S ?6 ?monolayer, and ?E ??1 , ?E ??2 ?and ?E ??3 ?is the energy per atom in Sn, P and S solids, respectively. The factors ?n ??1 , ?n ??2 ?and ?n ??3 ?denote the number of Sn, P and S atoms in the unit cell, respectively, while the factor ?n ?represents the total number of atoms in the unit ?cell. The calculated Δ H ?is -0.27 eV/atom for monolayer SnP 2S 6, revealing that formation of SnP ?2 S ?6 ?monolayer is exothermic. The lattice dynamic stability of SnP ?2 S ?6 ?monolayer is assessed by calculating the phonon dispersion curves, as shown in Fig. 2a. No imaginary phonon mode is observed, indicating that SnP ?2 S ?6 ?monolayer is dynamically stable. We also performed AIMD simulations to examine the thermal stability of this 2D structure at 500 K. After 10 ps AIMD simulations, SnP ?2 S ?6 ?monolayer can maintain its structure above the room temperature (Fig. 2b).

    Moreover, layered SnP ?2 S ?6 ?exhibits excellent electronic properties with moderate bandgaps. As shown in Fig. 3, monolayer, bilayer, trilayer and bulk SnP 2S 6 possess almost equal ?bandgap ?of 2.26, 2.15, 2.10 and 2.08 eV, respectively. The local density of states (LDOS) for these layered systems exhibit similar behavior: the edges of valence bands are dominated by the 3p orbitals of S atoms, while the conduction band edges stem mainly from the 5p orbitals of Sn atoms and 3p orbitals of S atoms. Meanwhile, the substantial overlap of LDOS near the Fermi level implies strong hybridization between the orbitals of Sn, P and S atoms. Overall, the electronic structures of layered SnP ?2 S ?6 ?are independent on the number of layers. As listed in Tab. 1, the computed carrier effective masses are in the range of 0.49~1.24 ?m ??0 ?( m ??0 ?is the electron rest mass) for holes and ?0.34~ 0.80 ?m ??0 ?for electrons, respectively. Particularly, the effective masses for hole carriers could be as low as 0.34 ?m ??0 ?along both ?x ?and ?y ?direction, indicating the carriers are rather mobile in these 2D sheets. Furthermore, layered SnP 2S 6 presents good optical absorption behavior. The optical absorption coefficients of monolayer, bilayer, trilayer and bulk SnP 2S 6 are obtained by computing the complex dielectric functions based on the HSE06 functional, as depicted in Fig. 4. They possess prominent optical absorption in ultraviolet regium with an absorption coefficient up to 10 ?5 ?cm ?-1 , suggesting that the layered SnP 2S 6 could be promising functional materials for ultraviolet detectors.

    The SnP 2S 6 monolayer belong to 32 - point-group symmetry (No. 149), showing six independent elastic constants ?C ?ij ??and two independent piezoelectric polarization ?e ?ij ???[40] . Material constants of the SnP ?2 S ?6 ?monolayer is written in contracted notation as:

    [C ?ij ]= ?C ?11 ?C ?12 ?C ?13 ?C ?14 ?0 0 C ?12 ?C ?11 ?C ?13 ?-C ?14 ?0 0 C ?13 ?C ?13 ?C ?33 ?0 0 0 C ?14 ?-C ?14 ?0 C ?44 ?0 0 0 0 0 0 C ?44 ?C ?14 ?0 0 0 0 C ?14 ?C ?66 ????(3)

    [e ?ij ]= ?e ?11 ?-e ?11 ?0 e ?14 ?0 0 0 0 0 0 -e ?14 ?-e ?11 ?0 0 0 0 0 0 ???(4)

    Correspondingly, the piezoelectric coefficients can be obtained as follows:

    [ d ?ij ?] = [ e ?ij ?][ C ?ij ?] ?T-1 ?(5)

    where [ C ?ij ?] ?T-1 ?is the inverse of the transpose [ C ?ij ?] ?T . For monolayer SnP ?2 S ?6 , we focus on the elastic constants ?C ??11 ?and ?C ??12 , and the piezoelectric coefficient ?d ??11 . [ C ?ij ?] is determined by performing six finite distortions of the lattice and deriving the elastic constants from the strain-stress relationship ?[41] . We then calculated [ e ?ij ?] by DFPT ?[42, 43] . Finally, ?d ??11 ?can be solved according to the ?formula ?(5).

    The calculated elastic stiffness coefficient ?C ??11 ?for SnP ?2 S ?6 ?monolayer is 42.44 N/m, and the corresponding ?C ??12 ?is relatively lower at 8.12 N/m. The elastic stiffness coefficients are generally smaller than ?those of typical 2D materials, such as graphene ( C ??11 ?= 358.1 and ?C ??12 ?= 60.4 ?N/m ) ?[44] , ?MoS ?2 ?( C ??11 ?= 130 and ?C ??12 ?= 32 N/m) ?[21] , and InSe ( C ??11 ?= 51 and ?C ??12 ?= 12 N/m) ?[20] , demonstrating that the SnP ?2 S ?6 ?monolayer has a greater flexibility. The polarization tensor of the unit cell was obtained using the LEPSILON tag in VASP. The polarization vector of ?e ??11 ?is 1.52×10 ?-10 ?C/m for SnP ?2 S ?6 ?monolayer, larger than the values of ?h -BN monolayer ( e ??11 ?= 1.38×10 ?-10 ?C/m) ?[21] ?and InSe monolayer ( e ??11 ?= 0.57×10 ?-10 ?C/m) ?[20] . According to the equation (5), the piezoelectric coefficients ?d ??11 ?is calculated to be 14.18 pm/V, which is one or two orders of magnitude larger than the values of MoS ?2 ?monolayer (3.74 pm/V) ?[21] , ?h -BN monolayer (0.60 pm/V) ?[20] ?and InSe monolayer (1.46 pm/V) ?[17] . The large piezoelectric coefficients indicate that SnP 2S 6 monolayer is suitable for 2D piezoelectric sensors and nanogenerators.

    Then, we investigated the piezoelectric effects influenced by the number of layers. Bilayer, trilayer and bulk SnP 2S ?6 ?hold 3-point-group symmetry with material constants as follows:

    [C ?ij ]= ?C ?11 ?C ?12 ?C ?13 ?C ?14 ?-C ?25 ?0 C ?12 ?C ?22 ?C ?13 ?-C ?14 ?C ?25 ?0 C ?13 ?C ?13 ?C ?33 ?0 0 0 C ?14 ?-C ?14 ?0 C ?44 ?0 0 -C ?25 ?C ?25 ?0 0 C ?44 ?C ?14 ?0 0 0 C ?25 ?C ?14 ?C ?66 ????(6)

    [e ?ij ]= ?e ?11 ?-e ?11 ?0 e ?14 ?e ?15 ?e ?22 ?-e ?22 ?e ?22 ?0 e ?15 ?-e ?14 ?-e ?11 ?e ?31 ?e ?31 ?e ?33 ?0 0 0 ???(7)

    Similarly, we calculated elastic stiffness coefficients and piezoelectric coefficients based on equations (6)(7). As presented in Tab.1, elastic constants and piezoelectric effects are dependent on the number of layers. For the bilayer, trilayer and bulk systems, ?C ??11 ?and ?C ??22 ?are almost identical and increased with the layers in the range of 90~142 N/m, which are much higher that the values of monolayer (~42 N/m). ?C ??12 ?is also layer-related constants with the values of 20~33 N/m, also larger than 8 N/m in SnP 2S ?6 ?monolayer. The increased elastic coefficients suggest the enhanced stiffness of bilayer, trilayer and bulk SnP 2S ?6 ?in comparison with that of monolayer.

    Multilayer SnP 2S ?6 ?also exhibit strong piezoelectric effect. Due to the reduced symmetry in the bilayer, trilayer and bulk systems, they hold more typical piezoelectric coefficients, including ?d ??11 , ?d ??21 , ?d ??31 ?and ?d ??33 , compared with one coefficient ?d ??11 ?of SnP ?2 S ?6 ?monolayer. As listed in ?Tab.1 ?and Fig.5, bilayer, trilayer and bulk SnP 2S ?6 ?have ?d ??11 ?( d ??21 ) of 1.20 (1.50), 5.86 (0.10) and ?1.96 (0.63) ?pm/V, respectively, smaller than 14.18 pm/V of monolayer SnP ?2 S ?6 . Multilayered systems suffer from the decreased polarization due to the in-plane depolarizing electrostatic field of adjacent layers. However, multilayer SnP 2S ?6 ?generates excellent out-of-plane piezoelectric effects. Specifically, piezoelectric coefficient ?d ??31 ?for the multilayer is in the range of 0.17~1.32 pm/V, which are close to the values of typical piezoelectric materials, ?i.e ., 1.9 pm/V for bulk AlN and 1.6 pm/V for bulk GaN. Moreover, the piezoelectric coefficient ?d ??33 ?of trilayer SnP 2S ?6 ?could be as high as 12.14 pm/V, much larger than 5.1 pm/V for bulk AlN and 2.6 pm/V for bulk GaN ?[7-9] . The appreciable out-of-plane piezoelectric effect would endow these SnP ?2 S ?6 ?systems with multiple functions for piezoelectric applications.

    4 Conclusions

    Motivated by the experimental fabricated SnP ?2 S ?6 ?crystal, we demonstrated the excellent electronic properties and superior piezoelectric effect of layered SnP ?2 S ?6 . Our first-principles calculations show that layered SnP ?2 S ?6 ?are energetically, dynamically and thermally stable. In particular, the bandgaps are about 2.20 eV and carrier effective mass of SnP ?2 S ?6 ?are in the range of 0.49~1.24 ?m ?0 ??for holes and 0.34~0.80 ?m ?0 ??for electrons, which are independent on the thickness. Moreover, SnP 2S 6 monolayer has large in-plane piezoelectric coefficients of 14.18 pm/V, significantly larger than those of common 2D materials, such as MoS ?2 , ?h -BN and InSe. In addition, SnP 2S ?6 ?bilayer yields out-of-plane piezoelectric coefficients up to 12 pm/V. As a remark, layered SnP ?2 S ?6 ?have been synthesized in experiment and the monolayer phase can be obtained by mechanical exfoliation. The enhanced piezoelectric effect and favorable semiconducting properties of this novel 2D material would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and nanoscale electromechanical systems.

    References:

    [1] ??Cui H, Hensleigh R, Yao D, ?et al . Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response [J]. Nat Mater, 2019, 18: 234.

    [2] ?Briscoe J, Dunn S. Piezoelectric nanogenerators-a review of nanostructured piezoelectric energy harvesters [J]. Nano Energy, 2015, 14: 15.

    [3] ?Liu H, Zhong J, Lee C, ?et al . A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications [J]. Appl Phys Rev, 2018, 5: 041306.

    [4] ?Covaci C, Gontean A. Piezoelectric energy harvesting solutions: a review [J]. Sensors, 2020, 20: 3512.

    [5] ?Elahi ?H, Eugeni M, Gaudenzi P. A review on mechanisms for piezoelectric-based energy harvesters [J]. Energies, 2018, 11: 1850.

    [6] ?Guo Y, Zhou S, Bai Y, ?et al . Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers [J]. Appl Phys Lett, 2017, 110: 163102.

    [7] ?Wang Z L. Progress in piezotronics and piezo-phototronics [J]. Adv Mater, 2012, 24: 4632.

    [8] ?Bernardini F, Fiorentini V, Vanderbilt D. Polarization-based calculation of the dielectric tensor of polar crystals [J]. Phys Rev Lett, 1997, 79: 3958.

    [9] ?Guy I L, Muensit S, Goldys E M. Extensional piezoelectric coefficients of gallium nitride and aluminum nitride [J]. Appl Phys Lett, 1999, 75: 4133.

    [10] ?Li Y Y, Zhou B X, Zhang H W, ?et al . Doping-induced enhancement of crystallinity in polymeric carbon nitride nanosheets to improve their visible-light photocatalytic activity [J]. Nanoscale, 2019, 11: 6876.

    [11] Lee J, Huang J, Sumpter B G, ?et al . Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures [J]. 2D Mater, 2017, 4: 021016.

    [12] Zhang Y, Jie W, Chen P, ?et al . Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices [J]. Adv Mater, 2018, 30: 1707007.

    [13] Zhou D R, Wang B. First-principles study on structure and properties of In 2(PS 3) 3 monolayer with a direct band-gap [J]. J At Mol Phys(原子與分子物理學報), 2023, 40: 036007. (in Chinese)

    [14] Xiong J F, Sang B M, Li Q F, ?et al . First-principles study on the elastic and electronic properties of MgNi 2Bi 4 [J]. J At Mol Phys(原子與分子物理學報), 2022, 39: 056005. (in Chinese)

    [15] Ding Y C, Yuan H, Xu M. First-principles study of lattice thermal conductivity of 2D Mo 2C [J]. J At Mol Phys(原子與分子物理學報), 2022, 39: 016007. (in Chinese)

    [16] Wu W, Wang L, Li Y, ?et al . Piezoelectricity of single-atomic-layer MoS ?2 ?for energy conversion and piezotronics [J]. Nature, 2014, 514: 470.

    [17] Kuang H, Li Y, Huang S, ?et al . Piezoelectric boron nitride nanosheets for high performance energy harvesting devices [J]. Nano Energy, 2021, 80: 105561.

    [18] Wang Y, Vu L M, Lu T, ?et al . Piezoelectric responses of mechanically exfoliated two-dimensional SnS ?2 ?nanosheets [J]. ACS Appl Mater Inter, 2020, 12: 51662.

    [19] Zhu H, Wang Y, Xiao J, ?et al . Observation of piezoelectricity in free-standing monolayer MoS ?2 ?[J]. Nat Nanotechnol, 2015, 10: 151.

    [20] Li ?W, Li J. Piezoelectricity in two-dimensional group-III monochalcogenides [J]. Nano Res, 2015, 8: 3796.

    [21] Duerloo K A N, Ong M T, Reed E J. Intrinsic piezoelectricity in two-dimensional materials [J]. J Phys Chem Lett, 2012, 3: 2871.

    [22] Wang Z, Willett R D, Laitinen R A, ?et al . Synthesis and crystal structure of SnP ?2 S ?6 ?[J]. Chem Mat, 1995, 7: 856.

    [23] Zhang Y, Wang F, Feng X, ?et al . Inversion symmetry broken 2D SnP ?2 S ?6 ?with strong nonlinear optical response [J]. Nano Res, 2021.

    [24] Jing Y, Zhou Z, Zhang J, ?et al . SnP ?2 S ?6 ?monolayer: a promising 2D semiconductor for photocatalytic water splitting [J]. Phys Chem Chem Phys, 2019, 21: 21064.

    [25] Vysochanskii Y. Ferroelectricity in complex chalcogenides M′M″P ?2 X ?6 ?(M′, M″-Sn, Pb, Cu, In, Cr; X-S, Se) [J]. Ferroelectrics, 1998, 218: 275.

    [26] Samulionis V, Banys J. Ultrasonic and piezoelectric studies of new layered ferroelectric compounds of Sn 2P 2S 6 family [J]. J Eur Ceram Soc, 2005, 25: 2543.

    [27] Rushchanskii K Z, Vysochanskii Y M, Cajipe V B, ?et al . Influence of pressure on the structural, dynamical, and electronic properties of the SnP ?2 S ?6 ?layered crystal [J]. Phys Rev B, 2006, 73: 115115.

    [28] Kresse G, Furthmüller J. Efficiency of ?ab-initio ?total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput Mater Sci, 1996, 6: 15.

    [29] Kresse G, Furthmüller J. Efficient iterative schemes for ?ab initio ?total-energy calculations using a plane-wave basis set [J]. Phys Rev B, 1996, 54: 11169.

    [30] Blchl P E. Projector augmented-wave method [J]. Phys Rev B, 1994, 50: 17953.

    [31] Perdew ?J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865.

    [32] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential [J]. J Chem Phys, 2003, 118: 8207.

    [33] Baroni S, De Gironcoli S, Dal Corso A, ?et al . Phonons and related crystal properties from density-functional perturbation theory [J]. Rev Mod Phys, 2001, 73: 515.

    [34] Kresse G, Hafner J. ?Ab initio ?molecular dynamics for liquid metals [J]. Phys Rev B, 1993, 47: 558.

    [35] Martyna G J, Klein M L, Tuckerman M. Nosé-Hoover chains: the canonical ensemble via continuous dynamics [J]. J Chem Phys,1992, 97: 2635.

    [36] Novoselov K S, Geim A K, Morozov S V, ?et al . Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666.

    [37] Cai ?Y, Zhang G, Zhang Y W. Layer-dependent band alignment and work function of few-layer phosphorene [J]. Sci Rep, 2014, 4: 1.

    [38] Graziano G, Klime J, Fernandez-Alonso F, ?et al . Improved description of soft layered materials with van der Waals density functional theory [J]. J Phys: Condens Matter, 2012, 24: 424216.

    [39] Segall M D, Shah R, Pickard C J, ?et al . Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Phys Rev B, 1996, 54: 16317.

    [40] Ogi H, Ohmori T, Nakamura N, ?et al . Elastic, anelastic, and piezoelectric coefficients of α-quartz determined by resonance ultrasound spectroscopy [J]. J Appl Phys, 2006, 100: 053511.

    [41] Le P Y, Saxe P. Symmetry-general least-squares extraction of elastic data for strained materials from ?ab initi o calculations of stress [J]. Phys Rev B, 2002, 65: 104104.

    [42] Nakamura ?K, Higuchi S, Ohnuma T. Density functional perturbation theory to predict piezoelectric properties [M]∥Perturbation Methods with Applications in Science and Engineering. Rijeka: IntechOpen, 2018: 2.

    [43] Gonze X, Lee C. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory [J]. Phys Rev B, 1997, 55: ??10355.

    [44] Andrew R C, Mapasha R E, Ukpong A M, ?et al . Mechanical properties of graphene and boronitrene [J]. Phys Rev B, 2012, 85: 125428.

    猜你喜歡
    壓電效應層數(shù)單層
    可穿戴設備高效自供電結構設計研究
    二維四角TiC單層片上的析氫反應研究
    分子催化(2022年1期)2022-11-02 07:10:16
    填筑層數(shù)對土石壩應力變形的影響研究
    上海發(fā)布藥品包裝物減量指南
    康復(2022年31期)2022-03-23 20:39:56
    基于PLC控制的立式單層包帶機的應用
    電子制作(2019年15期)2019-08-27 01:12:04
    MoS2薄膜電子性質隨層數(shù)變化的理論研究
    電子制作(2019年11期)2019-07-04 00:34:50
    單層小波分解下圖像行列壓縮感知選擇算法
    測控技術(2018年9期)2018-11-25 07:44:44
    新型單層布置汽輪發(fā)電機的研制
    振蕩浮子式壓電波浪換能節(jié)能裝置
    壓電效應的壓力發(fā)電裝置及衍生產(chǎn)品在市場上的應用
    嫁个100分男人电影在线观看| 亚洲乱码一区二区免费版| 香蕉av资源在线| 精品免费久久久久久久清纯| 国产淫片久久久久久久久| 国产人妻一区二区三区在| 亚洲av不卡在线观看| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 国产精品综合久久久久久久免费| 国产91精品成人一区二区三区| 最近中文字幕高清免费大全6 | 色尼玛亚洲综合影院| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 美女xxoo啪啪120秒动态图| 国产淫片久久久久久久久| 久久久久久久亚洲中文字幕| av天堂在线播放| 99久久精品热视频| 69av精品久久久久久| 成人二区视频| 日韩精品中文字幕看吧| 在线观看一区二区三区| 亚洲五月天丁香| 99久国产av精品| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| av在线天堂中文字幕| 国产成人av教育| 久久人妻av系列| 亚洲经典国产精华液单| 婷婷六月久久综合丁香| 日日干狠狠操夜夜爽| 亚洲一区高清亚洲精品| 日韩,欧美,国产一区二区三区 | 国产精品久久久久久久久免| 成年版毛片免费区| 99热网站在线观看| 久久九九热精品免费| 天堂影院成人在线观看| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 久久午夜福利片| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区 | 乱码一卡2卡4卡精品| .国产精品久久| 亚洲美女视频黄频| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 久久久午夜欧美精品| 亚洲无线在线观看| 女人被狂操c到高潮| 国产成人一区二区在线| 午夜福利欧美成人| 性色avwww在线观看| 99久久成人亚洲精品观看| h日本视频在线播放| 久久这里只有精品中国| 国产精华一区二区三区| 成人欧美大片| 亚洲乱码一区二区免费版| 一级毛片久久久久久久久女| 久久久久性生活片| 尾随美女入室| 久久精品夜夜夜夜夜久久蜜豆| 久久6这里有精品| 欧美极品一区二区三区四区| 又紧又爽又黄一区二区| 波多野结衣高清作品| 久久久色成人| 国产高清三级在线| 欧美绝顶高潮抽搐喷水| 一区二区三区激情视频| 免费观看在线日韩| 两人在一起打扑克的视频| 最后的刺客免费高清国语| 狂野欧美白嫩少妇大欣赏| 亚洲天堂国产精品一区在线| 国产精品98久久久久久宅男小说| 97人妻精品一区二区三区麻豆| 丰满的人妻完整版| 欧美性感艳星| 午夜激情福利司机影院| 免费观看精品视频网站| 悠悠久久av| 国产成人福利小说| 国产精品美女特级片免费视频播放器| 人妻丰满熟妇av一区二区三区| av.在线天堂| 高清日韩中文字幕在线| 免费人成视频x8x8入口观看| 欧美日韩亚洲国产一区二区在线观看| 天天一区二区日本电影三级| 国产 一区精品| 国产精品自产拍在线观看55亚洲| 99在线人妻在线中文字幕| 性色avwww在线观看| 在线看三级毛片| 久久人妻av系列| 看免费成人av毛片| 日韩欧美国产一区二区入口| 色综合亚洲欧美另类图片| 免费大片18禁| 精品久久久久久久末码| 女的被弄到高潮叫床怎么办 | 他把我摸到了高潮在线观看| 毛片一级片免费看久久久久 | 天堂av国产一区二区熟女人妻| 国产免费男女视频| 一区二区三区激情视频| 美女免费视频网站| 少妇的逼好多水| 免费搜索国产男女视频| 午夜激情欧美在线| 国产大屁股一区二区在线视频| 日韩国内少妇激情av| 国产女主播在线喷水免费视频网站 | 亚洲av熟女| aaaaa片日本免费| 免费观看精品视频网站| 一级黄色大片毛片| 97碰自拍视频| 国产一区二区亚洲精品在线观看| 国内精品宾馆在线| 真实男女啪啪啪动态图| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱| 岛国在线免费视频观看| 桃色一区二区三区在线观看| 美女被艹到高潮喷水动态| 又紧又爽又黄一区二区| 亚洲精品日韩av片在线观看| 国产私拍福利视频在线观看| 亚洲七黄色美女视频| 国产极品精品免费视频能看的| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 99在线视频只有这里精品首页| av黄色大香蕉| 久久久久国产精品人妻aⅴ院| 久久欧美精品欧美久久欧美| 美女高潮喷水抽搐中文字幕| 久久久久久大精品| 最近在线观看免费完整版| 少妇的逼水好多| 美女大奶头视频| 一区二区三区免费毛片| 国产av麻豆久久久久久久| 午夜影院日韩av| 国产黄色小视频在线观看| 狂野欧美白嫩少妇大欣赏| 日韩欧美国产在线观看| 搞女人的毛片| 欧美+亚洲+日韩+国产| 亚洲av日韩精品久久久久久密| 99精品久久久久人妻精品| 亚洲av成人精品一区久久| 悠悠久久av| 欧美日韩中文字幕国产精品一区二区三区| 国产中年淑女户外野战色| 九九爱精品视频在线观看| 免费在线观看日本一区| 欧美精品啪啪一区二区三区| 成人国产一区最新在线观看| 国产亚洲91精品色在线| 在现免费观看毛片| 又爽又黄a免费视频| 成人永久免费在线观看视频| 在线a可以看的网站| 国产精品综合久久久久久久免费| 免费电影在线观看免费观看| 欧美在线一区亚洲| 干丝袜人妻中文字幕| 亚洲在线观看片| 亚洲人成网站在线播放欧美日韩| 少妇丰满av| 搡老妇女老女人老熟妇| 熟女人妻精品中文字幕| 亚洲三级黄色毛片| 国产高清不卡午夜福利| 婷婷六月久久综合丁香| 亚洲av熟女| 精品午夜福利视频在线观看一区| 国产亚洲精品av在线| 午夜福利在线在线| 九九久久精品国产亚洲av麻豆| 欧美性感艳星| 狂野欧美白嫩少妇大欣赏| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 99久久中文字幕三级久久日本| 欧美xxxx黑人xx丫x性爽| 亚洲久久久久久中文字幕| 在线播放无遮挡| 波多野结衣高清无吗| 男女边吃奶边做爰视频| 国产淫片久久久久久久久| 国内精品久久久久精免费| 12—13女人毛片做爰片一| 99在线人妻在线中文字幕| 亚洲国产色片| av在线亚洲专区| 丰满的人妻完整版| 国产精品伦人一区二区| 亚洲一区二区三区色噜噜| 校园人妻丝袜中文字幕| 亚洲av中文字字幕乱码综合| 久久久久久久久久黄片| 色av中文字幕| 日日啪夜夜撸| 午夜精品久久久久久毛片777| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| 99热这里只有精品一区| 国产午夜精品久久久久久一区二区三区 | 亚洲精品日韩av片在线观看| 国产麻豆成人av免费视频| 国产精品98久久久久久宅男小说| 日本免费a在线| 真实男女啪啪啪动态图| 国产主播在线观看一区二区| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 舔av片在线| 国产综合懂色| 色噜噜av男人的天堂激情| 成人性生交大片免费视频hd| av.在线天堂| 一个人免费在线观看电影| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 成年女人毛片免费观看观看9| 不卡一级毛片| 欧美成人一区二区免费高清观看| 国产精品乱码一区二三区的特点| 综合色av麻豆| 国产色婷婷99| 国产私拍福利视频在线观看| 免费黄网站久久成人精品| 此物有八面人人有两片| 久9热在线精品视频| 成人高潮视频无遮挡免费网站| 天堂√8在线中文| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 99国产精品一区二区蜜桃av| 国产精品久久久久久久久免| 欧美激情久久久久久爽电影| 久久国产乱子免费精品| 一个人观看的视频www高清免费观看| 亚洲欧美精品综合久久99| 成年版毛片免费区| 亚洲一级一片aⅴ在线观看| 久9热在线精品视频| 婷婷亚洲欧美| 亚洲av一区综合| 欧美最黄视频在线播放免费| 高清日韩中文字幕在线| 久久精品国产亚洲av天美| av天堂在线播放| 国产亚洲精品久久久com| 久久久久国产精品人妻aⅴ院| 欧美一区二区国产精品久久精品| 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 国产真实伦视频高清在线观看 | 久久人人精品亚洲av| 毛片女人毛片| 小说图片视频综合网站| 男女视频在线观看网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 露出奶头的视频| av在线老鸭窝| 国产91精品成人一区二区三区| 91麻豆av在线| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 亚洲国产高清在线一区二区三| 久久6这里有精品| 免费av观看视频| 国产成年人精品一区二区| 99热这里只有精品一区| 午夜福利欧美成人| 老司机福利观看| 国产av在哪里看| 午夜精品在线福利| 永久网站在线| 成年人黄色毛片网站| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 午夜精品在线福利| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| 最近最新免费中文字幕在线| 国产 一区 欧美 日韩| 成人av一区二区三区在线看| 日韩欧美免费精品| 九九爱精品视频在线观看| 日本黄大片高清| 制服丝袜大香蕉在线| 天堂影院成人在线观看| 两个人的视频大全免费| 日本精品一区二区三区蜜桃| 18禁黄网站禁片午夜丰满| 久久久久久久久中文| 男人舔女人下体高潮全视频| 国产精华一区二区三区| netflix在线观看网站| www日本黄色视频网| 亚洲最大成人手机在线| 看片在线看免费视频| 亚洲精品日韩av片在线观看| 国产成人影院久久av| 日韩一区二区视频免费看| 少妇人妻一区二区三区视频| 性色avwww在线观看| 午夜视频国产福利| 色噜噜av男人的天堂激情| 毛片女人毛片| 亚洲国产日韩欧美精品在线观看| 午夜a级毛片| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 高清日韩中文字幕在线| 日本撒尿小便嘘嘘汇集6| 伦理电影大哥的女人| 深夜精品福利| aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 变态另类丝袜制服| 一级av片app| 国产精品久久久久久久电影| 色综合站精品国产| 日韩欧美在线二视频| 22中文网久久字幕| 免费人成视频x8x8入口观看| 中文字幕久久专区| 一级a爱片免费观看的视频| 国内精品宾馆在线| 欧美激情国产日韩精品一区| 国产精品免费一区二区三区在线| 熟女人妻精品中文字幕| 国产精品一区二区性色av| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 成人av在线播放网站| 成年女人看的毛片在线观看| 春色校园在线视频观看| 精品一区二区三区视频在线观看免费| 好男人在线观看高清免费视频| 欧美三级亚洲精品| 精品一区二区三区视频在线| 91久久精品电影网| 可以在线观看的亚洲视频| 国产爱豆传媒在线观看| x7x7x7水蜜桃| 国产精品无大码| 国产69精品久久久久777片| 亚洲精品一区av在线观看| 99热6这里只有精品| 日韩欧美国产一区二区入口| 午夜激情欧美在线| 亚洲美女黄片视频| 精品日产1卡2卡| 欧美日韩精品成人综合77777| 久久草成人影院| 一级a爱片免费观看的视频| 久久精品国产亚洲网站| 一区二区三区激情视频| 久久6这里有精品| 亚洲av中文字字幕乱码综合| 99久久精品热视频| 两人在一起打扑克的视频| 一级黄色大片毛片| 亚洲无线在线观看| 在线播放国产精品三级| 久久久午夜欧美精品| 嫁个100分男人电影在线观看| 色5月婷婷丁香| 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| av天堂在线播放| 精品欧美国产一区二区三| 99热这里只有精品一区| 小蜜桃在线观看免费完整版高清| 日日摸夜夜添夜夜添小说| 丰满人妻一区二区三区视频av| 亚洲图色成人| 久久亚洲精品不卡| 91精品国产九色| 亚洲美女黄片视频| 国产成人av教育| 免费在线观看影片大全网站| 午夜老司机福利剧场| 老司机深夜福利视频在线观看| АⅤ资源中文在线天堂| 日本黄色片子视频| 亚洲专区中文字幕在线| 亚洲欧美日韩高清专用| 麻豆成人av在线观看| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| 久久精品久久久久久噜噜老黄 | 国产亚洲欧美98| 亚洲成人久久性| 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区| 欧美黑人欧美精品刺激| 亚洲人成网站在线播| 日本五十路高清| 给我免费播放毛片高清在线观看| 黄色一级大片看看| 国产一区二区三区在线臀色熟女| 精品一区二区三区av网在线观看| 热99在线观看视频| 老女人水多毛片| 久久人人爽人人爽人人片va| 日韩在线高清观看一区二区三区 | 日韩一区二区视频免费看| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 他把我摸到了高潮在线观看| 欧美中文日本在线观看视频| 12—13女人毛片做爰片一| 给我免费播放毛片高清在线观看| 国内精品一区二区在线观看| 香蕉av资源在线| 毛片女人毛片| .国产精品久久| 十八禁网站免费在线| 午夜激情福利司机影院| 欧美日韩黄片免| 国产精品久久久久久av不卡| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区亚洲精品在线观看| 真实男女啪啪啪动态图| 国产高清激情床上av| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区 | 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 内地一区二区视频在线| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添av毛片 | 亚洲第一区二区三区不卡| 91久久精品国产一区二区三区| 人妻丰满熟妇av一区二区三区| 欧美一区二区国产精品久久精品| 天天一区二区日本电影三级| 亚洲欧美清纯卡通| 欧美又色又爽又黄视频| 99热这里只有精品一区| 欧美精品国产亚洲| 91狼人影院| 夜夜爽天天搞| 亚洲一区二区三区色噜噜| 99热6这里只有精品| 欧美日韩精品成人综合77777| 精品人妻一区二区三区麻豆 | 午夜亚洲福利在线播放| 变态另类成人亚洲欧美熟女| 久久久色成人| 亚洲自拍偷在线| 亚洲avbb在线观看| 亚洲av成人av| 亚洲无线观看免费| 成人无遮挡网站| 日韩欧美 国产精品| 久久久久性生活片| 久久99热这里只有精品18| 大又大粗又爽又黄少妇毛片口| or卡值多少钱| 亚洲精品一卡2卡三卡4卡5卡| 好男人在线观看高清免费视频| 午夜福利在线在线| 别揉我奶头 嗯啊视频| 天堂√8在线中文| 欧美+日韩+精品| 成人无遮挡网站| 亚洲专区中文字幕在线| 欧美极品一区二区三区四区| 欧美精品国产亚洲| 熟妇人妻久久中文字幕3abv| 亚洲欧美清纯卡通| 午夜福利高清视频| 午夜激情欧美在线| 日韩欧美国产一区二区入口| 午夜激情欧美在线| 22中文网久久字幕| 午夜激情欧美在线| 无遮挡黄片免费观看| 日本在线视频免费播放| 色综合站精品国产| 国语自产精品视频在线第100页| 1024手机看黄色片| 一级a爱片免费观看的视频| 十八禁国产超污无遮挡网站| 亚洲av日韩精品久久久久久密| 欧美日韩瑟瑟在线播放| 最近在线观看免费完整版| 精品人妻视频免费看| 国产色爽女视频免费观看| 久久久精品欧美日韩精品| 一个人看的www免费观看视频| 亚洲国产色片| 欧美bdsm另类| 99热精品在线国产| 久久6这里有精品| 1000部很黄的大片| 精品日产1卡2卡| 国产欧美日韩精品亚洲av| 亚洲性久久影院| 91久久精品国产一区二区成人| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 亚洲专区国产一区二区| 夜夜爽天天搞| 成年版毛片免费区| 俺也久久电影网| 国内少妇人妻偷人精品xxx网站| 很黄的视频免费| 91av网一区二区| 精品日产1卡2卡| 国产91精品成人一区二区三区| 老女人水多毛片| 少妇的逼好多水| 小蜜桃在线观看免费完整版高清| 亚洲性夜色夜夜综合| 欧美日本视频| 国产伦人伦偷精品视频| 日韩精品中文字幕看吧| 成人特级av手机在线观看| 国产精品一区www在线观看 | АⅤ资源中文在线天堂| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 日本一本二区三区精品| 91久久精品国产一区二区三区| 国产精品亚洲美女久久久| 毛片一级片免费看久久久久 | 国产真实伦视频高清在线观看 | 他把我摸到了高潮在线观看| 精品久久久噜噜| 成人特级av手机在线观看| 国产精品99久久久久久久久| 亚洲av熟女| 欧美最新免费一区二区三区| 简卡轻食公司| 自拍偷自拍亚洲精品老妇| 九九爱精品视频在线观看| 亚洲自偷自拍三级| 中文字幕av在线有码专区| 最近中文字幕高清免费大全6 | 88av欧美| 中文字幕av在线有码专区| 日本a在线网址| 婷婷精品国产亚洲av| 国产亚洲精品久久久com| 久久久久久九九精品二区国产| 国产视频内射| 日韩中字成人| 欧美3d第一页| 一区福利在线观看| 成人美女网站在线观看视频| 国产精品爽爽va在线观看网站| 成人国产综合亚洲| 俺也久久电影网| 日本免费一区二区三区高清不卡| bbb黄色大片| 日韩一本色道免费dvd| 美女 人体艺术 gogo| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 免费高清视频大片| 少妇的逼水好多| 露出奶头的视频| 在线国产一区二区在线| 天美传媒精品一区二区| 久久久久国产精品人妻aⅴ院| 最近最新免费中文字幕在线| 女同久久另类99精品国产91| 日韩亚洲欧美综合| 神马国产精品三级电影在线观看| 成年免费大片在线观看| 一区福利在线观看| 天堂网av新在线| 舔av片在线| 老熟妇乱子伦视频在线观看| 久久九九热精品免费| 此物有八面人人有两片| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 淫妇啪啪啪对白视频| or卡值多少钱| 免费看光身美女| 久久久久国内视频| 亚洲真实伦在线观看| 啦啦啦观看免费观看视频高清| 嫩草影院入口| 精品久久久久久,| 国产伦精品一区二区三区四那| 99riav亚洲国产免费| av国产免费在线观看| 成人欧美大片| 久久久久九九精品影院| 国产一区二区在线观看日韩| 日韩在线高清观看一区二区三区 | 人妻制服诱惑在线中文字幕| bbb黄色大片|