程向芬,任成昊,張勁松,胡美均,蔣麗婭,胡海洋,黃 輝**,喬永勝
楊樹和栓皮櫟日光誘導(dǎo)葉綠素?zé)晒饧肮饽芾寐实谋容^*
程向芬1,2,任成昊3,張勁松1,2,胡美均1,2,蔣麗婭4,胡海洋5,黃 輝1,2**,喬永勝6
(1.中國林業(yè)科學(xué)研究院林業(yè)研究所/國家林業(yè)和草原局林木培育重點(diǎn)實(shí)驗(yàn)室,北京 100091;2.河南黃河小浪底地球關(guān)鍵帶國家野外科學(xué)觀測研究站,濟(jì)源 459007;3.青島農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,青島 266109;4.河南農(nóng)業(yè)大學(xué)林學(xué)院,鄭州 450002;5.北京林業(yè)大學(xué)生態(tài)與自然保護(hù)學(xué)院,北京 100083;6.國有濟(jì)源市南山林場,濟(jì)源 459000)
為探究楊樹與栓皮櫟光合光能利用率(LUEp)和熒光光能利用率(LUEf)關(guān)系的日內(nèi)變化及種間差異,從光能分配的角度進(jìn)一步深入理解日光誘導(dǎo)葉綠素?zé)晒猓⊿IF)與總初級生產(chǎn)力(GPP)的關(guān)系,以典型落葉闊葉林樹種楊樹(×)和栓皮櫟(BI.)幼苗為對象,在相同土壤水分和養(yǎng)分條件下,觀測研究不同樹種SIF、凈光合速率(Pn)與LUEp/LUEf對光合有效輻射(PAR)響應(yīng)的異同。結(jié)果表明:(1)SIF受PAR驅(qū)動,二者呈顯著正相關(guān)關(guān)系,楊樹和栓皮櫟線性擬合決定系數(shù)(R2)分別為0.965和0.973,且楊樹具有更高的LUEf;Pn隨PAR的增加逐漸飽和,楊樹光飽和點(diǎn)明顯高于栓皮櫟,分別為998.59和674μmolCO2·m?2·s?1。(2)楊樹和栓皮櫟Pn均隨著SIF的增大呈先上升變化,之后楊樹的Pn逐漸飽和,栓皮櫟則緩慢下降。(3)LUEp與LUEf呈顯著負(fù)線性相關(guān)關(guān)系,LUEp/LUEf隨光強(qiáng)的增加呈指數(shù)型逐漸下降趨勢,變化規(guī)律及大小在樹種間不存在明顯差異。研究結(jié)果說明,在日內(nèi)隨PAR的升高,LUEf變化較小,而LUEp則下降明顯,光能分配向碳固定的比例下降,因此,Pn在強(qiáng)光下飽和,SIF與GPP在日內(nèi)尺度表現(xiàn)出指數(shù)型相關(guān)關(guān)系,且該指數(shù)型關(guān)系在樹種間一致。
日光誘導(dǎo)葉綠素?zé)晒猓粌艄夂纤俾?;光能利用率;光合有效輻?/p>
光合作用是綠色植物吸收光能,將二氧化碳和水同化為自身有機(jī)物的過程,是生態(tài)系統(tǒng)碳收入的唯一途徑和碳循環(huán)過程的開始,因此,準(zhǔn)確評估植物的光合作用對研究全球生態(tài)系統(tǒng)能量與物質(zhì)循環(huán)具有重要意義[1]。日光誘導(dǎo)葉綠素?zé)晒猓⊿IF)是光合反應(yīng)中心接收太陽光能后發(fā)射的波長更長的光信號[2]。作為光合作用的伴生產(chǎn)物,SIF包含植被的生理、生化等信息,在準(zhǔn)確評估光合作用的實(shí)際狀態(tài)時(shí)具有較強(qiáng)的機(jī)理優(yōu)勢[3?4],為探測植被總初級生產(chǎn)力(GPP)提供了新的思路[5?6]。
光能利用率(LUE)是連接光吸收和碳固定、理解熒光與光合作用關(guān)系的關(guān)鍵參數(shù),根據(jù)能量耗散途徑的不同,可分為光合光能利用率(LUEp)和熒光光能利用率(LUEf)。GPP與SIF關(guān)聯(lián)性的變化受到吸收的光合有效輻射(APAR)與LUEp/LUEf(光合光能利用率與熒光光能利用率的比值)的共同調(diào)節(jié)[4],對LUEf與LUEp關(guān)聯(lián)性的認(rèn)識不足是已有研究對SIF-GPP經(jīng)驗(yàn)線性關(guān)系缺乏機(jī)理理解的重要原因[7]。研究LUEp和LUEf關(guān)聯(lián)性及其對光強(qiáng)的響應(yīng)過程,可從光能分配的角度加強(qiáng)對SIF-GPP的認(rèn)識,該響應(yīng)過程受到生長階段、環(huán)境條件及植物光合能力的影響[7?9]。Yang等[8]研究溫帶混交林冠層SIF-GPP關(guān)聯(lián)性時(shí)發(fā)現(xiàn),LUEp與LUEf呈正相關(guān)關(guān)系,且LUEp與LUEf均隨APAR的上升而升高。Miao等[7]研究發(fā)現(xiàn),大豆LUEp與LUEf呈負(fù)相關(guān)關(guān)系,與對玉米的研究結(jié)果一致[9],且LUEp隨APAR的上升而下降,LUEf則上升。Verma等[10]基于衛(wèi)星遙感數(shù)據(jù)對草地植被進(jìn)行研究,結(jié)果表明,草地植被LUEp與LUEf呈正相關(guān)關(guān)系,且LUEp與LUEf均隨APAR的上升而上升??梢?,物種間LUEp與LUEf的關(guān)系還存在較大爭議,還需針對更多不同光合特性的植物開展研究。且目前相關(guān)研究多集中在LUEp與APAR的關(guān)系,而LUEf對APAR的響應(yīng)及LUEp與LUEf關(guān)系的研究還較為缺乏。
楊樹(×)是世界上分布最廣、適應(yīng)性最強(qiáng)的樹種,主要分布在北半球溫帶及寒溫帶,遍及東北、西北、華北和西南等地,是人工林造林面積排名第二的樹種,在中國人工林發(fā)展中具有重要的地位[11]。栓皮櫟(BI.)在世界各地廣泛栽種,在中國分布于西北、華北、華中、華南和西南地區(qū),是暖溫帶地區(qū)地帶性植被的主要落葉闊葉林樹種之一[12]。相對楊樹,栓皮櫟光合生長速率較低[13?14]。為了從光能分配的角度加強(qiáng)對SIF-GPP的認(rèn)識,了解不同生長速率樹種之間LUEp/LUEf的異同性,本研究選擇楊樹和栓皮櫟作為對象,在土壤水分及養(yǎng)分相同的狀態(tài)下,分析探究不同樹種之間LUEp、LUEf及LUEp/LUEf對PAR響應(yīng)的異同性,以期為進(jìn)一步加深對GPP和SIF的關(guān)聯(lián)機(jī)制的認(rèn)知水平,為生態(tài)環(huán)境建設(shè)決策的制定提供理論依據(jù)。
試驗(yàn)在河南黃河小浪底地球關(guān)鍵帶國家野外科學(xué)觀測研究站內(nèi)進(jìn)行,試驗(yàn)材料為楊樹扦插幼苗(1a生,樹高1.2±0.05m)和栓皮櫟實(shí)生苗(5a生,樹高1.5±0.05m),兩種試驗(yàn)材料均處于幼齡期,不同樹種的林齡選擇是出于樹高和冠幅能夠?qū)崿F(xiàn)冠層SIF(日光誘導(dǎo)葉綠素?zé)晒猓┑臏y量需求。每個(gè)樹種選擇生長均勻一致的6株作為試驗(yàn)材料。SIF觀測日期為2021年7月14日,凈光合速率(Pn)測量日期為2021年7月13?14日,觀測期間天氣晴朗,測量前一個(gè)月保持土壤體積含水量在20%~25%。
1.2.1 冠層光譜
冠層光譜的采集采用多通道葉綠素?zé)晒庾詣佑^測系統(tǒng)(AutoSIF-1,北京),該系統(tǒng)包含一臺高分辨率光譜儀(QE65,Ocean Optics,USA)、電子快門及分析儀。光譜儀光譜范圍640?805nm,光譜分辨率0.31nm,信噪比1000:1。三根光纖連接在光譜儀的一端,一根安裝有余弦校正器并朝向天空用來采集向下太陽輻射,另兩根裸光纖朝向冠層采集不同樹種冠層發(fā)射的向上SIF,視場角為25°。采集的光譜信號在分析儀中進(jìn)行收集處理。
設(shè)備安裝在自制鋼架頂部,裸光纖安裝的垂直高度為2.5m,水平間隔為1.5m,方向垂直向下,正下方分別放置6盆楊樹與栓皮櫟,光纖距離冠層分別為1.3m和1m,保證視野內(nèi)無其他物體干擾。光纖通道間的轉(zhuǎn)換由電子快門控制,測量時(shí)先采集一次向下輻照度,然后采集地物1號通道中楊樹冠層輻射亮度,之后采集一次向下輻照度,最后采集地物2號通道栓皮櫟冠層輻射亮度為一次測量周期,進(jìn)而計(jì)算冠層反射率等光譜信號,受外界光強(qiáng)影響,通道間采集時(shí)間間隔為7~50s,測量周期為15~120s。
SIF信號值的反演是基于熒光對夫瑯禾費(fèi)暗線吸收光譜“井”的填充作用實(shí)現(xiàn)的,對比填充后與填充前的暗線吸收深度,可以將SIF從反射率信號中反演出來[15?16]。為了減少葉片內(nèi)部及冠層對SIF信號重吸收作用帶來的影響,選取波長位于近紅外峰值附近的760nm處的SIF進(jìn)行分析。本研究采用基于輻射量度的SFM(spectral fitting method)反演算法[17],該算法假定“井”內(nèi)外的反射率與SIF發(fā)射量和波長滿足泰勒公式[18]。
1.2.2 光合參數(shù)
每個(gè)樹種隨機(jī)選擇3棵進(jìn)行光合作用測定,采用便攜式光合儀(Li-6400XT,LI?COR,USA)測定楊樹與栓皮櫟的Pn及光響應(yīng)曲線,測量Pn時(shí)選擇2cm×3cm透明葉室,采用開放式氣路,葉室溫度為28±1℃,CO2濃度約為(380±5)μmol·mol?1,氣體流速設(shè)置為500μmol·s?1。光響應(yīng)曲線測定選擇Li-6400-02B LED紅藍(lán)光源葉室,共設(shè)置16個(gè)PAR梯度,分別為2000、1800、1500、1200、1000、900、800、700、600、500、400、300、200、100、50和0μmol·m?2·s?1。每個(gè)PAR下適應(yīng)180~300s后進(jìn)行測定。測定時(shí)間在10:00?11:30及14:30?15:30,每棵選取3片完全展開的葉片,每個(gè)樹種共9片,將9片葉片在對應(yīng)光強(qiáng)下的Pn取平均值,作為該光強(qiáng)下對應(yīng)樹種的Pn。由于測量周期較長,因此,選擇連續(xù)兩天進(jìn)行光合參數(shù)的測量,前后兩天具有相似的天氣條件。
根據(jù)葉子飄[19]植物光合作用對光響應(yīng)的直角雙曲線修正模型對平均后的Pn進(jìn)行擬合,來模擬獲得光響應(yīng)曲線的光飽和點(diǎn)(LSP)和最大凈光合速率(Pnmax)[20],即
式中,Pn為凈光合速率(μmol·m?2·s?1);PAR為光合有效輻射(μmol·m?2·s?1);α為初始量子效率(μmolCO2·μmol?1photons),Rd為暗呼吸速率(μmol·m?2·s?1),二者分別為PAR小于200 μmol·m?2·s?1時(shí)測量點(diǎn)擬合曲線的斜率與截距,Pn為0時(shí)對應(yīng)的PAR值為植物的光補(bǔ)償點(diǎn)(LCP);β為光抑制系數(shù),γ為光飽和系數(shù),均為修正系數(shù)。對式(1)積分并取值為0可獲得LSP及對應(yīng)的Pnmax,即
式中,Pnmax表示最大凈光合速率(μmol·m?2·s?1),LSP為光飽和點(diǎn)(μmol·m?2·s?1),LCP表示光補(bǔ)償點(diǎn)(μmol·m?2·s?1)。
1.2.3 光合有效輻射
光合有效輻射傳感器(LI?190SB,LI?COR,USA)安裝在空曠處,避免視野內(nèi)其它物體遮擋,在日內(nèi)測量光量子通量密度(PPFD,μmol·m?2·s?1),測量波段范圍400?700nm。根據(jù)光響應(yīng)曲線測量時(shí)采用的PAR梯度對測得的PAR進(jìn)行分級,以便與Pn進(jìn)行比較。在分級時(shí),舍去PAR<25μmol·m?2·s?1時(shí)的數(shù)據(jù)。取相鄰梯度的均值作為劃分不同梯度的閾值,將上限劃入相應(yīng)等級,如:當(dāng)PAR對應(yīng)1200μmol·m?2·s?1時(shí),其為取值范圍(1100,1350]內(nèi)PAR的平均值。
Monteith[21]基于光能吸收與植被生產(chǎn)力的關(guān)系,提出了估算GPP的LUEp模型,即
式中,LUEp為光合光能利用率(μmolCO2·μmol photon?1),代表了光能轉(zhuǎn)換為生產(chǎn)力的效率,APAR為吸收的光合有效輻射(μmol·m?2·s?1)。借鑒 Monteith的思路,Berry等[22]提出了LUEf公式,即
式中,LUEf為熒光光能利用率(又稱熒光量子產(chǎn)率,μmol photon@760nm·μmol?1photon@ 400–700 nm),LUEf是連接光系統(tǒng)中的光能分配與冠層發(fā)射的SIF的關(guān)鍵參數(shù)[23],將為解釋SIF-GPP關(guān)系提供機(jī)理支撐。fesc為冠層熒光逃逸系數(shù)(fluorescence escape ratio,fesc),本研究中試驗(yàn)材料冠層結(jié)構(gòu)較簡單,因此將fesc視為1[23]。綜合以上得
可見,光合作用和熒光發(fā)射量可以通過光能利用率相互轉(zhuǎn)換?;谌~片尺度凈光合速率和冠層SIF的測量,假設(shè)葉片上大部分的入射PAR均被吸收[24?25],吸收的光合有效輻射比例(FPAR)≈1,可得
依據(jù)同步測量的PAR等級對SIF進(jìn)行平均,得到不同PAR等級下的SIF值,并進(jìn)一步與光合參數(shù)進(jìn)行分析。采用Python 3.7.4對SIF原始數(shù)據(jù)進(jìn)行提取及計(jì)算,R 4.1.2統(tǒng)計(jì)軟件進(jìn)行皮爾遜相關(guān)性檢驗(yàn)及單因素方差分析,P<0.01為極顯著相關(guān)。采用Origin 2018繪圖軟件進(jìn)行圖表繪制。
2.1.1 日光誘導(dǎo)葉綠素?zé)晒猓⊿IF)
由圖1可見,SIF的變化受PAR的驅(qū)動,二者具有極顯著線性相關(guān)關(guān)系(P<0.01),SIF隨PAR增大逐漸上升。線性擬合決定系數(shù)(R2)分別為0.965和0.973,均方根誤差(RMSE)分別為1.410和1.278,楊樹在PAR大于1000μmol·m?2·s?1時(shí)(圖1a)、栓皮櫟在PAR大于1200μmol·m?2·s?1時(shí)(圖1b),數(shù)據(jù)點(diǎn)分布于擬合線上方。線性擬合斜率即LUEf在樹種間存在明顯差異,楊樹的斜率大于栓皮櫟,分別為9.604×10?4和8.001×10?4,表明在相同的輻射條件下,楊樹的熒光發(fā)射量大于栓皮櫟,楊樹具有更高的LUEf。
圖1 兩樹種日光誘導(dǎo)葉綠素?zé)晒猓⊿IF)對光合有效輻射(PAR)的響應(yīng)
注:2021年7月14日觀測,短線表示標(biāo)準(zhǔn)誤差。黑色實(shí)線代表線性擬合結(jié)果,方程為線性擬合方程,R2為擬合決定系數(shù),RMSE為均方根誤差。下同。
Note: Observation was on July 14, 2021, the bar is the standard error. The black solid line represents the linear regression, the equation is the linear fitting models, R2is the coefficient of determination, RMSE is the root mean square error. The same as below.
2.1.2 凈光合速率(Pn)
從圖2可知,楊樹、栓皮櫟在PAR分別低于500μmol·m?2·s?1和300μmol·m?2·s?1時(shí),Pn對PAR的響應(yīng)較為敏感,隨PAR的增大快速上升,之后Pn隨PAR上升的趨勢逐漸變緩。在PAR高于500μmol·m?2·s?1時(shí),栓皮櫟Pn隨PAR的升高出現(xiàn)持續(xù)下降的現(xiàn)象,表明較高的PAR對光合作用產(chǎn)生了抑制作用;楊樹在PAR大于2000μmol·m?2·s?1時(shí),Pn出現(xiàn)降低現(xiàn)象。
表1表明,LSP和LCP在樹種之間存在明顯差異,楊樹和栓皮櫟分別為998.59、674μmol·m?2·s?1和26.61、11.74μmol·m?2·s?1,楊樹的LSP明顯高于栓皮櫟。楊樹的最大光合速率(Pnmax)高于栓皮櫟,分別為10.17和6.16μmolCO2·m?2·s?1。
由圖3可見,楊樹和栓皮櫟Pn均隨著SIF的增大先上升后達(dá)到飽和或下降,在SIF分別低于0.5和0.25mW·m?2·sr?1時(shí),隨SIF的增大快速上升,之后楊樹Pn保持不變,栓皮櫟Pn下降明顯。Pn對SIF的響應(yīng)與Pn對PAR的響應(yīng)模式一致,是由于SIF與PAR具有較好的線性相關(guān)關(guān)系,較高的SIF對應(yīng)較高的PAR,因此栓皮櫟Pn下降明顯,而楊樹并未表現(xiàn)出明顯的降低現(xiàn)象。
由圖4可見,楊樹和栓皮櫟LUEp與LUEf之間均存在顯著負(fù)線性相關(guān)關(guān)系(P<0.01)。隨著LUEf的增大,LUEp持續(xù)降低,線性擬合具有較高的決定系數(shù)(R2),楊樹和栓皮櫟分別為0.74和0.86。楊樹的LUEp下降速率高于栓皮櫟。
如圖5所示,LUEp/LUEf與PAR的關(guān)系在兩個(gè)樹種間較為一致,均隨PAR的增大呈下降趨勢,最大值出現(xiàn)在PAR最低時(shí)。PAR小于500μmol·m?2·s?1時(shí),LUEp/LUEf下降趨勢較陡,之后下降趨勢變緩,PAR對LUEp/LUEf影響的敏感性減弱。除在PAR為50μmol·m?2·s?1時(shí),栓皮櫟的LUEp/LUEf高于楊樹,其它情況下二者無明顯差異。在生長季,白天PAR小于100μmol·m?2·s?1僅出現(xiàn)在日出或日落時(shí)刻附近,該時(shí)段太陽高度角較低,影響冠層上方傳感器觀測SIF,在數(shù)據(jù)分析中常被舍去。因此,分析基于塔基或衛(wèi)星的SIF和GPP產(chǎn)品時(shí),可忽略該時(shí)段的觀測數(shù)據(jù),故可認(rèn)為,楊樹和栓皮櫟的SIF-GPP線性經(jīng)驗(yàn)關(guān)系的斜率可能是相同的。結(jié)合LUEp/LUEf與PAR的關(guān)系及晴天PAR的日變化規(guī)律,LUEp/LUEf的日變化呈“倒U”型。LUEp/LUEf對PAR的響應(yīng)模式為非線性,因此,二者的競爭關(guān)系受到PAR的調(diào)節(jié),表現(xiàn)出了植物光合反應(yīng)中心在光能調(diào)節(jié)分配策略上的適應(yīng)性。
圖2 兩樹種光合作用?光響應(yīng)曲線
注:虛線為直角雙曲線修正擬合模型。
Note:The dotted line is the fitting modified rectangular hyperbolic model. Pnis net photosynthetic rate.
表1 兩樹種最大凈光合速率(Pnmax)、光飽和點(diǎn)(LSP)及光補(bǔ)償點(diǎn)(LCP)的對比
圖3 兩樹種SIF與凈光合速率(Pn)的關(guān)系
注:虛線為指數(shù)擬合回歸。
Note: The dotted line is the exponential fitting regression.
圖4 兩樹種光合光能利用率(LUEp)與熒光光能利用率(LUEf)的關(guān)系
圖5 兩樹種LUEp/LUEf對PAR的響應(yīng)
SIF隨PAR的增加持續(xù)增加,二者呈較好的線性關(guān)系,并未出現(xiàn)明顯的飽和現(xiàn)象。作為植物生長活動的能量來源,PAR對Pn的高低和SIF的發(fā)射量有直接作用[26]。APAR是地面觀測SIF的關(guān)鍵驅(qū)動因子[23, 27],二者良好的相關(guān)性已經(jīng)在多種生態(tài)系統(tǒng)中得到了證實(shí)[8, 28?29]。
楊樹與栓皮櫟在光合能力上存在明顯差異,從光合生理角度,Pn可以直接反映單位葉面積的物質(zhì)生產(chǎn)能力,是衡量植物生產(chǎn)速率的有效指標(biāo)[30],楊樹具有更高的Pn、LSP和Pnmax。從植物形態(tài)角度,楊樹具有更大的全株總?cè)~面積,根系發(fā)達(dá),更有利于幼苗的生長[31]。在本研究中,隨著PAR的增大,楊樹與栓皮櫟Pn均逐漸飽和,而SIF則繼續(xù)增長,是由于受到最大羧化速率的限制[32],SIF與Pn之間的關(guān)系在日內(nèi)是非線性的。因此本研究發(fā)現(xiàn)LUEp對光強(qiáng)敏感度較高,隨PAR的升高逐漸下降,而LUEf對光的敏感度較低,日內(nèi)變化較小[33?34]??芍?,較高的光強(qiáng)未造成SIF的下降,僅造成對Pn的抑制[35]。二者線性關(guān)系的解耦是由于光合作用過程由光反應(yīng)與暗反應(yīng)構(gòu)成,其中SIF僅參與了光反應(yīng)中的光能吸收與傳遞過程,與電子傳遞鏈效率相關(guān),而暗反應(yīng)則是吸收CO2固定有機(jī)物的過程,因此,SIF的發(fā)射量僅與光反應(yīng)過程有關(guān)[36]。
在強(qiáng)光下,葉片吸收過多的光后,為了避免光損傷,將多余的光能以熒光或熱的形式釋放,因此,熒光量子產(chǎn)率即LUEf隨光強(qiáng)增加[5],脅迫條件下的非光化學(xué)猝滅(nonphotochemical quenching,NPQ)的升高是調(diào)節(jié)二者關(guān)系的關(guān)鍵因素[37];另一方面,強(qiáng)光伴隨的高溫條件會造成氣孔關(guān)閉,胞內(nèi)CO2含量的降低會造成光呼吸的增加[38],引起光合“午休”現(xiàn)象,因此光合光能利用率下降,進(jìn)一步造成SIF與Pn線性關(guān)系的解耦,解耦的根本原因則是光反應(yīng)與暗反應(yīng)的不同步。已有研究證明抑制光合作用的不同過程會造成SIF與Pn關(guān)聯(lián)性的變化,如施加除草劑抑制電子傳遞鏈時(shí),SIF發(fā)射量將會迅速增加[29],而通過脫落酸及誘導(dǎo)栓塞關(guān)閉氣孔,光合作用的降低并未與SIF的下降同步[39]。
LUE定義為吸收的光子用于不同耗散途徑的摩爾數(shù)。當(dāng)入射輻射和NPQ假定恒定時(shí),LUEp和LUEf由于對相同吸收光的競爭而呈負(fù)相關(guān)關(guān)系。因此,由于消除了PAR的影響,LUEp和LUEf的變化特征能更好地解釋反應(yīng)中心的生化過程[20]。本研究發(fā)現(xiàn)了日內(nèi)隨光強(qiáng)增大呈上升趨勢的LUEf和下降趨勢的LUEp等現(xiàn)象,而在溫帶混交林的研究結(jié)果發(fā)現(xiàn),日間尺度上,LUEp和LUEf均隨PAR的降低逐漸下降,二者為正相關(guān)關(guān)系,證明SIF信號與光合作用的關(guān)系在日內(nèi)與日間存在較大差異。日內(nèi)尺度上冠層參數(shù)的變化可以忽略不計(jì),因此,LUEp和LUEf的關(guān)系僅受光強(qiáng)調(diào)節(jié),季節(jié)尺度上,LUEp隨植被物候和植物對各種環(huán)境因素的響應(yīng)而變化,LUEp與LUEf的顯著正相關(guān)關(guān)系表明,LUEf也對這些因素的變化做出反應(yīng),因此LUEp與LUEf表現(xiàn)為正相關(guān)關(guān)系[8]。
在光系統(tǒng)水平上,弱光和無脅迫情況下,吸收的大部分能量被光化學(xué)途徑有效利用,因此,光系統(tǒng)色素天線吸收的光能被快速傳遞給光反應(yīng)的電子傳遞鏈,此時(shí)光合光能利用率較高,熒光量子產(chǎn)率較低[40],隨著光強(qiáng)的增加,反應(yīng)中光系統(tǒng)II(PSII)中電子受體和電子傳遞鏈逐漸趨于光飽和,吸收的光能以熒光形式重發(fā)射的比例增加,進(jìn)一步導(dǎo)致熒光量子產(chǎn)率增加。這些快速熒光動力學(xué)反映了PSII電子受體對LUEp/LUEf的影響[41]。
本研究表明,樹種在SIF及LUEp/LUEf對PAR的響應(yīng)模式上具有一致性,種間差異集中體現(xiàn)在光合作用速率上。楊樹具有更高的光合速率,與其較高的生長速率相吻合,且生長速率更高的樹種其LUEf也較高,這與先前的研究結(jié)果不同[42?43]。以往研究通過對C3植物小麥和C4植物玉米的對比試驗(yàn)發(fā)現(xiàn),種間的差異主要集中在GPP上,但SIF和LUEf則在小麥和玉米間差異較小,因此玉米的LUEp/LUEf大于小麥[44],在大豆(C3植物)與玉米的對比中也得到了類似的結(jié)果,這主要是由于C3植物光系統(tǒng)中部分電子用于光呼吸[33],Pn飽和導(dǎo)致Pn與SIF之間存在非線性關(guān)系,而在玉米上則呈嚴(yán)格線性關(guān)系[42]。針對兩種C4植物的比較發(fā)現(xiàn),芒草在高溫高輻射條件下NPQ升高,LUEf明顯降低,SIF在午間下降并削弱了SIF-GPP關(guān)系,導(dǎo)致相比于玉米更低的SIF-GPP線性關(guān)系的斜率[43]。本研究并未發(fā)現(xiàn)楊樹和栓皮櫟LUEp/LUEf的顯著差異,可能是在觀測期間,植物受到的瞬時(shí)脅迫并未造成LUEf的明顯下降。楊樹和栓皮櫟為落葉闊葉林樹種,屬于相同植物功能型,本研究觀測了幼苗期楊樹和栓皮櫟在SIF、LUEp、LUEf等方面的異同性,未來應(yīng)從不同植物功能型樹種及其不同林齡等角度,進(jìn)行進(jìn)一步研究,以更深入地認(rèn)識光能利用率對SIF和生產(chǎn)力關(guān)聯(lián)性的調(diào)節(jié)作用。
Pn對SIF增大的非線性響應(yīng)是由于LUEp和LUEf在日內(nèi)受光強(qiáng)調(diào)節(jié)的結(jié)果,隨光強(qiáng)的增加,LUEp逐漸下降,Pn在強(qiáng)光下逐漸飽和;而LUEf略有增加,SIF隨光強(qiáng)增加持續(xù)增大,因此,Pn隨SIF增加表現(xiàn)出逐漸增大直至飽和的現(xiàn)象,該現(xiàn)象在楊樹與栓皮櫟間保持一致。LUEp和LUEf呈負(fù)相關(guān)關(guān)系,表明SIF與Pn對吸收光能存在競爭作用,在弱光下,大部分吸收光能用于碳固定,而隨著光強(qiáng)增加,該比例逐漸下降。相比栓皮櫟,生長速率較高的楊樹有更高的LUEp和LUEf。
[1] 劉楊楊,李俊,于強(qiáng),等.甘蔗葉片光合 CO2響應(yīng)參數(shù)分析及其品種間差異[J].中國農(nóng)業(yè)氣象,2019,40(10):637-646.
Liu Y Y, Li J, Yu Q, et al. Sugarcane leaf photosynthetic CO2responses parameters and their difference among varieties [J].Chinese Journal of Agrometeorology,2019,40 (10):637- 646.(in Chinese).
[2] Baker N R.Chlorophyll fluorescence:a probe of photosynthesis in vivo[J].Annual Review of Plant Biology,2008, 59: 89-113.
[3] Xiao J,Chevallier F,Gomez C,et al.Remote sensing of the terrestrial carbon cycle:a review of advances over 50 years[J].Remote Sensing of Environment,2019,233:111383.
[4] Porcar-Castell A,Tyystj?rvi E,Atherton J,et al.Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:mechanisms and challenges[J].Journal of Experimental Botany,2014,65:4065-4095.
[5] Wassink E C.Chlorophyll fluorescence and photosynthesis[J]. Advances in Enzymology and Related Areas of Molecular Biology,2006(11): 91-199.
[6] Sun Y,Frankenberg C,Wood J D,et al.OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J].Science,2017,358:5747.
[7] Miao G,Guan K,Yang X,et al.Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements[J]. Journal of Geophysical Research:Biogeosciences,2018,123: 610-623.
[8] Yang X,Tang J,Mustard J F,et al.Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest[J].Geophysical Research Letters,2015,42:2977-2987.
[9] Damm A,Elber J,Erler A,et al.Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)[J].Global Change Biology,2010,16:171-186.
[10] Verma M,Schimel D,Evans B,et al.Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site[J].Journal of Geophysical Research: Biogeosciences, 2017,122:716-733.
[11] 王明援,劉寧,李波,等.不同光強(qiáng)對6個(gè)歐美楊無性系苗期生長及光合特性的影響[J].林業(yè)科學(xué)研究,2020,33(1): 123-130.
Wang M Y,Liu N,Li B,et al.Effects of light intensity on the growth and photosynthetic characteristics of six×clones at seedling stage[J].Forest Research, 2020,33(1):123-130.(in Chinese).
[12] 周建云,林軍,何景峰,等.栓皮櫟研究進(jìn)展與未來展望[J]. 西北林學(xué)院學(xué)報(bào),2010(3):43-49.
Zhou J Y,Lin J,He J F,et al.Review and perspective on Quercus variabilis research[J].Journal of Northwest Forestry College,2010(3):43-49.(in Chinese).
[13] 尹偉倫.不同種類楊樹苗木的生長和光合性能的比較研究Ⅱ:凈光合速率、光呼吸和Hill反應(yīng)等光合性能指標(biāo)[J].北京林業(yè)大學(xué)學(xué)報(bào),1983(2):41-56.
Yin W L.A comparative study on growth and photosynthetic activity of different kinds of poplar seedlingsⅡ: net photosynthetic rate, photorespiration and hill reaction as indices for breeding clones[J].Journal of Beijing Forestry University,1983(2):41-56.(in Chinese).
[14] 王鑫,同小娟,張勁松,等.太行山南麓栓皮櫟人工林光合作用對土壤呼吸的影響[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2021,43(1): 66-76.
Wang X,Tong X J,Zhang J S,et al.Effects of photosynthesis on soil respiration ofplantation in southern Taihang Mountain of northern China[J].Journal of Beijing Forestry University,2021,43(1):66-76.(in Chinese).
[15] Liu L,Zhan Y,Wang J,et al.Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer line principle[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43:827-832.
[16] Zhang Z,Wang S,Qiu B,et al.Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application[J].Journal of Remote Sensing,2019,23:37-52.
[17] Meroni M,Rossini M,Guanter L,et al.Remote sensing of solar-induced chlorophyll fluorescence:review of methods and applications[J].Remote Sensing of Environment, 2009,113:2037-2051.
[18] Lu X,Liu Z,Zhao F,et al.Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top- of-canopy (TOC) SIF in estimating photosynthesis[J]. Remote Sensing of Environment,2020,251:112083.
[19] 葉子飄.光合作用對光和CO2響應(yīng)模型的研究進(jìn)展[J].植物生態(tài)學(xué)報(bào),2010,34(6):727-740.
Ye Z P.A review on modeling of responses of photosynthesis to light and CO2[J].Chinese Journal of Plant Ecology,2010, 34(6):727-740.(in Chinese).
[20] 李理淵,李俊,同小娟,等.不同光環(huán)境下栓皮櫟和刺槐葉片光合光響應(yīng)模擬[J].應(yīng)用生態(tài)學(xué)報(bào),2018,29(7): 2295- 2306.
Li L Y,Li J,Tong X J,et al.Simulation on photosynthetic light-responses of leaves of Quercus variabilis and Robinia pseudoacacia under different light conditions[J].Chinese Journal of Applied Ecology,2018,29(7):2295-2306.(in Chinese).
[21] Monteith J L.Solar radiation and productivity in tropical ecosystems[J].The Journal of Applied Ecology,1972(9): 747.
[22] Berry J,Frankenberg C,Wennberg P,et al.New methods for measurement of photosynthesis from space[C]//Presented at the 2013 NASA Terrestrial Ecology Science Team Meeting, 2013, La Jolla,CA,April 30-May 2, 2013.
[23] Yang K,Ryu Y,Dechant B,et al.Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy[J].Remote Sensing of Environment, 2018,216:658- 673.
[24] 程占慧,劉良云.基于葉綠素?zé)晒獍l(fā)射光譜的光能利用率探測[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):74-80.
Cheng Z H,Liu L Y.Detection of vegetation light by using efficiency based on chlorophyll fluorescence spectrum[J]. Transactions of the CSAE,2010,26(2):74-80.(in Chinese)
[25] Liu L,Zhang Y,Jiao Q,et al.Assessing photosynthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index[J]. International Journal of Remote Sensing,2013,34:4264- 4280.
[26] Mohammed G H,Colombo R,Middleton E M,et al.Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation:50?years of progress[J].Remote Sensing of Environment,2019,231:111177.
[27] Chang C Y,Wen J,Han J,et al.Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF):canopy structure,plant physiology,instrument configuration and retrieval methods[J].Remote Sensing of Environment, 2021,265:112672.
[28] 張鑫,劉雷震,趙文慧,等.冬小麥日光誘導(dǎo)葉綠素?zé)晒獾娜兆兓?guī)律探究[J].北京師范大學(xué)學(xué)報(bào), 2018,54(5): 650-658.
Zhang X,Liu L Z,Zhao W H,et al.Diurnal variation of solar-induced chlorophyll fluorescence of winter wheat[J]. Journal of Beijing Normal University,2018, 54(5):650- 658.(in Chinese).
[29] Cheng X,Zhou Y,Hu M,et al.The links between canopy solar-induced chlorophyll fluorescence and gross primary production responses to meteorological factors in the growing season in deciduous broadleaf forest[J].Remote Sensing,2021,13:2363.
[30] 張瑤,楊再強(qiáng),姜雨函,等.低溫寡照條件下黃瓜葉片光合作用減弱的機(jī)理分析[J].中國農(nóng)業(yè)氣象,2022,43(4):285-294.
Zhang Y,Yang Z Q,Jiang Y H,et al.Mechanism analysis on photosynthetic attenuation in cucumber leaves under low temperature and weak light condition[J].Chinese Journal of Agrometeorology,2022,43(4):285-294.(in Chinese)
[31] Liu Z,Jia G,Yu X.Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain[J]. Agriculture,Ecosystems & Environment,2020,287:106697.
[32] Kim J,Ryu Y,Dechant B,et al.Solar-induced chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate evergreen needle leaf forest during the fall transition[J].Remote Sensing of Environment,2021,258: 112362.
[33] Gu L,Han J,Wood J D,et al.Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions[J].New Phytologist, 2019,223: 1179-1191.
[34] Liu Y,Chen J M,He L,et al.Non-linearity between gross primary productivity and far-red solar-induced chlorophyll fluorescence emitted from canopies of major biomes[J]. Remote Sensing of Environment,2022, 271:112896.
[35] Pinto F,Damm A,Schickling A,et al.Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies[J].Plant Cell and Environment, 2016,39:1500-1512.
[36] Schreiber U,Bilger W,Neubauer C.Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[C]//Schulze E D,Caldwell M M.Ecophysiology of photosynthesis.Berlin:Springer,1995:49-70.
[37] Martini D,Sakowska K,Wohlfahrt G,et al.Heatwave breaks down the linearity between sun-induced fluorescence and gross primary production[J].New Phytologist,2022,233: 2415-2428.
[38] Helm L T,Shi H,Lerdau M T,et al.Solar-induced chlorophyll fluorescence and short-term photosynthetic response to drought[J].Ecological Applications,2020,30(5):e02101.
[39] Marrs J K,Reblin J S,Logan B A,et al.Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure[J]. Geophysical Research Letters,2020,47:2020GL087956.
[40] Dau H.Molecular mechanisms and quantitative models of variable photosystem Ⅱ fluorescence[J]. Photochemistry and Photobiology,1994,60:1-23.
[41] Brody S S,Rabinowitch E.Excitation lifetime of photosynthetic pigments in vitro and in vivo[J].Science,1957,125:16-17.
[42] He L,Magney T,Dutta D,et al.From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity[J].Geophysical Research Letters,2020,47: 2020GL087474.
[43] Wu G,Guan K,Jiang C,et al.Attributing differences of solar-induced chlorophyll fluorescence (SIF)-gross primary production (GPP) relationships between two C4 crops:corn and miscanthus[J].Agricultural and Forest Meteorology, 2022, 323: 109046.
[44] Liu L,Guan L,Liu X.Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence[J].Agricultural and Forest Meteorology, 2017,232: 1-9.
Comparison of Solar-induced Chlorophyll Fluorescence and Light Use Efficiency between Poplar and Cork Oak
CHENG Xiang-fen1,2, REN Cheng-hao3, ZHANG Jin-song1,2, HU Mei-jun1,2, JIANG Li-ya4, HU Hai-yang5, HUANG Hui1,2, QIAO Yong-sheng6
(1. Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Beijing 100091,China; 2. Henan Xiaolangdi Earth Critical Zone National Research Station on the Middle Yellow River, Jiyuan 459007; 3. School of Electrical and Mechanical Engineering, Qingdao Agricultural University, Qingdao 266109; 4. College of Forestry, Henan Agricultural University, Zhengzhou 450002; 5. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083; 6. State Owned Nanshan Forest Farm of Jiyuan City, Jiyuan 459000)
Light use efficiency (LUE) is a key parameter connecting light absorption and carbon fixation and understanding the relationship between fluorescence and photosynthesis.Based on the absorbed energy dissipation pathways, LUE can be divided into light use efficiency of photosynthetic (LUEp) and light use efficiency of fluorescence (LUEf). The relationship between LUEpand LUEfof poplar and cork oak and the differences between species were explored in this study, to better understand the mechanism links between solar-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) in deciduous broadleaf forests. In this study, the poplar (×) and cork oak (BI.) seedlings were used as the objects to measure the divergences in SIF and net photosynthetic rate (Pn) under the same soil moisture and nutrient conditions, to explore the responses of LUEp/LUEfto photosynthetically active radiation (PAR). The results showed that, (1) SIF was driven by incident PAR, SIF and PAR were significantly positively correlated. The coefficient of determination (R2) of poplar and cork oak were 0.965 and 0.973, respectively, and LUEfwas higher in poplar. Pngradually increased with increasing PAR. The light saturation point (LSP) of poplar was significantly higher than that of cork oak, which were 998.59 and 674 μmolCO2·m?2·s?1, respectively. (2) Pnfirst increased with the increasing SIF, and then the Pnof poplar was gradually saturated, while that of cork oak continued to slowly increase. (3) LUEpand LUEfshowed significant negative linear correlation, and LUEp/LUEfdecreased exponentially with increasing PAR, there was no significant difference in the change pattern and amplitude between tree species. During the daytime, with the increase of PAR, LUEfchanged slightly, while LUEpdecreased significantly, and the proportion of light energy allocation to carbon assimilation decreased. Therefore, Pnsaturated under high light intensity, SIF and GPP showed exponential correlation in intraday scale, and the exponential relationship was consistent across tree species.
Solar-induced chlorophyll fluorescence; Net photosynthetic rate; Light use efficiency; Photosynthetically active radiation
10.3969/j.issn.1000-6362.2023.04.004
程向芬,任成昊,張勁松,等.楊樹和栓皮櫟日光誘導(dǎo)葉綠素?zé)晒饧肮饽芾寐实谋容^[J].中國農(nóng)業(yè)氣象,2023,44(4):295-304
2022?05?06
科技基礎(chǔ)資源調(diào)查專項(xiàng)(2021FY100701)
黃輝,副研究員,博士,主要從事森林生態(tài)系統(tǒng)結(jié)構(gòu)與功能研究,E-mail:huanghui@caf.ac.cn
程向芬,E-mail:chengxf@caf.ac.cn