• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective thermal emission and infrared camouflage based on layered media

    2023-04-22 02:05:12QingxingJIXueynCHENVinentLAUDEJunLIANGGuodongFANGChngguoWANGRsoulALAEEMumerKADIC
    CHINESE JOURNAL OF AERONAUTICS 2023年3期

    Qingxing JI, Xueyn CHEN, Vinent LAUDE, Jun LIANG,Guodong FANG, Chngguo WANG,*, Rsoul ALAEE, Mumer KADIC

    a National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China

    b Institute FEMTO-ST, CNRS, University Bourgogne Franche-Comte′, Besanc?on 25000, France

    c Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China

    d Department of Physics, University of Ottawa, Ottawa, K1N 6N5, Canada

    e Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe D-76131, Germany

    KEYWORDS Heat transfer manipulation;Infrared camouflage;Multilayer media;Selective thermal emission;Thermal illusion;Transfer matrix method

    Abstract Infrared camouflage based on artificial thermal metasurfaces has recently attracted significant attention.By eliminating thermal radiation differences between the object and the background, it is possible to hide a given object from infrared detection.Infrared camouflage is an important element that increases the survivability of aircraft and missiles,by reducing target susceptibility to infrared guided threats.Herein,a simple and practicable design is theoretically presented based on a multilayer film for infrared stealth,with distinctive advantages of scalability,flexible fabrication,and structural simplicity.The multilayer medium consists of silicon substrate,carbon layer and zinc sulfide film,the optical properties of which are determined by transfer matrix method.By locally changing the thickness of the coating film, the spatial tunability and continuity in thermal emission are demonstrated.A continuous change of emissive power is further obtained and consequently implemented to achieve thermal camouflage functionality.In addition, other functionalities, like thermal illusion and thermal coding, are demonstrated by thickness-engineered multilayer films.

    1.Int roduction

    Thermal metamaterials have been designed to realize unusual effective thermal properties in order to create extraordinary devices such as thermal cloaks, concentrators, sensors or illusion devices.1–21These devices are based on heat conduction engineering including via the thermal conductivity tensor and the heat capacity.Furthermore, manipulation of out-of-plane radiation is more widely studied in radiative cooling and thermal camouflage.Thermal camouflage refers to techniques that make a hot object invisible over the background, which finds potentials in aeronautics, infrared signature suppression and other military applications, i.e., enhances the survivability of aircraft, missiles and even soldiers by evading infrared detection.22–24

    Thermal camouflage can be realized by matching the detected radiative temperature of an object with its surroundings.By eliminating thermal radiation differences between the object and the background, it is possible to hide or disguise a given object from an infrared camera.According to the Stefan-Boltzmann law,the detected intensity emitted from an object is proportional to the surface emissivity and to the fourth power of the thermodynamic temperature.Therefore,one can achieve thermal camouflage by controlling surface temperatures through transformation thermotics and thermo-regulation systems or by tuning the surface emissivity.25–32The latter has the advantage of being passive and that does not require an additional energy source.Currently, infrared stealth has been mainly realized by controlling the surface emissivity using metamaterials or metasurfaces33–39, phase-changing materials40–42and stimuli-responsive structures43–46,resulting in adaptive thermal camouflage47–52and multispectral camouflage.53–56

    The thermal metamaterial approach is the main paradigm for infrared camouflage.It requires exploring micro- and nano-structures with well-designed geometries that demonstrate the desired optical properties, which implies complicated fabrication.Besides, this type of surface emissivity control relies on fine tuning the feature size of wavelengthscale structures.It is therefore challenging to obtain a continuously changing surface emissivity.Researchers introduced multilayer medium micro-structures to modulate thermal radiation,which proves easy and flexible for fabrication.25,35,51,56However, the reported works have focused on camouflaging a given object with uniform temperature.33–35,37,39,57To perfectly camouflage a continuously changing thermal field, which widely exists in practical applications,the required emissivity profile is position-dependent and varies continuously.This problem was tackled by employing a form of discretization, in which a step-wise approximation of ideal emissivity parameters was made at the sacrifice of camouflage performance.39

    In this work,we propose a simple strategy to realize thermal camouflage based on infrared-transparent thin films thickness engineering.Using this simple approach, we demonstrate spatial tunability and continuity in thermal emission.By locally changing the thickness of the coating film, we obtain a continuous change of emissive power and consequently implement the desired thermal functionalities.This technique of thermal radiation manipulation has the following advantages: (A) In theory, perfect camouflage can be achieved since the required continuously changing thermal radiation can be realized by a calculated thickness distribution that is also continuous, without further discretization and approximation.(B) The same surface emissivity can be obtained with coating films of different thickness, allowing for size flexibility in fabrication.(C)Structural simplicity follows from the fact that only bilayer films are employed.

    2.Methods and results

    2.1.Working principle of infrared camera

    We first recall the working principle of an infrared camera(see Fig.1).Effective radiation detected by an infrared camera includes three parts, i.e., object radiation Pobj=εoλPbλ(To),ambient reflection Pr=RoλPbλ(Ta) and air radiation Pa=εaPbλ(Ta), which can be expressed as.

    where τaλand εaλare air transmittance and emissivity respectively, Roλand εoλare object reflectivity and emissivity respectively, and Toand Taare temperatures of the object and ambient surroundings respectively.Pbλis the black-body radiation received by an infrared camera.The camera transforms the received radiation into signal voltage and further interprets the voltage as scale functions, based on which radiation temperatures are plotted in the camera images.Here we consider‘‘hot objects”where Toand εoλare correspondingly much larger than Taand Roλ.Taking a human(skin emissivity 0.97 and body temperature 310 K) in room temperature 293 K as an example,ambient reflection is around only 0.8%of the object radiation.Besides, air radiation is always small and even negligible.Therefore,in the following work,we modulate thermal emission and realize infrared functionalities mainly by tuning Pobj.

    2.2.Design scheme

    Our design is based on a film-substrate system depicted in Fig.2(a).Optical properties of the multilayered structure are analytically obtained using the transfer matrix method.The transmission matrix of the j-th layer is expressed as.

    Using Planck’s law,the spectral radiance of an object in the atmosphere window is given by.

    Fig.1 Working principle of an infrared camera.

    Fig.2 Optical properties of designed layered media.

    Eq.(6) demonstrates that the perceived radiation by an infrared camera can be effectively tuned by engineering the emissivity of the metasurface.A thermal infrared camera integrates the received energy over its operational wavelength and transfers the integration values to the recorded temperatures in thermal images, which can be expressed by.

    where φλis a parameter related to the lens area and spectral responsivity of an infrared camera.φλis invariant for a given infrared camera.41The detected temperature Trof an object recorded in infrared images is equal to the real temperature T if and only if the object is a black-body and the air transmittance τaλ=1.Tris directly related to Pobj(T )which is dependent on both the emissivity εobj(tuned by the film thickness d in this work) and the real temperature T.To achieve perfect thermal camouflage,the recorded temperature Tr(or PobjT( ))should be spatially constant.Considering that each surface unit has a different temperature, we tune the spectral emissivity of each unit to make Tr(or Pobj(T )) the same over the whole sample by depositing over each unit a thin film of the corresponding thickness.We emphasize that the proposed strategy is also applicable to thermal radiation illusion or coding.

    2.3.Design method

    We now realize thermal radiation modulation by engineering optical properties of the surface.For clarity,the design process for the general case is outlined through a specific example.Let us focus on the integrated radiation power Pobj(T )in the operating wavelength range 8–14 μm that is directly related to the observed temperatures in the infrared images of the infrared camera.We choose carbon as the ground layer with a thickness of 4 μm, leading to zero transmission Toλ=0.Silicon is chosen as a substrate.Then, we use a dielectric layer made of zinc sulfide(ZnS)as a transparent material within the range of wavelengths 8–14 μm(see Fig.2(a)),and the optical properties are from Refs.37,58 On the basis of energy balance, we calculate the emissivity from Eq.(5).Spectral emissivity for various film thicknesses is shown in Fig.2(b) and (c).With an increment of film thickness from 3.5 μm to 3.9 μm,the emissivity peak shifts from 0.93 at wavelength 10.7 μm to 0.92 at wavelength 11.8 μm.The emissivity as a function of thickness of ZnS and wavelength is depicted in Fig.2(c).It can be seen that one can control the emissivity by engineering the thickness of ZnS.Within the wavelength range 8–14 μm, the emissivity varies from 0.356 to 0.96.It is noted that other materials may also be considered to design the multilayer medium structure shown in Fig.2(a).For instance, if we replace ZnS with germanium, the emissivity varies from 0.351 to 0.941, which is almost the same as for ZnS.The selection of film materials should be made so that the tailorable emissivity range is as large as possible.Optical properties of the selected materials are shown in the supporting information.We conduct finite element analysis to verify the calculated spectral emissivity for the designed multilayer media, as shown in Fig.2(b).The Finite Element Analysis (FEA) results perfectly agree with the results predicted by Eq.(5).The simulation is conducted by the commercial software COMSOL Multiphysics with the optics module.The unit cell in Fig.2(a) is modeled except for the silicon substrate,because the carbon layer here ensures zero transmittance.For the simulation of the EM behavior,the excitation Electromagnetics (EM) wave propagates along the z-axis as a plane wave.From the simulation results, we obtain the S-parameters and further obtain the reflectivity and transmittivity.Absorptivity/emissivity is finally got on the basis of energy balance and Kirchhoff’s law.

    Using Eq.(6),the radiated power is calculated as a function of ZnS thickness and temperature(see Fig.2(d)).For example,the integrated power Pobj(T )=72.72 W ?m-2is shown by a white iso-contour line in Fig.2(d).Objects having temperatures spanning the range 330–400 K would be effectively detected to have the same emissive power if their surfaces were deposited with a dielectric layer whose thickness is determined by the corresponding white iso-contour line.

    In the following, we outline the process to achieve camouflage functionality based on the multilayer medium approach.Fig.3(a) shows a continuous temperature distribution generated by imposing temperature difference ΔT = 40 K at the two ends of the silicon substrate (thermal conductivity ks=1.3 W ?m-1?K-1).The side length of the simulated plate is 100 mm.The surface is in contact with air with natural convection coefficient 2 W ?m-2?K-1at temperature 340 K.We plot the temperature at different×positions in Fig.3(b).Note that the temperature is uniform along the y direction.Fig.3(c)shows the integrated radiation power at three typical positions along the observed line (namely A, B and C), where it is observed that higher temperatures result in larger radiation powers,in general.The first step is to select a desired radiation power Pobjthat all points can achieve with a selected film thickness.The possible range of the integrated radiation power is outlined in grey area.The camouflaged temperatures range from 340 K to 380 K (see Fig.3(b)).We select the thickness profile shown in Fig.3(d) for Pobj(T )=72.72 W ?m-2.The observed uniform camera temperature is shown in Fig.3(a)with black line for the designed film with inhomogeneous thickness.The camera temperature field is obtained using Eq.(7), where φλis obtained using blackbody radiation.Therefore, the heat spot located at the center is hidden for an infrared camera.This illustrating case demonstrates the thermal camouflage functionality by selective emission and thickness engineering.Note that other integrated radiation powers are also applicable if and only if they fall into the grey area.The difference is that we will obtain different thickness distributions with those in Fig.3(d)and further observe different detected camera temperatures with those in Fig.3(b), as may be predicted by Eq.(7).For a selected integrated radiation power, there exist not only one set of potential thickness distribution that can realize thermal camouflage effects.We marked, in Fig.3(c), two groups of available film thickness that can achieve the same integrated radiation power and hence the same emission modulation performance.This size flexibility will add much convenience to practical applications.

    3.Results and discussion

    Based on the approach above, we can engineer the whole surface emissivity (thickness) to realize thermal functionalities such as camouflage, illusion, and coding (see Fig.4).In Fig.4(a)–(c), thermal camouflage functionality is demonstrated.We aim to thermally hide a heat source of radius 2 mm located at the center of the silicon substrate.The required layer thickness is the smallest at the central position and increases from the center outward, as shown in Fig.4(b).The camera temperature field is uniform (Tr=319.8 K)after film deposition,and thus the heat spot in the background plate is invisible to the detector,demonstrating perfect camouflage functionality, as shown in Fig.4(c).

    Fig.3 Outline of the process to realize thermal camouflage.

    By tailoring the distribution of the thickness of the coating film, we further obtain the thermal coding functionality in Fig.4(d)–(f).In a uniform thermal field with T=360 K (see Fig.4(d)),we leave out a sub-area‘‘HI”and deposit a coating layer of thickness 0.5 μm everywhere else (see Fig.4(e)).As a result, the heat signature‘‘HI”(camera temperature 360 K)emerges from the background thermal field (camera temperature 319.8 K depicted in Fig.4(f)).We determine coating layer thicknesses using the radiation power of Pobj(T )=72.72 W ?m-2.

    We then demonstrate the thermal illusion functionality in Fig.4(g)–(i), where the heat signature‘‘NO”is observed instead of the original message‘‘YES”to confuse observers.This illusion functionality is also realized by properly engineering the film thickness.The surface is divided into three subregions:‘‘YES”,‘‘NO”, and background (see Fig.4(h)).We deposit the sub-regions‘‘YES”and background with film thicknesses 0.3 μm and 0.5 μm, respectively, whereas subregion‘‘NO”remains uncoated.After deposition, the sign‘‘NO”will be observed in the camera image instead of the original sign‘‘YES”(see Fig.4(i)).We emphasize that more functionalities can be obtained through the proposed flexible film thickness engineering strategy.

    In our design,a very important aspect is the huge scale difference between variations of physical quantities (such as the temperature)inside the layer thickness and in the lateral directions.However, the layer thickness is of the order of a few microns,and the thermal gradient and thus the thermal distribution only change significantly over very large lateral distances.Considering a meter-size object and a temperature difference between the two sides of ΔT=100 K, then at the scale of a typical infrared wavelength of 10 μm, the temperature change is only about 10-3K.At that scale, the temperature variation can be considered continuous and the local change in thickness will not lead to any significant lateral scattering.Based on this reasoning, in the coding and illusion devices depicted in Fig.4(d)–(f)and Fig.4(g)–(i),the apparent discontinuities in the thickness and temperature can be made continuous to avoid scattering from the edges.Here we have ignored this aspect in the plots as the discontinuities can be smoothed out easily.In addition, thermal conduction in the slab when varying the local thickness is also neglected.Consider the camouflage case in Fig.4(a)–(c) where the silicon plate is built with thermal conductivity ks=1.3 W ?m-1?K-1and thickness 2 mm.The surface is coated with a ZnS layer with thermal conductivity 25 W ?m-1?K-1and a typical thickness 0.7 μm.Assume that the temperature range is 1 K in the thickness direction, and then the temperature over the ZnS layer thickness direction only changes by 2.6×10-5K which is negligible and makes few influences on the radiation power.Therefore,surface temperature difference due to conduction is safely ignored.

    Fig.4 Demonstration of different thermal functionalities.

    In this work, we achieve selective emission based on thin film thickness engineering with predefined materials, yet practical implementation may demand diversity in design parameters due to the possible unavailability of material properties and manufacture deviations.Therefore,in the next step we will consider to obtain selective emission based on machine learning,which will intelligently establish the relation between deign parameters (film properties, thickness, etc.) and emissivity spectrum.16,59–62Such a data driven approach will demonstrate flexibility and accuracy in realizing functionalities like thermal camouflage, illusion and so on.

    4.Conclusions

    A multilayer film based selective emission strategy was proposed and investigated for applications in infrared camouflage,thermal coding and thermal illusion.Through thickness engineering, the emissivity can be tuned continuously over a large range.The technique features advantages of a simple structure,easy fabrication and size flexibility.Our work provides an alternative solution to infrared stealth and other thermal radiation management technology based on selective emission.From the current study, the following conclusions are drawn.

    1.For the established multilayer medium,the surface emissivity can be tuned from 0.356 to 0.96 within the wavelength range 8–14 μm, by changing the film thickness.Using this multilayer media approach, spatial tunability and continuity in thermal emission are demonstrated.

    2.Perfect camouflage can be achieved since the required continuously changing thermal radiation is realized by a calculated thickness distribution that is also continuous,without further discretization and approximation.For a given heat source, different solutions of film thickness are applicable,allowing for size flexibility in practical implementation.

    3.Other thermal functionalities,i.e.,thermal coding and thermal illusion,are also realized by simple film thickness engineering, following structural simplicity.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported by the EIPHI Graduate School(No.ANR-17-EURE-0002), the French Investissements d’Avenir program, project ISITEBFC (No.ANR-15-IDEX-03), and the National Natural Science Foundation of China (Nos.12172102,11872160 and 11732002).Rasoul ALAEE acknowledges the support of the Alexander von Humboldt Foundation through the Feodor Lynen Fellowship.

    Appendix A.Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.cja.2022.08.004.

    午夜成年电影在线免费观看| 国产熟女午夜一区二区三区| 欧美成人免费av一区二区三区| 丰满人妻一区二区三区视频av | 国产精品 国内视频| 中文资源天堂在线| 18禁裸乳无遮挡免费网站照片| 亚洲精品一区av在线观看| 国产av麻豆久久久久久久| 国产av又大| 国模一区二区三区四区视频 | 啦啦啦免费观看视频1| 色哟哟哟哟哟哟| 最新美女视频免费是黄的| 亚洲欧美激情综合另类| 欧美成人性av电影在线观看| 国产主播在线观看一区二区| 亚洲av成人不卡在线观看播放网| 欧美精品亚洲一区二区| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 久久午夜综合久久蜜桃| 国产视频内射| 丝袜人妻中文字幕| 国产精品免费一区二区三区在线| 18禁观看日本| 窝窝影院91人妻| 亚洲成人久久爱视频| 久久久久国内视频| 最近最新中文字幕大全免费视频| 色在线成人网| 黄色成人免费大全| 精品第一国产精品| 亚洲五月天丁香| 18禁国产床啪视频网站| 此物有八面人人有两片| av免费在线观看网站| 欧美乱色亚洲激情| 黄色a级毛片大全视频| 国产欧美日韩一区二区精品| 亚洲无线在线观看| 午夜免费成人在线视频| 白带黄色成豆腐渣| 两个人看的免费小视频| 欧美成人免费av一区二区三区| 亚洲成av人片免费观看| 亚洲人成77777在线视频| 成人三级黄色视频| 日本成人三级电影网站| 成人一区二区视频在线观看| 一进一出抽搐动态| 国产亚洲欧美在线一区二区| 女人高潮潮喷娇喘18禁视频| av免费在线观看网站| 精品一区二区三区av网在线观看| aaaaa片日本免费| 久久人妻福利社区极品人妻图片| 巨乳人妻的诱惑在线观看| 欧美乱码精品一区二区三区| 成人三级做爰电影| 精品久久蜜臀av无| 亚洲黑人精品在线| 亚洲成人国产一区在线观看| 老熟妇仑乱视频hdxx| 中文字幕av在线有码专区| 成年免费大片在线观看| 一本一本综合久久| 日本一二三区视频观看| 日韩av在线大香蕉| 日日干狠狠操夜夜爽| 国产一区二区激情短视频| av国产免费在线观看| 人人妻,人人澡人人爽秒播| 精品一区二区三区视频在线观看免费| 亚洲一区二区三区不卡视频| 怎么达到女性高潮| 伦理电影免费视频| 精品熟女少妇八av免费久了| 亚洲一码二码三码区别大吗| 欧美在线一区亚洲| 色综合站精品国产| 1024香蕉在线观看| 亚洲熟女毛片儿| 国产伦一二天堂av在线观看| 欧美一级毛片孕妇| 两性夫妻黄色片| 国产成人精品久久二区二区91| 极品教师在线免费播放| 90打野战视频偷拍视频| 国产成年人精品一区二区| www日本黄色视频网| ponron亚洲| 成年版毛片免费区| 怎么达到女性高潮| 精品久久久久久久久久免费视频| 亚洲av电影不卡..在线观看| 国产亚洲欧美98| 少妇裸体淫交视频免费看高清 | 亚洲全国av大片| 不卡av一区二区三区| 91大片在线观看| 欧美丝袜亚洲另类 | 日日夜夜操网爽| www国产在线视频色| 一卡2卡三卡四卡精品乱码亚洲| 别揉我奶头~嗯~啊~动态视频| 国产精品av久久久久免费| 久久精品国产亚洲av香蕉五月| 国内揄拍国产精品人妻在线| 亚洲精品在线观看二区| 久久久久国产精品人妻aⅴ院| 日日夜夜操网爽| 亚洲天堂国产精品一区在线| 久久久久性生活片| xxxwww97欧美| 国产麻豆成人av免费视频| 久久中文字幕一级| 国产成年人精品一区二区| 悠悠久久av| 欧美极品一区二区三区四区| 国产精品精品国产色婷婷| 少妇人妻一区二区三区视频| av天堂在线播放| 欧美精品亚洲一区二区| 国产成+人综合+亚洲专区| 亚洲专区字幕在线| 欧美日韩瑟瑟在线播放| 成年版毛片免费区| 中文亚洲av片在线观看爽| 亚洲专区字幕在线| 在线观看舔阴道视频| 两个人看的免费小视频| 欧美黄色淫秽网站| 狂野欧美白嫩少妇大欣赏| 久久性视频一级片| 一进一出好大好爽视频| 亚洲乱码一区二区免费版| 亚洲真实伦在线观看| 精品少妇一区二区三区视频日本电影| 精品福利观看| 国产av一区在线观看免费| 99久久精品国产亚洲精品| 麻豆av在线久日| 国产午夜精品久久久久久| 久久精品国产亚洲av香蕉五月| 黄片小视频在线播放| 麻豆国产97在线/欧美 | 色在线成人网| 欧美+亚洲+日韩+国产| 午夜视频精品福利| 黑人操中国人逼视频| 午夜精品一区二区三区免费看| 亚洲第一电影网av| 午夜久久久久精精品| 欧美另类亚洲清纯唯美| 精品无人区乱码1区二区| 亚洲欧美日韩高清专用| 大型av网站在线播放| 成在线人永久免费视频| av天堂在线播放| 午夜视频精品福利| 我的老师免费观看完整版| 一区二区三区高清视频在线| 国产精品亚洲一级av第二区| 亚洲av五月六月丁香网| 最新美女视频免费是黄的| 国内久久婷婷六月综合欲色啪| 午夜精品在线福利| 91av网站免费观看| 叶爱在线成人免费视频播放| 老汉色av国产亚洲站长工具| 国产真人三级小视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲人成网站在线播放欧美日韩| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜躁狠狠躁天天躁| av片东京热男人的天堂| 真人一进一出gif抽搐免费| 午夜精品在线福利| 欧美成狂野欧美在线观看| 丝袜人妻中文字幕| 岛国在线免费视频观看| 亚洲国产精品成人综合色| 亚洲av日韩精品久久久久久密| 又粗又爽又猛毛片免费看| 妹子高潮喷水视频| 久久婷婷成人综合色麻豆| 国产精品免费视频内射| 欧美乱色亚洲激情| 50天的宝宝边吃奶边哭怎么回事| 成熟少妇高潮喷水视频| 99热6这里只有精品| 黄色视频不卡| 老汉色av国产亚洲站长工具| 精品国产美女av久久久久小说| 欧美又色又爽又黄视频| 人妻夜夜爽99麻豆av| 又紧又爽又黄一区二区| 久久久久久人人人人人| 精品久久久久久,| 在线视频色国产色| www日本黄色视频网| 男女下面进入的视频免费午夜| 无遮挡黄片免费观看| 熟女电影av网| av免费在线观看网站| 亚洲av成人一区二区三| 中文在线观看免费www的网站 | 久久精品人妻少妇| 日韩欧美精品v在线| 美女大奶头视频| 18禁黄网站禁片免费观看直播| 少妇人妻一区二区三区视频| 中文字幕人成人乱码亚洲影| 国产精品综合久久久久久久免费| 全区人妻精品视频| ponron亚洲| 老司机靠b影院| 妹子高潮喷水视频| 亚洲国产欧美网| 中文字幕久久专区| 久久久久国产精品人妻aⅴ院| 免费在线观看视频国产中文字幕亚洲| 欧美最黄视频在线播放免费| 欧美久久黑人一区二区| 欧美中文日本在线观看视频| 久99久视频精品免费| 性欧美人与动物交配| 高潮久久久久久久久久久不卡| 99热这里只有是精品50| 欧美最黄视频在线播放免费| 欧美中文日本在线观看视频| 精品日产1卡2卡| 无人区码免费观看不卡| 给我免费播放毛片高清在线观看| 亚洲成a人片在线一区二区| 老司机午夜福利在线观看视频| 一级片免费观看大全| 欧美黑人巨大hd| or卡值多少钱| or卡值多少钱| 国产成人精品无人区| 国产精品美女特级片免费视频播放器 | 成人国产综合亚洲| 欧美乱色亚洲激情| 人人妻人人看人人澡| 亚洲人成网站高清观看| 中文字幕av在线有码专区| 国语自产精品视频在线第100页| 免费在线观看影片大全网站| 久久人人精品亚洲av| 国产精品日韩av在线免费观看| 午夜福利在线观看吧| 美女扒开内裤让男人捅视频| 全区人妻精品视频| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 美女扒开内裤让男人捅视频| 精品福利观看| 久久99热这里只有精品18| 男插女下体视频免费在线播放| e午夜精品久久久久久久| 亚洲午夜理论影院| 又紧又爽又黄一区二区| 日韩精品免费视频一区二区三区| 99久久精品热视频| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av高清一级| 午夜免费激情av| 亚洲成a人片在线一区二区| 久久久精品国产亚洲av高清涩受| 国产aⅴ精品一区二区三区波| 757午夜福利合集在线观看| 精品久久久久久,| 黄色视频不卡| 香蕉国产在线看| 观看免费一级毛片| 波多野结衣巨乳人妻| 黑人巨大精品欧美一区二区mp4| 悠悠久久av| av天堂在线播放| 老汉色av国产亚洲站长工具| 男女之事视频高清在线观看| 久久午夜亚洲精品久久| 亚洲色图 男人天堂 中文字幕| 午夜精品久久久久久毛片777| 欧美丝袜亚洲另类 | 成人av一区二区三区在线看| 国产精品久久久久久久电影 | 女警被强在线播放| 欧洲精品卡2卡3卡4卡5卡区| 一级a爱片免费观看的视频| 国产精品一及| 女生性感内裤真人,穿戴方法视频| 久久九九热精品免费| 久久精品国产99精品国产亚洲性色| 欧美高清成人免费视频www| 国产精品影院久久| 久久久水蜜桃国产精品网| 中国美女看黄片| 日本撒尿小便嘘嘘汇集6| 色综合婷婷激情| 亚洲中文字幕一区二区三区有码在线看 | 成人亚洲精品av一区二区| 久久久久国产精品人妻aⅴ院| 久久精品人妻少妇| 亚洲av日韩精品久久久久久密| 久久久久九九精品影院| 久久午夜亚洲精品久久| 久久午夜综合久久蜜桃| 女人爽到高潮嗷嗷叫在线视频| av国产免费在线观看| 久久久久国内视频| netflix在线观看网站| 中文字幕人成人乱码亚洲影| 日韩大码丰满熟妇| 婷婷丁香在线五月| 国产精品亚洲美女久久久| 12—13女人毛片做爰片一| 在线观看一区二区三区| 国产伦人伦偷精品视频| 美女 人体艺术 gogo| 亚洲av片天天在线观看| 精品电影一区二区在线| 色综合亚洲欧美另类图片| 一个人观看的视频www高清免费观看 | 欧美日韩国产亚洲二区| 麻豆成人av在线观看| 伊人久久大香线蕉亚洲五| av在线天堂中文字幕| 91麻豆av在线| 麻豆成人av在线观看| 视频区欧美日本亚洲| 久久久国产成人精品二区| 无限看片的www在线观看| 此物有八面人人有两片| 久久久国产精品麻豆| 成人三级做爰电影| 欧美日韩黄片免| 国产精品久久久人人做人人爽| 日本 欧美在线| www.熟女人妻精品国产| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| 搡老妇女老女人老熟妇| 成年女人毛片免费观看观看9| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 最近最新免费中文字幕在线| 麻豆一二三区av精品| 国产av在哪里看| 久久人妻福利社区极品人妻图片| 久久草成人影院| 亚洲av五月六月丁香网| 日韩欧美一区二区三区在线观看| 大型av网站在线播放| 美女扒开内裤让男人捅视频| 全区人妻精品视频| 99精品欧美一区二区三区四区| 久久久久久大精品| 欧美日韩乱码在线| 国产日本99.免费观看| 久久精品国产综合久久久| 久久久久久人人人人人| 香蕉av资源在线| 亚洲片人在线观看| 国产精品自产拍在线观看55亚洲| 午夜福利在线观看吧| 欧美色欧美亚洲另类二区| 成人亚洲精品av一区二区| 香蕉久久夜色| 我的老师免费观看完整版| 丰满的人妻完整版| 好男人在线观看高清免费视频| 午夜成年电影在线免费观看| 久久久久久久久中文| 国产午夜福利久久久久久| 欧美日韩黄片免| 国产蜜桃级精品一区二区三区| 国产一区在线观看成人免费| a级毛片a级免费在线| 大型av网站在线播放| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看 | 免费av毛片视频| 午夜影院日韩av| 国产男靠女视频免费网站| 亚洲国产精品999在线| 一个人免费在线观看的高清视频| 母亲3免费完整高清在线观看| 久久久久久亚洲精品国产蜜桃av| 脱女人内裤的视频| av免费在线观看网站| 欧美+亚洲+日韩+国产| 国产精品一及| 好男人在线观看高清免费视频| 99久久99久久久精品蜜桃| av国产免费在线观看| 18禁美女被吸乳视频| 免费在线观看黄色视频的| 国产日本99.免费观看| 一区二区三区国产精品乱码| 久久久久久九九精品二区国产 | 国产片内射在线| 深夜精品福利| 99国产综合亚洲精品| av在线天堂中文字幕| 51午夜福利影视在线观看| 欧美一级毛片孕妇| 欧美日韩国产亚洲二区| 亚洲全国av大片| 亚洲av美国av| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 日韩av在线大香蕉| 日韩欧美国产在线观看| 久久婷婷成人综合色麻豆| 九色成人免费人妻av| 美女 人体艺术 gogo| 日韩大尺度精品在线看网址| 妹子高潮喷水视频| 久久久水蜜桃国产精品网| 国产成人影院久久av| 精品一区二区三区四区五区乱码| 亚洲av片天天在线观看| 国产一区二区在线观看日韩 | 免费观看人在逋| 日本三级黄在线观看| 欧美+亚洲+日韩+国产| 啪啪无遮挡十八禁网站| 免费观看精品视频网站| 色在线成人网| 午夜免费激情av| 91在线观看av| 一a级毛片在线观看| 男人的好看免费观看在线视频 | 天天躁狠狠躁夜夜躁狠狠躁| 日韩三级视频一区二区三区| av超薄肉色丝袜交足视频| 最新在线观看一区二区三区| 亚洲国产日韩欧美精品在线观看 | 成人三级做爰电影| 国产精品自产拍在线观看55亚洲| 精品熟女少妇八av免费久了| 91在线观看av| 丰满的人妻完整版| 18禁黄网站禁片午夜丰满| 亚洲va日本ⅴa欧美va伊人久久| 在线观看一区二区三区| 一级作爱视频免费观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美三级三区| 久久久久久亚洲精品国产蜜桃av| 一二三四在线观看免费中文在| 亚洲自偷自拍图片 自拍| 欧美午夜高清在线| 欧美中文日本在线观看视频| 三级国产精品欧美在线观看 | 精品国产美女av久久久久小说| 久9热在线精品视频| 99国产精品一区二区三区| 国产精品久久久久久精品电影| 国产欧美日韩一区二区精品| 欧美日本视频| avwww免费| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| www日本黄色视频网| 1024手机看黄色片| 成人永久免费在线观看视频| 国产三级在线视频| 亚洲av熟女| 国产精品一区二区免费欧美| 老司机靠b影院| 极品教师在线免费播放| 日韩欧美在线二视频| 亚洲精品中文字幕在线视频| 国产精品av久久久久免费| 亚洲av成人精品一区久久| 黄色 视频免费看| 亚洲av电影在线进入| 欧美中文综合在线视频| 亚洲一区二区三区色噜噜| 国产精品久久久久久人妻精品电影| 在线国产一区二区在线| 日韩欧美三级三区| 色综合欧美亚洲国产小说| 久久久久久九九精品二区国产 | 91大片在线观看| 国产免费av片在线观看野外av| 成人国语在线视频| ponron亚洲| a在线观看视频网站| 99国产精品一区二区三区| av有码第一页| 久久热在线av| 国内揄拍国产精品人妻在线| 三级毛片av免费| 亚洲成人免费电影在线观看| 色播亚洲综合网| 国产熟女xx| 久久久久久国产a免费观看| 18禁黄网站禁片午夜丰满| 一区二区三区国产精品乱码| 黄片小视频在线播放| 一本一本综合久久| 在线十欧美十亚洲十日本专区| 午夜福利欧美成人| 最近最新中文字幕大全免费视频| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 99精品欧美一区二区三区四区| 国产97色在线日韩免费| 男人舔奶头视频| 亚洲欧美日韩高清专用| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 麻豆一二三区av精品| 88av欧美| 久久草成人影院| 国产精品久久久久久亚洲av鲁大| 日韩大码丰满熟妇| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久| 国产精品久久电影中文字幕| 好男人电影高清在线观看| 国产av又大| av福利片在线观看| 久久人妻福利社区极品人妻图片| 久久热在线av| 国产一区在线观看成人免费| 桃色一区二区三区在线观看| 大型黄色视频在线免费观看| 一级片免费观看大全| 日本熟妇午夜| 岛国在线免费视频观看| 日本熟妇午夜| 日本免费a在线| 看片在线看免费视频| 亚洲成人国产一区在线观看| 亚洲第一欧美日韩一区二区三区| 日本黄大片高清| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看 | 美女黄网站色视频| 亚洲成a人片在线一区二区| 国内少妇人妻偷人精品xxx网站 | 91成年电影在线观看| 99热这里只有是精品50| 欧美在线黄色| 黄色片一级片一级黄色片| 日本黄色视频三级网站网址| 亚洲av第一区精品v没综合| 精品高清国产在线一区| 国产精品一区二区三区四区久久| 91麻豆av在线| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 久热爱精品视频在线9| 亚洲精品中文字幕一二三四区| 国产成人精品久久二区二区免费| 中文字幕人妻丝袜一区二区| 狂野欧美激情性xxxx| 91字幕亚洲| 两性夫妻黄色片| 在线观看66精品国产| 色播亚洲综合网| 两性午夜刺激爽爽歪歪视频在线观看 | 淫秽高清视频在线观看| 91老司机精品| 一进一出好大好爽视频| 日本在线视频免费播放| 美女午夜性视频免费| av片东京热男人的天堂| 999久久久国产精品视频| 亚洲五月婷婷丁香| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久| 国产精品爽爽va在线观看网站| 丁香六月欧美| 麻豆国产97在线/欧美 | 身体一侧抽搐| 欧美色视频一区免费| 久久婷婷成人综合色麻豆| 美女 人体艺术 gogo| av天堂在线播放| 中出人妻视频一区二区| 日韩 欧美 亚洲 中文字幕| 日韩欧美国产在线观看| 免费在线观看完整版高清| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 欧美 亚洲 国产 日韩一| 最近最新免费中文字幕在线| 久久婷婷成人综合色麻豆| 午夜老司机福利片| 免费看a级黄色片| 国产激情久久老熟女| 国产欧美日韩一区二区三| 男女那种视频在线观看| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 久久99热这里只有精品18| 亚洲第一电影网av| 亚洲精品色激情综合| 日本一本二区三区精品| 亚洲中文av在线| 91九色精品人成在线观看| 国产亚洲精品久久久久5区| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 在线观看免费视频日本深夜| 国产av又大|