宣立科 周天韞 趙仁清
糖尿病患者出現(xiàn)的高血糖、高血壓、血脂異常和胰島素抵抗可引發(fā)心肌分子結(jié)構(gòu)和功能異常,還可產(chǎn)生氧化應(yīng)激、炎癥、心肌脂毒性和心肌代謝底物利用受損,從而導(dǎo)致一系列心血管疾病。最近研究表明,規(guī)律運(yùn)動(dòng)是糖尿病患者對(duì)抗心血管并發(fā)癥的一種有效措施,然而這種保護(hù)作用的分子機(jī)制尚不清楚。本文探討高血糖和胰島素抵抗介導(dǎo)的糖尿病心臟病的分子機(jī)制,并闡述不同強(qiáng)度的運(yùn)動(dòng)在緩解糖尿病心臟的作用,尤其我們從運(yùn)動(dòng)對(duì)microRNA影響的角度闡明運(yùn)動(dòng)改善糖尿病心臟病的分子調(diào)節(jié)機(jī)制。
1 前言
2型糖尿?。═ype-2 diabetes mellitus,T2DM)已成為現(xiàn)代社會(huì)影響健康重要問題之一,更令人擔(dān)憂的是超過68%的糖尿病患者會(huì)發(fā)展為心臟病或中風(fēng)。高血糖、高血壓、血脂異常和胰島素抵抗會(huì)影響糖尿病患者的心肌功能,引發(fā)一些早期病理生理學(xué)、結(jié)構(gòu)和功能改變,包括冠狀動(dòng)脈內(nèi)皮和血管功能障礙,以及左心室重塑和功能障礙等。運(yùn)動(dòng)可以改善心臟的微觀結(jié)構(gòu)和功能,增強(qiáng)心臟舒張能力,提高泵血功能。運(yùn)動(dòng)可以誘導(dǎo)的心肌缺血再灌注(ischemia reperfusion,I/R)損傷的保護(hù)作用。運(yùn)動(dòng)可以促進(jìn)心臟重構(gòu)逆轉(zhuǎn),運(yùn)動(dòng)還有改善氧化應(yīng)激、抑制炎癥,防止纖維化,促進(jìn)血管生成等功能。因此,運(yùn)動(dòng)是預(yù)防和治療糖尿病心臟病的有效措施,然而其調(diào)控機(jī)制較為復(fù)雜,本文從microRNA角度探討運(yùn)動(dòng)改善糖尿病心肌病的分子機(jī)制。
2 糖尿病性心臟病及發(fā)病機(jī)制
糖尿病性心臟病(diabetic heart disease, DHD)是指糖尿病人群中出現(xiàn)的各種各樣的心肌疾病,包括冠心病、心力衰竭和/或心肌病。DHD的病因呈現(xiàn)多因素特征,高血糖和胰島素抵抗與DHD的發(fā)生密切有關(guān),此外,高血壓、肥胖、高膽固醇血癥、冠狀動(dòng)脈疾病、微血管疾病和心臟神經(jīng)病變等其他危險(xiǎn)因素也影響DHD。
2.1 高血糖與糖尿病心臟病
高血糖可激活多元醇途徑活性、蛋白質(zhì)激酶C途徑(Protein kinase C,PKC)、糖基化終產(chǎn)物(advanced glycation
end products,AGEs)途徑和己糖胺途徑,從而增加心肌氧化應(yīng)激[1,2],導(dǎo)致心血管功能障礙。細(xì)胞內(nèi)葡萄糖濃度增加會(huì)增加醛糖還原酶活性,醛糖還原酶將過量的煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)用作輔助因子,將葡萄糖轉(zhuǎn)化為山梨醇,導(dǎo)致細(xì)胞內(nèi)NADPH的消耗[3],最終會(huì)減少細(xì)胞內(nèi)抗氧化劑還原型谷胱甘肽(effect of glutathione,GSH)的生成[4,5]。因此,GSH合成減少,減弱抗氧化能力,降低抵抗高血糖引起的細(xì)胞內(nèi)氧化應(yīng)激。醛糖還原酶活性的改變使心肌易受缺血損傷。
細(xì)胞內(nèi)高血糖激活PKC-β和-δ,誘導(dǎo)促炎基因表達(dá)[例如p38和B細(xì)胞核因子-κB(nuclear factor-kappa B,NK-κB)]和血管重塑,導(dǎo)致血管通透性增加,抑制內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)[6,7]。此外,該途徑還激活NADPH氧化酶,導(dǎo)致細(xì)胞內(nèi)活性氧(reactive oxygen species,ROS)的產(chǎn)生增加[8]。與此相應(yīng),心臟特異表達(dá)PKC-β2的轉(zhuǎn)基因小鼠表現(xiàn)出心肌肥厚、纖維化、營養(yǎng)不良、鈣化和心肌細(xì)胞死亡增加現(xiàn)象[9]。糖酵解中間產(chǎn)物(如G3P、葡萄糖-6-磷酸和果糖)濃度的增加通過蛋白質(zhì)、脂質(zhì)或核酸之間的非酶反應(yīng)加速AGEs的產(chǎn)生[10]。研究表明,AGEs增加會(huì)改變血管、血管張力和細(xì)胞外基質(zhì)的功能和彈性特性,從而影響 DHD的發(fā)病[11]。事實(shí)上,AGEs與其在內(nèi)皮細(xì)胞、平滑肌細(xì)胞和巨噬細(xì)胞上的受體(receptor for advanced glycation end products,RAGE)結(jié)合觸發(fā)一系列分子途徑,促進(jìn)炎癥信號(hào)級(jí)聯(lián)、氧化應(yīng)激、血管通透性增加、動(dòng)脈粥樣硬化形成和血管收縮,導(dǎo)致多種血管功能障礙[12]。
2.2 胰島素抵抗與糖尿病心臟病
糖尿病心臟病常出現(xiàn)過量的游離脂肪酸(free fatty acids,F(xiàn)FA)和脂質(zhì)氧化,減弱在FFA和葡萄糖之間切換能量供應(yīng)能力[13],胰島素抵抗導(dǎo)致葡萄糖攝取減少,心肌細(xì)胞嚴(yán)重依賴FFA氧化作為能量來源。心肌組織利用更多的氧氣氧化FFA分子,所需氧氣成本遠(yuǎn)遠(yuǎn)高于葡萄糖代謝[14,15],更重要的是,增加氧氣消耗會(huì)降低擴(kuò)張型心肌病、心力衰竭和心室功能不全的心臟做功能力[14]。
由于FFA氧化過程中線粒體電子傳遞鏈的電子供應(yīng)比例增加,導(dǎo)致抗氧化劑前列環(huán)素合酶和eNOS失活,胰島素抵抗也與氧化劑的過量產(chǎn)生有關(guān)[16]。抑制脂肪細(xì)胞釋放FFA和抑制FFA氧化限速酶完全逆轉(zhuǎn)胰島素抵抗動(dòng)物模型中的ROS生成[16]。ROS過量產(chǎn)生抑制IRS-1誘導(dǎo)的PI3K依賴性通路激活,從而抑制促生存信號(hào)系統(tǒng)[17,18]。
脂肪細(xì)胞不斷產(chǎn)生細(xì)胞因子,如腫瘤壞死因子(tumor
necrosis factor-alpha,TNF-α)、白細(xì)胞介素-6(interleukin-6,IL-6)和血管緊張素原,F(xiàn)FA導(dǎo)致的ROS合成增加也可以通過激活NFκB直接刺激促炎細(xì)胞因子的產(chǎn)生[19]。這些細(xì)胞因子過度產(chǎn)生可通過多種機(jī)制抑制胰島素功能。首先,TNF-α可以通過IRS-1的磷酸化減弱PI3K/Akt依賴的細(xì)胞存活信號(hào)[20],以及p38 MAPK和I-κB激酶β(I kappa B kinase beta,IKKβ)激活[21]。其次,TNF-α和IL-6可抑制分裂信號(hào)-1和-3蛋白(suppressor of cytokine signaling-1,SOCS-1,-3)表達(dá)[22],SOCS蛋白通過泛素化IRS蛋白抑制IRS-1和PI3K偶聯(lián)[23],或抑制IRS蛋白的酪氨酸磷酸化[24]??傊?,細(xì)胞因子和ROS抑制PI3K信號(hào)通路可導(dǎo)致胰島素介敏感性下降。
3 運(yùn)動(dòng)與糖尿病心肌病
運(yùn)動(dòng)干預(yù)已經(jīng)成為治療糖尿病心肌病的有效方案,并可協(xié)同藥物治療作用顯著降低心血管風(fēng)險(xiǎn)。大量研究表明,適當(dāng)?shù)倪\(yùn)動(dòng)可以通過改善最大耗氧量(maximal oxygen consumption,VO2max)、左室射血分?jǐn)?shù)(left ventricular ejection fraction,LVEF)、左室舒張和收縮容積、通氣閾值、心輸出量和舒張功能(mitral diastolic early-to-late ratio,E/A比)。
運(yùn)動(dòng)可通過改善最大攝氧量、內(nèi)皮功能、左室收縮和舒張功能以及血壓來促進(jìn)心肌功能[25]。中等強(qiáng)度運(yùn)動(dòng)可提高肥胖的絕經(jīng)女性和T2DM患者VO2max 12-16%[26]。T2DM患者開展為期八周的中等強(qiáng)度運(yùn)動(dòng),可顯著改善肱動(dòng)脈內(nèi)皮功能[27]。僅通過藥物干預(yù)控制血糖不足以降低T2DM患者發(fā)生心血管意外風(fēng)險(xiǎn)。運(yùn)動(dòng)作為抗糖尿病治療的重要手段可有效降低心血管疾病發(fā)生率,改善T2DM患者的最大攝氧量。研究發(fā)現(xiàn),增加體育運(yùn)動(dòng)與2型糖尿病患者的心血管風(fēng)險(xiǎn)和死亡率呈負(fù)相關(guān)[28]。血糖控制、心肌功能改善與胰島素敏感性改善有關(guān)[25]。最近研究表明,在運(yùn)動(dòng)控制體重干預(yù)實(shí)驗(yàn)中,肥胖T2DM參與者的血糖狀況改善,甘油三酯水平降低,這些變化與心血管疾病風(fēng)險(xiǎn)降低密切相關(guān)[29]。此外,內(nèi)臟脂肪減少與脂肪因子水平降低有關(guān),運(yùn)動(dòng)介導(dǎo)的脂肪因子減少可恢復(fù)IRS-1介導(dǎo)的PI3K依賴性信號(hào)通路活性。改善胰島素敏感性可以促進(jìn)葡萄糖吸收,減少維持正常葡萄糖水平所需的胰島素水平。運(yùn)動(dòng)中肌肉收縮增強(qiáng)可促進(jìn)GLUT-4蛋白向骨骼肌和肌膜轉(zhuǎn)運(yùn),葡萄糖攝取增加[30]。
研究發(fā)現(xiàn),參加每周5天耐力運(yùn)動(dòng)的參與者心肌甘油三酯含量降低,心功能顯著改善[31]。Schrauwen等人報(bào)道,持續(xù)12周,每周3次耐力和力量訓(xùn)練,肥胖T2DM患者的胰島素敏感性、最大攝氧量、左室射血分?jǐn)?shù)和心輸出量明顯改善[32]。大量臨床研究表明,運(yùn)動(dòng)對(duì)糖尿病患者的全身氧化應(yīng)激水平有良好影響[33,34]。接受12個(gè)月有氧、耐力訓(xùn)練的2型糖尿病患者的血漿氧化應(yīng)激標(biāo)志物水平降低。運(yùn)動(dòng)還能改善低密度脂蛋白(low density lipoproteins,LDL)、最大攝氧量、胰島素敏感性和腰圍[34]。氧化應(yīng)激的降低伴隨谷胱甘肽和維生素C的增強(qiáng),糖化血紅蛋白(variability of glycated hemoglobin,HbA1c)和空腹血糖降低[33]。
Li等發(fā)現(xiàn),在10周的中等強(qiáng)度有氧運(yùn)動(dòng)后,糖尿病心臟中抗氧化物超氧化物歧化酶-1和-2(superoxide dismutase,SOD-1和SOD2)和eNOS水平增加[35]。運(yùn)動(dòng)可以減少T2DM的全身炎癥。一項(xiàng)針對(duì)中等強(qiáng)度體育鍛煉的T2DM患者的18年隨訪研究發(fā)現(xiàn),高敏C反應(yīng)蛋白(high-sensitivity CRP,hs-CRP)顯著降低,這與心血管和冠心病總死亡率的降低顯著相關(guān)[36],而運(yùn)動(dòng)誘導(dǎo)的hs-CRP降低與胰島素抵抗改善有關(guān)[26]。因此,動(dòng)改善糖尿病患者的全身炎癥主要通過恢復(fù)IRS誘導(dǎo)的PI3K磷酸化,從而降低心血管風(fēng)險(xiǎn),改善胰島素敏感性的結(jié)果。
4 運(yùn)動(dòng)、microRNA與糖尿病心臟病
microRNA(miR)是一種小的內(nèi)源性非編碼RNA分子,參與許多基因的轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)節(jié),最近的研究表明,運(yùn)動(dòng)會(huì)影響miR表達(dá)水平,miR在許多疾病的病理生理學(xué)中起著重要作用,包括糖尿病、心臟病等。miRNA調(diào)節(jié)細(xì)胞生長、分化、凋亡和增殖,并參與心血管疾病的病理生理學(xué)過程,如心肌肥大、纖維化和心肌細(xì)胞損傷等。
4.1 運(yùn)動(dòng)、miR-126與糖尿病心臟病
miR-126是一種內(nèi)皮特異性miR,它在內(nèi)皮細(xì)胞高度表達(dá),是研究目前廣泛研究的miR之一。miR-126主要通過抑制PIK3R2和含有VEGF抑制劑相關(guān)EVH1結(jié)構(gòu)域1(sprouty-related EVH1 domain-containing protein1,SPRED1),增加促血管生成VEGF蛋白表達(dá),激活PI3K和Raf-1通路,促進(jìn)VEGF活性[37]。敲除miR-126會(huì)導(dǎo)致血管滲漏、出血和血管完整性喪失[38]。來自高糖處理的內(nèi)皮細(xì)胞在體外顯示出內(nèi)皮細(xì)胞遷移和增殖下降 [39]。此外,miR-126的表達(dá)降低與冠狀動(dòng)脈疾病、動(dòng)脈粥樣硬化和其他血管疾病有關(guān)[39,40]。采用miR-126擬似物對(duì)2型糖尿病db/db小鼠主動(dòng)脈環(huán)的治療和高糖環(huán)境人臍靜脈內(nèi)皮細(xì)胞治療,miR-126通過上調(diào)VEGF蛋白表達(dá)顯著改善受損的血管生成能力。miR-126治療效果還包括促進(jìn)細(xì)胞增殖、細(xì)胞遷移和減少凋亡[41]。
運(yùn)動(dòng)可促進(jìn)miR-126和VEGF蛋白表達(dá)從而改善心臟血管生成。糖尿病會(huì)導(dǎo)致內(nèi)皮細(xì)胞功能障礙,導(dǎo)致糖尿病大鼠心肌的血管容量和血管生成減少[42]。有研究報(bào)道,糖尿病患者的血清miR-126水平低于健康對(duì)照組[43],且糖尿病小鼠和人類心肌中VEGF-A及其受體表達(dá)降低[44],糖尿病患者經(jīng)過6個(gè)月的飲食和運(yùn)動(dòng)干預(yù)后,糖尿病患者的血清miR-126顯著增加[43]。有研究報(bào)道,為期10周、每周5天的游泳運(yùn)動(dòng)顯著增加大鼠心肌毛細(xì)血管密度[45],這種作用與VEGF/Raf-1/ERK和VEGF/P13K/Akt信號(hào)升表達(dá)高有關(guān)。運(yùn)動(dòng)還能通過上調(diào)miR-126的表達(dá)來抑制SPRED1和PIK3R2蛋白表達(dá)。
4.2? 運(yùn)動(dòng)、miR-222與糖尿病心臟病
MiR-222是miR中高度保守的成員,定位于血管平滑肌細(xì)胞的血管壁,在血管平滑肌細(xì)胞增殖中起到關(guān)鍵作用。在小鼠中,當(dāng)內(nèi)皮細(xì)胞(endothelial cells,ECs)和祖細(xì)胞內(nèi)皮細(xì)胞受到高糖和AGEs(糖尿病樣環(huán)境)的刺激時(shí),阻止細(xì)胞周期的啟動(dòng)和EC向VEGF遷移,此變化與miR-222下調(diào)有關(guān)。此外, Jiang等人在動(dòng)脈粥樣硬化患者中發(fā)現(xiàn),miR-222、miR-126和miR-92a表達(dá)下調(diào),這些miR在心血管疾病演變中的有著重要調(diào)節(jié)作用[40]。miR-222通過抑制其靶蛋白p27、HIPK1、HIPK2 Hmbox1發(fā)揮作用,[46]此外,p57是miR-222的另一個(gè)直接靶蛋白。Liu等人發(fā)現(xiàn)miR-222在運(yùn)動(dòng)誘導(dǎo)的心臟保護(hù)中發(fā)揮重要作用[46]。在游泳和跑臺(tái)運(yùn)動(dòng)后,他們發(fā)現(xiàn)小鼠心肌細(xì)胞中miR-222顯著上調(diào)。他們進(jìn)一步表明,抑制miR-222會(huì)導(dǎo)致心肌細(xì)胞凋亡增加。而小鼠中miR-222的過度表達(dá)促進(jìn)心肌細(xì)胞的增殖和生長[46],這與α/β肌球蛋白重鏈(myosin heavy chain,MHC)比率增加以及ANP、BNP和α-骨骼肌動(dòng)蛋白mRNA減少有關(guān)。重要的是,心臟特異性miR-222轉(zhuǎn)基因小鼠能夠在缺血再灌注后恢復(fù)心臟功能,誘導(dǎo)心肌細(xì)胞增殖并減少心肌纖維化[46]。綜上所述,運(yùn)動(dòng)誘導(dǎo)的miR-222激活可能是一種很有潛力的治療措施,可以改善糖尿病患者心肌細(xì)胞減少。
4.3? 運(yùn)動(dòng)與其他miR
最近研究顯示,在人類糖尿病心臟中,肌肉特異性miR(也稱為myomiR)顯著下調(diào),如miR-1、-133和-499[47]。糖尿病大鼠心臟中miR1、miR-133和miR-499的表達(dá)受到抑制,與心肌氧化應(yīng)激和心功能不全增加有關(guān)[48]。Wang等人報(bào)道,程序性細(xì)胞死亡4(Programed cell death 4,Pdcd4)、磷酸化呋喃酸性簇分類蛋白2(phosphofurin acidic cluster sorting protein 2,Pacs2)和雙特異性酪氨酸磷酸化調(diào)節(jié)激酶2(dual-specificity tyrosine phosphorylation-regulated kinase 2,Dyrk2)是miR-499的直接靶點(diǎn)。其中,Pdcd4和Pacs2參與過氧化氫誘導(dǎo)的成肌細(xì)胞系H9c2細(xì)胞凋亡。因此,糖尿病患者這些miR的失調(diào)可能對(duì)心臟功能產(chǎn)生深遠(yuǎn)的影響[49]??寡趸瘎┲委熖悄虿〈笫?周不僅使所有miR正?;?,而且還改善了糖尿病心臟病患者的心功能和超微結(jié)構(gòu)[48]。由于運(yùn)動(dòng)能夠恢復(fù)抗氧化防御,并使氧化應(yīng)激正?;?,運(yùn)動(dòng)介導(dǎo)的miR表達(dá)可能阻止其靶蛋白的增加、以及細(xì)胞凋亡和心臟重塑。
5 結(jié)論與展望
盡管抗糖尿病治療的臨床研究取得了重大進(jìn)展,但與糖尿病相關(guān)的心血管并發(fā)癥發(fā)病率呈指數(shù)增長。更重要的是,僅嚴(yán)格控制血糖對(duì)預(yù)防糖尿病引起的心功能不全效果不佳,而且可能會(huì)加重心功能不全。大量臨床試驗(yàn)證明運(yùn)動(dòng)與藥物治療在控制糖尿病患者血糖狀態(tài)方面具有協(xié)同效應(yīng),并降低了發(fā)生心功能不全的風(fēng)險(xiǎn)。miR在介導(dǎo)運(yùn)動(dòng)改善糖尿病心臟病中發(fā)揮重要的作用,并且miR可能作為一種新的生物標(biāo)記物幫助臨床醫(yī)生識(shí)別風(fēng)險(xiǎn)更高或在疾病早期的DHD患者。此外,可以使用miR作為標(biāo)志物來評(píng)估運(yùn)動(dòng)對(duì)心臟影響。未來的研究需要為糖尿病患者提供在疾病早期的最佳運(yùn)動(dòng)方案,這能有效防止DHD的發(fā)生。
參考文獻(xiàn)
[1] Du X L,Edelstein D,Rossetti L,et al.Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(22):12222-12226.
[2] Nishikawa T,Edelstein D,Du X L,et al.Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J].Nature,2000,404(6779):787-790.
[3] Gonzalez R G,Barnett P,Aguayo J,et al.Direct measurement of polyol pathway activity in the ocular lens[J].Diabetes,1984,33(2):196-199.
[4] Bravi M C,Pietrangeli P,Laurenti O,et al.Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients[J].Metabolism Clinical and Experimental,1997,46(10): 1194-1198.
[5] De Mattia G,Laurenti O,Bravi C,et al.Effect of?aldose reductase inhibition on glutathione redox status in erythrocytes of diabetic patients[J].Metabolism:Clinical and Experimental,1994,43(8):965-968.
[6] Tabit C E,Shenouda S M,Holbrook M,et al.Protein Kinase C-beta Contributes to Impaired Endothelial Insulin Signaling in Humans With Diabetes Mellitus [J]. Circulation,2013,127(1):86-+.
[7] Igarashi M,Wakasaki H,Takahara N,et al.Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways[J].Journal of Clinical Investigation,1999,103(2):185-195.
[8] Chen F,Yu Y F,Haigh S,et al.Regulation of NADPH Oxidase 5 by Protein Kinase C Isoforms [J].PLoS ONE,2014,9(2).
[9] Wakasaki H,Koya D,Schoen F J,et al.Targeted overexpression of protein kinase C beta-2 isoform in myocardium causes cardiomyopathy[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(17):9320-9325.
[10] Brownlee M.Biochemistry and molecular cell biology of diabetic complications[J].Nature,2001,414(6865):813-820.
[11] Sims T J,Rasmussen L M,Oxlund H,et al.The role of glycation cross-links in diabetic vascular stiffening [J].Diabetologia,1996,39(8):946-951.
[12] Quehenberger P,Bierhaus A,F(xiàn)asching P,et al. Endothelin 1 transcription is controlled by nuclear factor-kappa B in AGE-stimulated cultured endothelial cells [J].Diabetes,2000,49(9):1561-1570.
[13] Roden M,Price T B,Perseghin G,et al.Mechanism of free fatty acid-induced insulin resistance in humans[J].Journal of Clinical Investigation,1996,97(12):2859-2865.
[14] Mazumder P K,O'Neill B T,Roberts M W,et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts[J]. Diabetes,2004,53(9):2366-2374.
[15] Peterson L R,Herrero P,Schechtman K B, et al.Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women[J].Circulation,2004,109(18):2191-2196.
[16] Du X L,Edelstein D,Obici S,et al.Insulin resistance reduces arterial prostacyclin synthase and?eNOS activities by increasing endothelial fatty acid oxidation[J].Journal of Clinical Investigation,2006,116(4):1071-1080.
[17] Witteles R M,F(xiàn)owler M B.Insulin-resistant cardiomyopathy [J].Journal of the American College of Cardiology,2008,51(2):93-102.
[18] Archuleta T L,Lemieux A M,Saengsirisuwan V,et al.Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle:Role of p38 MAPK[J].Free Radical Biology and Medicine,2009,47(10):1486-1493.
[19] Mariappan N,Elks C M,Sriramula S,et al.NF-kappa B-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes[J].Cardiovascular Research,2010,85(3):473-483.
[20] Rui L Y,Aguirre V,Kim J K,et al.Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser(307) via distinct pathways[J].Journal of Clinical Investigation,2001,107(2):181-189.
[21] de Alvaro C,Teruel T,Hernandez R,et al.Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappa B kinase in a p38 MAPK-dependent manner[J].Journal of Biological Chemistry,2004,279(17):17070-17078.
[22] Campbell J S,Prichard L,Schaper F,et al.Expression of suppressors of cytokine signaling during liver regeneration[J].Journal of Clinical Investigation,2001,107(10):1285-1292.
[23] Rui L Y,Yuan M S,F(xiàn)rantz D,et al.SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2[J].Journal of Biological Chemistry,2002,277(44):42394-42398.
[24] Ueki K,Kondo T,Kahn C R.Suppressor of cytokine?signaling 1(SOCS-1)and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms[J].Molecular and Cellular Biology,2004,24(12):5434-5446.
[25] Cuff D J,Meneilly G S,Martin A,et al.Effective exercise modality to reduce insulin resistance in women with type 2 diabetes[J].Diabetes Care,2003,26(11):2977-2982.
[26] Kadoglou N P,Perrea D,Iliadis F,et al.Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes[J].Diabetes Care,2007,30(3):719-721.
[27] Okada S,Hiuge A,Makino H,et al.Effect of Exercise Intervention on Endothelial Function and Incidence of Cardiovascular Disease in Patients with Type 2 Diabetes[J].Journal of Atherosclerosis and Thrombosis,2010,17(8):828-833.
[28] Kodama S,Tanaka S,Heianza Y,et al.Association Between Physical Activity and Risk of All-Cause Mortality?and Cardiovascular Disease in Patients With Diabetes A meta-analysis[J].Diabetes Care,2013,36(2):471-479.
[29] Rock C L,F(xiàn)latt S W,Pakiz B,et al.Weight Loss,Glycemic Control,and Cardiovascular Disease Risk Factors in Response to Differential Diet Composition in a Weight Loss Program in Type 2 Diabetes:ARandomized Controlled Trial [J].Diabetes Care,2014,37(6):1573-1580.
[30] Lauritzen H,Galbo H,Toyoda T,et al.Kinetics of Contraction-Induced GLUT4 Translocation in Skeletal Muscle Fibers From Living Mice[J].Diabetes,2010,59(9):2134-2144.
[31] Sai E,Shimada K,Yokoyama T,et al.Association between Myocardial Triglyceride Content and Cardiac Function in Healthy Subjects and Endurance Athletes[J].PLoS ONE,2013,8(4).
[32] Schrauwen-Hinderling V B,Meex R C R,Hesselink M K C,et al.Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients,despite improved ejection fraction[J].Cardiovascular Diabetology,2011,10.
[33] Hegde S V,Adhikari P,Kotian S,et al.Effect of 3-Month Yoga on Oxidative Stress in Type 2 Diabetes With or Without Complications[J].Diabetes Care,2011,34(10):2208-2210.
[34] Vinetti G,Mozzini C,Desenzani P,et al.Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes:a randomized controlled trial[J].Scientific Reports,2015,5.
[35] Lee S,Park Y,Zhang C.Exercise Training Prevents Coronary Endothelial Dysfunction in Type 2 Diabetic Mice[J].American Journal of Biomedical Sciences,2011,3(4):241-252.
[36] Vepsalainen T,Soinio M,Marniemi J,et al.Physical Activity,High-Sensitivity C-Reactive Protein,and Total and Cardiovascular Disease Mortality in Type 2 Diabetes[J].Diabetes Care,2011,34(7):1492-1496.
[37] Fish J E,Santoro M M,Morton S U,et al.MiR-126regulates angiogenic signaling and vascular integrity [J].Developmental Cell,2008,15(2):272-284.
[38] Wang S S,Aurora A B,Johnson B A,et al.The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J].Developmental Cell,2008,15(2):261-271.
[39] Jansen F,Yang X Y,Hoelscher M,et al.Endothelial
Microparticle-Mediated Transfer of MicroRNA-126 Promotes Vascular Endothelial Cell Repair via SPRED1 and Is Abrogated in Glucose-Damaged Endothelial Microparticles[J].Circulation,2013,128(18):2026-2038.
[40] Jiang Y,Wang H Y,Cao H M,et al.Peripheral blood miRNAs as a biomarker for chronic cardiovascular diseases [J].Scientific Reports,2014,4.
[41] Rawal S,Munasinghe P E,Shindikar A,et al.
Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy[J].Cardiovascular Research,2017,113(1):90-101.
[42] Tahergorabi Z,Khazaei M.Imbalance of angiogenesis in diabetic complications:the mechanisms[J].International journal of preventive medicine,2012,3(12):827-838.
[43] Liu Y,Gao G,Yang C,et al.The role of circulating?microRNA-126(miR-126):a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus[J].International Journal of Molecular Sciences,2014,15(6):10567-10577.
[44] Chou E,Suzuma I,Way K J,et al.Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States:a possible explanation for impaired collateral formation in cardiac tissue[J].Circulation,2002,105(3):373-379.
[45] Da Silva N D,F(xiàn)ernandes T,Soci U P R,et al.Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis[J].Medicine and Science in Sports and Exercise,2012,44(8):1453-1462.
[46] Liu X J,Xiao J J,Zhu H,et al.miR-222 Is Necessary for Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling[J].Cell Metabolism,2015,21(4):584-595.
[47] Rawal S,Ram T P,Coffey S,et al.Differential expression pattern of cardiovascular microRNAs in the human type-2 diabetic heart with normal ejection fraction[J].International Journal of Cardiology,2016, 202:40-43.
[48] Yildirim S S,Akman D,Catalucci D,et al. Relationship Between Downregulation of miRNAs and Increase of Oxidative Stress in the Development of Diabetic Cardiac Dysfunction:Junctin as a Target Protein of miR-1[J].Cell Biochemistry and Biophysics, 2013,67(3):1397-1408.
[49] Wang J J,Jia Z Q,Zhang C G,et al.miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2[J].RNA Biology,2014,11(4):339-350.
基金:江蘇省自然科學(xué)基金(BK20201435);揚(yáng)州大學(xué)大學(xué)生科創(chuàng)基金項(xiàng)目(X20210302)。
通訊作者:趙仁清
(作者單位:揚(yáng)州大學(xué)體育學(xué)院)