李曉華 萬芪
[摘要] 目的
探討花生四烯酸(AA)是否通過人沉默調(diào)節(jié)蛋白6(SIRT6)-人第10號染色體缺失的磷酸酶及張力蛋白同源的基因(PTEN)通路對大鼠缺血性腦損傷發(fā)揮保護作用。
方法 構(gòu)建大鼠大腦中動脈栓塞(MCAO)在體模型和皮質(zhì)神經(jīng)元氧糖剝奪(OGD)離體模型。采用蛋白免疫印跡法和免疫熒光染色法檢測皮質(zhì)神經(jīng)元內(nèi)PTEN和SIRT6蛋白的表達(dá)水平;使用2,3,5-氯化三苯基四氮唑(TTC)染色觀察大鼠腦梗死體積;采用Cell Counting Kit-8(CCK-8)法檢測皮質(zhì)神經(jīng)元存活情況。
結(jié)果 MCAO損傷后,補充AA可以減小大鼠腦梗死體積(F=367.80,P<0.05)。OGD損傷后,補充AA可上調(diào)皮質(zhì)神經(jīng)元SIRT6表達(dá)和抑制PTEN表達(dá)(F=11.67、14.85,P<0.05),減輕皮質(zhì)神經(jīng)元損傷(F=175.40,P<0.05)。給予OSS_128167(SIRT6抑制劑)干預(yù)阻斷了AA誘導(dǎo)的PTEN表達(dá)下調(diào)(F=15.63,P<0.05)和神經(jīng)元存活率增加(F=175.20,P<0.05)。
結(jié)論 AA通過調(diào)控SIRT6-PTEN信號通路發(fā)揮神經(jīng)保護作用,改善大鼠缺血性腦損傷。
[關(guān)鍵詞] 花生四烯酸;缺氧缺血,腦;PTEN磷酸水解酶;抗衰老酶;神經(jīng)保護
[中圖分類號] R972.6;R338.2
[文獻(xiàn)標(biāo)志碼] A
[文章編號] 2096-5532(2023)06-0808-06
doi:10.11712/jms.2096-5532.2023.59.174
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.r.20231218.1556.003;2023-12-19 14:58:10
EFFECT OF ARACHIDONIC ACID ON ISCHEMIA-REPERFUSION INJURY IN RATS AND ITS MECHANISM
LI Xiaohua, WAN Qi
(Institute of Neurodegeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, China)
; [ABSTRACT]ObjectiveTo investigate whether arachidonic acid (AA) exerts a protective effect against ischemic brain injury in rats via the human silencing regulatory protein 6 (SIRT6)-human phosphatase and tensin homolog deleted on chromosome 10 (PTEN) pathway.
MethodsWe constructed an in vivo model of middle cerebral artery embolism (MCAO) in rats and an ex vivo model of cortical neuronal oxygen glucose deprivation (OGD). The expression levels of PTEN and SIRT6 proteins in cortical neurons were measured using Western blot and immunofluorescence staining. Brain infarct volume was observed in rats using 2,3,5-triphenyltetrazolium chloride staining. The survival of cortical neurons was examined using the Cell Counting Kit-8.
Results
AA supplementation after MCAO reduced cerebral infarct volume (F=367.80,P<0.05). AA supplementation after OGD injury alleviated cortical neurons injury (F=175.40,P<0.05) by upregulating SIRT6 expression and downregulating PTEN expression (F=11.67,14.85,P<0.05). Administration of OSS_128167 (SIRT6 inhibitor) blocked AA-induced downregulation of PTEN (F=15.63,P<0.05) and increased neuronal survival (F=175.20,P<0.05).
ConclusionAA exerts neuroprotective effects through regulating the SIRT6-PTEN signaling pathway to ameliorate ischemic brain injury in rats.
[KEY WORDS]arachidonic acid; hypoxia-ischemia, brain; PTEN phosphohydrolase; sirtuins; neuroprotection
腦缺血/再灌注損傷是由動脈栓塞引起的大腦局部區(qū)域血流的突然中斷,使腦中氧氣和葡萄糖缺乏,進(jìn)而導(dǎo)致神經(jīng)元死亡和相應(yīng)的神經(jīng)功能喪失[1]?;ㄉ南┧幔ˋA)在大腦中表達(dá)極為豐富,是海馬體的主要成分之一,在維持腦的功能中起著重要作用[2-3]。AA通過抑制炎癥反應(yīng)和氧化應(yīng)激來減輕腦缺血/再灌注損傷[4],但其神經(jīng)保護作用機制還不明確。人第10號染色體缺失的磷酸酶及張力蛋白同源的基因(PTEN)是一種雙特異性磷酸酶[5],在缺血性腦損傷中下調(diào)PTEN可通過保留γ-氨基丁酸A型受體的功能來減輕神經(jīng)元損傷[6]。人沉默調(diào)節(jié)蛋白6(SIRT6)是Sirtuins家族的一員,它可以減少DNA損傷,抑制代謝穩(wěn)態(tài)中基因組的不穩(wěn)定性[7],改善氧糖剝奪(OGD)誘導(dǎo)的神經(jīng)元損傷[8]。研究表明,AA可通過環(huán)氧化酶-2(COX-2)或5-脂氧合酶(5-LOX)代謝途徑氧化和失活PTEN,
從而促進(jìn)胰腺癌細(xì)胞的生長[9]。SIRT6可以通過上調(diào)PTEN信號通路抑制結(jié)腸癌進(jìn)展[10]。本研究旨在
探討AA是否可以通過調(diào)控SIRT6-PTEN信號通
路在缺血性腦損傷中發(fā)揮神經(jīng)保護作用?,F(xiàn)將結(jié)果報告如下。
1 材料與方法
1.1 實驗材料
1.1.1 實驗動物 體質(zhì)量250~300 g的成年雄性Sprague-Dawley(SD)大鼠和孕期第18天的SD孕鼠購自濟南朋悅實驗動物繁育有限公司,動物合格證號SCXK(魯)2014007。
1.1.2 主要試劑 PTEN Rabbit mAb、β-actin Antibody購自Cell Signaling Technology公司;Rabbit Anti-SIRT6 antibody購買于Bioss公司;Microtubule-associated protein 2(MAP2)、Poly-D-lysine(PDL)購自Sigma公司;原代神經(jīng)元培養(yǎng)試劑購自Gibico公司;Cell Counting Kit-8(CCK-8)試劑盒購自TargetMol公司;熒光二抗購自Solarbio公司;山羊抗兔IgG-HR購自武漢科瑞公司。
1.2 實驗分組
為探討AA對大腦中動脈栓塞(MCAO)大鼠缺血性腦損傷的作用,將30只雄性SD大鼠隨機分為假手術(shù)(Sham)組、MCAO組和MCAO+AA組,每組10只大鼠,30 mg/kg AA在MCAO再灌注時進(jìn)行靜脈注射。為了探討AA對OGD損傷神經(jīng)元的保護作用,實驗分為Sham組、氧糖剝奪/再復(fù)氧(OGD/R)組、OGD/R+1 μmol/L AA組、OGD/R+30 μmol/L AA組、OGD/R+50 μmol/L AA組。為探討OGD/R損傷后,AA對PTEN和SIRT6蛋白表達(dá)的影響,實驗分為Sham組、OGD/R組、OGD/R+AA組。為探討OGD/R損傷后,SIRT6對AA誘導(dǎo)的PTEN表達(dá)的影響,實驗分為Sham組、OGD/R組、OGD/R+AA組、OGD/R+AA+OSS_128167組。30 μmol/L的AA以及80 μmol/L的OSS_128167在神經(jīng)元再復(fù)氧時加入。
1.3 實驗方法
1.3.1 大鼠MCAO模型制備 采用Longa線栓法制備大鼠MCAO模型[11],大鼠頸前切口,鈍性分離各動脈,使用線栓造成大腦中動脈血流供應(yīng)障礙,缺血90 min。Sham組大鼠采用相同的手術(shù)方法,但未阻斷大腦中動脈。
1.3.2 2,3,5-氯化三苯基四氮唑(TTC)染色 根據(jù)文獻(xiàn)方法[12],大鼠MCAO 24 h后灌注取腦,切片,置于20 g/L TTC溶液中染色。腦片固定后,采集圖像,定量測定各組腦梗死體積。
1.3.3 原代皮質(zhì)神經(jīng)元培養(yǎng) 從雌性SD大鼠孕期第18天的胚胎大腦中獲取皮質(zhì)神經(jīng)元。根據(jù)文獻(xiàn)方法[11],將胚胎快速斬首,去除腦膜,收獲胚胎大腦皮質(zhì),進(jìn)行消化、離心、吹散、過濾,將得到的神經(jīng)元接種在提前1 d用PDL包被的培養(yǎng)皿中。培養(yǎng)12 d后進(jìn)行實驗。
1.3.4 OGD模型制備 根據(jù)文獻(xiàn)方法[13],神經(jīng)元首先被轉(zhuǎn)移到無葡萄糖的胞外溶液中,在厭氧工作站中培養(yǎng)90 min。隨后復(fù)氧,并更換正常培養(yǎng)液繼續(xù)培養(yǎng)。
1.3.5 蛋白免疫印跡法檢測皮質(zhì)神經(jīng)元內(nèi)PTEN和SIRT6蛋白表達(dá)水平 根據(jù)文獻(xiàn)方法[14],使用100 g/L十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳分析神經(jīng)元樣本。用一抗(SIRT6 1∶1 000,PTEN 1∶1 000,β-actin 1∶4 000)和相應(yīng)二抗(1∶20 000)孵育膜,ECL顯影成像。應(yīng)用Image J軟件進(jìn)行定量分析。
1.3.6 免疫熒光染色法檢測皮質(zhì)神經(jīng)元內(nèi)PTEN和SIRT6蛋白表達(dá)水平 根據(jù)文獻(xiàn)方法[15],腦片和神經(jīng)元爬片用40 g/L多聚甲醛溶液固定,體積分?jǐn)?shù)0.005 Triton X-100滲透,5 g/L牛血清清蛋白封閉1 h。4 ℃下與一抗(PTEN 1∶500,SIRT6 1∶500,MAP2 1∶500)一起孵育過夜,室溫下與熒光二抗共孵育1 h。使用共聚焦顯微鏡進(jìn)行觀察。
1.3.7 CCK-8比色法檢測皮質(zhì)神經(jīng)元的存活情況
密度均勻的神經(jīng)元培養(yǎng)12 d后進(jìn)行OGD處理,加入CCK-8溶液與神經(jīng)元共孵育3 h。在450 nm波長下用96孔板讀取器測量吸光度值。
1.4 統(tǒng)計學(xué)分析
使用GraphPad Prism軟件進(jìn)行統(tǒng)計學(xué)分析。所有實驗均進(jìn)行了3次或3次以上,所得數(shù)據(jù)以±s表示。多組比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗。P<0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié)? 果
2.1 AA對缺血損傷后大鼠腦梗死體積的影響
TTC染色結(jié)果顯示,3組大鼠腦梗死體積差異具有統(tǒng)計學(xué)意義(F=367.80,P<0.05);兩兩比較結(jié)果顯示,MCAO+AA組的腦梗死體積顯著小于MCAO組(P<0.05)。表明使用AA治療可減小大鼠MCAO后再灌注24 h的腦梗死體積,對大鼠腦缺血再灌注具有神經(jīng)保護作用。見圖1。
2.2 AA對OGD損傷神經(jīng)元存活的影響
CCK-8法檢測結(jié)果顯示,3組神經(jīng)元存活率差
異有統(tǒng)計學(xué)意義(F=175.40,P<0.05);與OGD/R
(Vehicle)組相比較,OGD/R+30 μmol/L AA組和OGD/R+50 μmol/L AA組神經(jīng)元的存活率顯著升高(P<0.05)。表明補充AA的神經(jīng)元對OGD誘導(dǎo)的細(xì)胞死亡具有更強的抵抗力,AA明顯促進(jìn)了OGD損傷神經(jīng)元的存活。見圖2。
2.3 AA對缺血皮質(zhì)神經(jīng)元中SIRT6和PTEN表達(dá)的影響
蛋白免疫印跡法檢測結(jié)果顯示,3組皮質(zhì)神經(jīng)元中PTEN及SIRT6蛋白表達(dá)差異有統(tǒng)計學(xué)意義(F=11.67、14.85,P<0.05)。與Sham組相比較,OGD/R組皮質(zhì)神經(jīng)元中PTEN蛋白表達(dá)水平升高,SIRT6蛋白表達(dá)水平降低(P<0.05);與OGD/R組相比,OGD/R+AA組PTEN蛋白的表達(dá)降低,SIRT6蛋白表達(dá)水平升高(P<0.05)。免疫熒光染色結(jié)果進(jìn)一步證實,AA處理降低了OGD/R后皮質(zhì)神經(jīng)元中PTEN蛋白的表達(dá)水平,升高了SIRT6蛋白表達(dá)水平。見圖3、4。
2.4 AA和SIRT6對缺血神經(jīng)元PTEN表達(dá)和存活的影響
各組神經(jīng)元PTEN蛋白表達(dá)差異有統(tǒng)計學(xué)意義(F=15.63,P<0.05);與OGD/R+AA組相比,OGD/R+AA+OSS_128167組PTEN蛋白表達(dá)水平顯著升高(P<0.05)。各組神經(jīng)元存活率差異具
有統(tǒng)計學(xué)意義(F=175.20,P<0.05);與OGD/R+AA組相比,OGD/R+AA+OSS_128167組神經(jīng)元存活率顯著降低(P<0.05)。上述結(jié)果表明,OSS_128167處理阻斷了AA誘導(dǎo)的OGD損傷神經(jīng)元PTEN的下調(diào)和存活率的增加,即AA誘導(dǎo)的OGD損傷后PTEN表達(dá)的下調(diào)是通過上調(diào)SIRT6介導(dǎo)的。見圖5。
3 討? 論
缺血性腦損傷是一種高致死率、致殘率的神經(jīng)系統(tǒng)疾病,通常由大腦中動脈阻塞引起,并造成神經(jīng)元死亡和神經(jīng)功能紊亂[16]。目前,對缺血性腦損傷的研究雖然取得了很大進(jìn)展,但人們對該病治療機制的探索從未停止。本文研究結(jié)果表明,AA通過PTEN-SIRT6信號通路發(fā)揮神經(jīng)保護作用,減輕缺血性腦損傷。
最近的研究發(fā)現(xiàn),脂質(zhì)代謝在缺血性腦損傷中的作用至關(guān)重要,脂質(zhì)代謝紊亂也被認(rèn)為是導(dǎo)致神經(jīng)細(xì)胞損傷和死亡的關(guān)鍵因素[17]。AA是一種ω-6多不飽和脂肪酸,在中樞神經(jīng)系統(tǒng)中發(fā)揮著重要作用[3,18]。但AA在中樞神經(jīng)系統(tǒng)中的研究僅局限在免疫、炎癥等方面[19-20],對脂質(zhì)代謝調(diào)節(jié)機制探究甚少。有文獻(xiàn)報道,AA及其代謝產(chǎn)物在肝癌等疾病中已被確認(rèn)能夠影響脂代謝過程,改善肝臟脂質(zhì)沉積[21]。本文研究結(jié)果顯示,AA的添加減小了大鼠MCAO再灌注所致的腦梗死的體積,促進(jìn)了OGD損傷神經(jīng)元的存活。
PTEN是一種具有雙特異性磷酸酶活性的腫瘤抑制基因[5]。PTEN的脂質(zhì)磷酸酶活性在腫瘤抑制中扮演著非常重要的角色,PTEN可以通過激活RNA聚合酶Ⅲ轉(zhuǎn)錄MAF1同源物的阻遏物來抑制細(xì)胞內(nèi)脂質(zhì)的積累,減少肥胖和腫瘤等疾病的發(fā)生發(fā)展[22-23]。值得注意的是,AA可通過COX-2或5-LOX代謝途徑氧化和失活PTEN,從而促進(jìn)胰腺癌細(xì)胞生長[9]。有研究表明,PTEN過表達(dá)增加了海馬神經(jīng)元對興奮性毒性的敏感性[24],而下調(diào)PTEN表達(dá)或下調(diào)PTEN磷酸化可保護腦組織免受缺血損傷[25]。因此,本研究進(jìn)一步探討了PTEN是否參與AA對OGD/R處理的皮質(zhì)神經(jīng)元的影響。結(jié)果顯示,PTEN在OGD/R后表達(dá)升高,而其表達(dá)升高可被AA逆轉(zhuǎn)。推測AA可能在缺血/再灌注過程中抑制脂質(zhì)積累,從而導(dǎo)致PTEN表達(dá)降低,失去活性,進(jìn)而抑制下游信號介導(dǎo)的神經(jīng)元細(xì)胞死亡。
作為一種重要的煙酰胺腺嘌呤二核苷酸依賴性酶,SIRT6自從被發(fā)現(xiàn)以來一直受到廣泛關(guān)注[26]。SIRT6是一種在大腦中廣泛表達(dá)的核沉默信息調(diào)節(jié)因子,可調(diào)節(jié)與大腦功能相關(guān)的神經(jīng)發(fā)生和突觸、認(rèn)知、髓鞘形成[27]。此外,SIRT6對于維持脂質(zhì)代謝穩(wěn)態(tài)至關(guān)重要[28]。有研究結(jié)果表明,SIRT6通過激活核呼吸因子2(Nrf2),降低OGD損傷后神經(jīng)元的氧化應(yīng)激[29]。Nrf2可以參與調(diào)控脂肪細(xì)胞的脂質(zhì)代謝[30],提示SIRT6對OGD損傷后神經(jīng)元的脂質(zhì)代謝可能具有調(diào)控作用。因此,本研究探討了SIRT6是否參與了AA下調(diào)OGD/R處理的皮質(zhì)神經(jīng)元PTEN表達(dá)的過程。研究結(jié)果顯示,AA的補充可抑制OGD/R處理后SIRT6表達(dá)水平的下降,而OSS_128167處理阻斷了AA誘導(dǎo)的OGD損傷后PTEN表達(dá)的下調(diào)。表明AA可能在缺血/再灌注過程中通過上調(diào)SIRT6表達(dá)進(jìn)而下調(diào)PTEN表達(dá)來促進(jìn)神經(jīng)元細(xì)胞的存活。
綜上所述,AA在缺血性腦損傷中的神經(jīng)保護作用可能是通過調(diào)控SIRT6-PTEN信號通路實現(xiàn)的,可能涉及神經(jīng)元細(xì)胞內(nèi)的脂質(zhì)代謝。因此,AA調(diào)控SIRT6-PTEN信號通路的詳細(xì)分子機制仍需進(jìn)一步研究。本研究證明了AA通過上調(diào)SIRT6的表達(dá)進(jìn)而下調(diào)PTEN的表達(dá),從而保護神經(jīng)元免受OGD誘導(dǎo)的損傷。補充AA干預(yù)可能是缺血/再灌注腦損傷的潛在治療靶點。
[參考文獻(xiàn)]
[1]LAPCHAK P A, ZHANG J H. The high cost of stroke and stroke cytoprotection research[J]. Translational Stroke Research, 2017,8(4):307-317.
[2]KAKUTANI S, EGAWA K, SAITO K, et al. Arachidonic acid intake and asthma risk in children and adults: a systematic review of observational studies[J]. Journal of Nutritional Science, 2014,3:e12.
[3]MCGAHON B, CLEMENTS M P, LYNCH M A. The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed[J]. Neuroscience, 1997,81(1):9-16.
[4]QU Y, ZHANG H L, ZHANG X P, et al. Arachidonic acid attenuates brain damage in a rat model of ischemia/reperfusion by inhibiting inflammatory response and oxidative stress[J]. Human & Experimental Toxicology, 2018,37(2):135-141.
[5]LI J, YEN C, LIAW D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer[J]. Science, 1997,275(5308):1943-1947.
[6]LIU B S, LI L J, ZHANG Q G, et al. Preservation of GABAA receptor function by PTEN inhibition protects against neuronal death in ischemic stroke[J]. Stroke, 2010,41(5):1018-1026.
[7]MOSTOSLAVSKY R, CHUA K F, LOMBARD D B, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell, 2006,124(2):315-329.
[8]CHENG J, FAN Y Q, JIANG H X, et al. Transcranial direct-current stimulation protects against cerebral ischemia-reperfusion injury through regulating Cezanne-dependent signaling[J].
Experimental Neurology, 2021,345:113818.
[9]COVEY T M, EDES K, FITZPATRICK F A. Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor[J]. Oncogene, 2007,26(39):5784-5792.
[10]TIAN J H, YUAN L L. Sirtuin 6 inhibits colon cancer progression by modulating PTEN/AKT signaling[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2018,106:109-116.
[11]XU X Y, CUI Y, LI C Q, et al. SETD3 downregulation me-
diates PTEN upregulation-induced ischemic neuronal death through suppression of actin polymerization and mitochondrial function[J]. Molecular Neurobiology, 2021,58(10):4906-4920.
[12]KONG X Y, HU W J, CUI Y, et al. Transcranial direct-current stimulation regulates MCT1-PPA-PTEN-LONP1 signaling to confer neuroprotection after rat cerebral ischemia-reperfusion injury[J]. Molecular Neurobiology, 2022,59(12):7423-7438.
[13]CHEN J, ZHUANG Y, ZHANG Z F, et al. Glycine confers neuroprotection through microRNA-301a/PTEN signaling[J]. Molecular Brain, 2016,9(1):59.
[14]CHEN S F, PAN M X, TANG J C, et al. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury[J]. Molecular Brain, 2020,13(1):63.
[15]ZHAO D, QIN X P, CHEN S F, et al. PTEN inhibition protects against experimental intracerebral hemorrhage-induced brain injury through PTEN/E2F1/β-catenin pathway[J]. Frontiers in Molecular Neuroscience, 2019,12:281.
[16]STRONG K, MATHERS C, BONITA R. Preventing stroke: saving lives around the world[J]. The Lancet Neurology, 2007,6(2):182-187.
[17]MUKHERJEE S, SURESH S N. Neuron-astrocyte liaison to maintain lipid metabolism of brain[J]. Trends in Endocrinology and Metabolism: TEM, 2019,30(9):573-575.
[18]DAVIS-BRUNO K, TASSINARI M S. Essential fatty acid supplementation of DHA and ARA and effects on neurodeve-
lopment across animal species: a review of the literature[J]. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 2011,92(3):240-250.
[19]INNES J K, CALDER P C. Omega-6 fatty acids and inflammation[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2018,132:41-48.
[20]SONNWEBER T, PIZZINI A, NAIRZ M, et al. Arachidonic acid metabolites in cardiovascular and metabolic diseases[J]. International Journal of Molecular Sciences, 2018,19(11):3285.
[21]李沙,蘇文,張曉燕,等. 花生四烯酸代謝與肝臟糖脂代謝穩(wěn)態(tài)調(diào)控[J]. 生理學(xué)報, 2021,73(4):657-664.
[22]LIU A, ZHU Y Y, CHEN W P, et al. PTEN dual lipid- and protein-phosphatase function in tumor progression[J]. Can-
cers, 2022,14(15):3666.
[23]JOHNSON D L, STILES B L. Maf1, A new PTEN target linking RNA and lipid metabolism[J]. Trends in Endocrinology & Metabolism, 2016,27(10):742-750.
[24]GARY D S, MATTSON M P. PTEN regulates Akt kinase activity in hippocampal neurons and increases their sensitivity to glutamate and apoptosis[J]. NeuroMolecular Medicine, 2002,2(3):261-269.
[25]NING K, PEI L, LIAO M X, et al. Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2004,24(16):4052-4060.
[26]TASSELLI L, ZHENG W, CHUA K F. SIRT6: novel me-
chanisms and links to aging and disease[J]. Trends in Endocrinology & Metabolism, 2017,28(3):168-185.
[27]LI X K, LIU L, LI T, et al. SIRT6 in senescence and aging-related cardiovascular diseases[J]. Frontiers in Cell and Deve-
lopmental Biology, 2021,9:641315.
[28]BAE E J, PARK B H. Multiple roles of sirtuin 6 in adipose tissue inflammation[J]. Diabetes & Metabolism Journal, 2023,47(2):164-172.
[29]KIM S H, LU H F, ALANO C C. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture[J]. PLoS One, 2011,6(3):e14731.
[30]QIU S, LIANG Z R, WU Q N, et al. Hepatic lipid accumulation induced by a high-fat diet is regulated by Nrf2 through multiple pathways[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2022,36(5):e22280.
(本文編輯 馬偉平)