鄭鐵剛,孫雙科,柳海濤,李廣寧,涂承義,柳松濤,石 凱
過魚設(shè)施進(jìn)口區(qū)域水溫對(duì)集誘魚效果的影響
鄭鐵剛1,孫雙科1,柳海濤1,李廣寧1,涂承義2,柳松濤1,石 凱1
(1. 中國水利水電科學(xué)研究院流域水循環(huán)模擬及調(diào)控國家重點(diǎn)實(shí)驗(yàn)室,北京 100038;2. 中國電建集團(tuán)華東勘測(cè)設(shè)計(jì)研究院有限公司,杭州 311122)
庫區(qū)水溫分層與過魚通道隔斷是水利水電工程建設(shè)隨之產(chǎn)生的生態(tài)環(huán)境影響之一。過魚效果是評(píng)估過魚設(shè)施建設(shè)成功與否的關(guān)鍵指標(biāo)。對(duì)于存在水溫分層的高壩工程而言,過魚設(shè)施進(jìn)口附近存在的溫差效應(yīng)是否會(huì)對(duì)進(jìn)口區(qū)域的集誘魚效果產(chǎn)生影響是當(dāng)前應(yīng)該解決的首要問題之一。該研究通過建立三維水溫水動(dòng)力數(shù)學(xué)模型與包含過魚設(shè)施進(jìn)口段和明渠河流段的物理模型,分別開展了水溫水動(dòng)力預(yù)測(cè)及實(shí)魚過魚試驗(yàn)研究工作,研究結(jié)果表明:溫差效應(yīng)對(duì)進(jìn)口附近水動(dòng)力條件影響甚微,影響區(qū)域主要取決于魚道流量,而岸邊水溫量值則取決于溫差的大?。辉龃竺髑髁繉⒃黾由纤蒴~類發(fā)現(xiàn)魚道進(jìn)口的難度;沿冷水區(qū)域上溯樣本量占總樣本的39%,沿溫水區(qū)域上溯樣本量占總樣本的61%,由此可知,溫水區(qū)域?qū)︿в昔~類更具有吸引力;溫差效應(yīng)在一定程度上有利于洄游魚類發(fā)現(xiàn)魚道進(jìn)口并在進(jìn)口區(qū)域聚集,與冷水區(qū)域相比,溫水有效區(qū)域魚進(jìn)入魚道進(jìn)口的嘗試率提高了17個(gè)百分點(diǎn)。研究成果可為相關(guān)人員嘗試采用改變水溫調(diào)整洄游魚類上溯路線,改善魚道進(jìn)口集誘魚,進(jìn)而提升魚道過魚效果提供思路。
溫度;設(shè)施;模型;水溫分層;集誘魚;溫差效應(yīng);裂腹魚
修建過魚設(shè)施是實(shí)現(xiàn)人與自然和諧相處、確保水利水電工程建設(shè)可持續(xù)發(fā)展的重要環(huán)保措施,在維系河流聯(lián)通性、溝通魚類上下游基因交流方面具有無可替代的作用[1-3]。近10 a來,隨著環(huán)境保護(hù)政策的加強(qiáng),過魚設(shè)施建設(shè)逐漸受到重視,成為國內(nèi)所有待建水利水電工程均需考慮的內(nèi)容[4]。以此為契機(jī),國內(nèi)過魚設(shè)施相關(guān)技術(shù)水平得到顯著提升,魚道在高壩工程中也越來越多得到應(yīng)用,如大古水電站(水頭差80 m)[5]、藏木水電站(水頭差67 m)[6]、枕頭壩一級(jí)水電站(水頭差34 m)[7]、巴西伊泰普水電站(水頭差120 m)[6]等。隨著過魚設(shè)施的廣泛應(yīng)用與推廣,如何提升過魚設(shè)施的過魚效果成為當(dāng)前研究的新熱點(diǎn)[8]。
對(duì)于魚道、魚閘或升魚機(jī)工程而言,過魚設(shè)施進(jìn)口區(qū)域的集誘魚效果,是決定過魚設(shè)施能否發(fā)揮其應(yīng)有作用與效果的關(guān)鍵因素之一[9-10],主要取決于進(jìn)口布置、誘魚水流、環(huán)境流場(chǎng)分布特性、地形條件與水溫條件等因素。在上述因素的耦合疊加下,如何形成有利于過魚對(duì)象聚集的水溫水動(dòng)力學(xué)條件,是需要系統(tǒng)研究的關(guān)鍵科技問題,該問題的研究屬于水工水力學(xué)與生態(tài)水力學(xué)的交叉學(xué)科范疇,尚處于起步探索階段[9,11]。目前國內(nèi)外已有研究多聚焦于過魚設(shè)施進(jìn)口水動(dòng)力學(xué)條件,如流速分布與水流流態(tài)等[12-17]。然而,對(duì)于大部分高壩工程過魚設(shè)施而言,除水動(dòng)力學(xué)條件外,還需要考慮因庫區(qū)水溫分層導(dǎo)致的溫差效應(yīng)的影響[18]。
中國大部分高壩工程,其水庫大都屬于水溫分層型,水庫表底層之間的溫差甚大,如光照水電站水庫表底層最大溫差約為11 ℃[19],糯扎渡水電站則達(dá)到13 ℃[20]。然而,過魚設(shè)施的上游供水系統(tǒng)通常取自水庫表層,其水溫相對(duì)較高,電站進(jìn)水口取水高程則相對(duì)較低,下泄水溫較低,即便采用疊梁門分層取水措施,電站尾水水溫仍明顯低于水庫表層水溫,由此導(dǎo)致過魚設(shè)施進(jìn)口出流水溫高于環(huán)境水溫,形成溫差效應(yīng)。以光照水電站工程為例[19],7-9月份為主要過魚期間,庫區(qū)表層水溫達(dá)到27~28 ℃,而疊梁門分層取水下游河道現(xiàn)場(chǎng)監(jiān)測(cè)水溫僅為19~21 ℃,即過魚設(shè)施出流水溫與環(huán)境水流水溫差達(dá)8 ℃。已有文獻(xiàn)研究表明,魚類對(duì)于水流水溫的敏感程度極高,甚至0.03~0.10 ℃的水溫變化會(huì)對(duì)魚類活動(dòng)產(chǎn)生影響[21-22]。由此可見,高壩過魚設(shè)施存在的溫差效應(yīng)可能會(huì)對(duì)洄游魚類的上溯與聚集產(chǎn)生一定的直接影響。目前國內(nèi)外關(guān)于水溫對(duì)魚類的影響研究大多圍繞生物學(xué)指標(biāo)上開展的分析,且試驗(yàn)方法基本為在靜止的水體內(nèi)提升水溫,進(jìn)而觀測(cè)魚類生物學(xué)指標(biāo)的變化[23-24];亦或在恒溫水槽內(nèi),通過改變水溫,測(cè)試某均一水溫條件下魚類的游泳行為[25-27],以上研究結(jié)論均難以反饋水溫變化對(duì)魚類上溯與聚集的影響。目前,對(duì)于水溫與動(dòng)力學(xué)結(jié)合條件下對(duì)魚類上溯行為的影響研究鮮有成果發(fā)表。鑒于此,本文采用水力學(xué)與魚類行為學(xué)相結(jié)合的方法,分別建立三維水溫水動(dòng)力數(shù)學(xué)模型與包含過魚設(shè)施進(jìn)口段和明渠河流段的物理模型,開展水溫水動(dòng)力特性及實(shí)魚過魚試驗(yàn)研究,探究溫差效應(yīng)對(duì)洄游魚類上溯行為的作用,分析其對(duì)過魚設(shè)施進(jìn)口集誘魚效果的影響,以期為過魚效果的提升提供技術(shù)支撐。
過魚試驗(yàn)在中國水利水電科學(xué)研究院流域水循環(huán)模擬與調(diào)控國家重點(diǎn)實(shí)驗(yàn)室大興試驗(yàn)基地開展。圖1為試驗(yàn)裝置照片。綜合考慮水流及試驗(yàn)魚樣本因素,本研究中試驗(yàn)?zāi)P捅瘸邽?∶4,模型長約20 m、寬2.0 m、深0.80 m,采用魚道出流方式模擬過魚設(shè)施出流,長度和寬度方向上保證兩股出流充分發(fā)展且互不干涉。過魚設(shè)施1和2上游側(cè)均設(shè)置有獨(dú)立的供水池,其中,過魚設(shè)施2與明渠中水流水溫保持一致,而過魚設(shè)施1上游側(cè)的供水池內(nèi)裝配有加熱系統(tǒng),可通過調(diào)整水流水溫來模擬與明渠水流的不同溫差條件。過魚設(shè)施出流位置均在水槽兩側(cè)1/2深度,注入水流方向與水槽主流成30°夾角,以此實(shí)現(xiàn)工程應(yīng)用中三維流場(chǎng)特征的模擬。魚道池室內(nèi)水深為20 cm,明渠內(nèi)水深為40 cm。試驗(yàn)水槽下游設(shè)有放魚區(qū),放魚區(qū)安裝有活動(dòng)式攔魚格柵。
圖1 試驗(yàn)?zāi)P蛯?shí)物圖
為實(shí)時(shí)記錄過魚對(duì)象的誘集行為,在整個(gè)水槽模型的上部安裝有FDR-AX700高速攝像機(jī)(1 000幀/s),對(duì)魚類誘集行為進(jìn)行全過程監(jiān)控。監(jiān)測(cè)視頻實(shí)時(shí)傳輸入監(jiān)控電腦以備后續(xù)分析處理。
本文選擇齊口裂腹魚作為試驗(yàn)樣本,如圖2所示。齊口裂腹魚()別名齊口、雅魚等,屬裂腹魚亞科,裂腹魚屬,底棲冷水魚類,主要分布于中國長江上游水域,其多生活在水流湍急、溶解氧含量較高的山區(qū)河段,生活水溫7~10 ℃,適宜生長水溫5~27 ℃,具有短距離生殖洄游習(xí)性[28]。
已有研究表明,體型大小和魚鰭位置、形狀相近的魚類在相近水流環(huán)境下的行為具有一致性[29]。同種魚類成魚與幼魚的體型相近。可以假定在試驗(yàn)條件下,幼魚的游泳行為與成魚一致,故目前文獻(xiàn)中實(shí)魚試驗(yàn)多以幼魚為主[30-32]。野外捕獲的齊口裂腹魚體長范圍通常為13~42 cm,根據(jù)比尺換算可知模型中試驗(yàn)魚體長范圍應(yīng)介于3.25~10.50 cm,本研究選用體長范圍(9.0±1.5)cm的齊口裂腹魚作為試驗(yàn)用魚。試驗(yàn)用魚采購自四川某漁場(chǎng),試驗(yàn)前暫養(yǎng)于1 m3的方形水池中,光照為室內(nèi)自然光,采用水泵24 h循環(huán)供水,并進(jìn)行曝氣處理。試驗(yàn)期間暫養(yǎng)池內(nèi)溶解氧濃度為7.0~8.0 mg/L,池內(nèi)水溫為15.2 ℃左右,試驗(yàn)前兩日停止喂食。
圖2 試驗(yàn)用魚照片
過魚試驗(yàn)于2021年11月份開展,試驗(yàn)周期內(nèi)試驗(yàn)基地水庫水溫為13.8 ℃,略低于魚類暫養(yǎng)池內(nèi)水溫,但滿足試驗(yàn)樣本適宜生存溫度。試驗(yàn)中采用電加熱的方法來升高過魚設(shè)施1的水流水溫,但鑒于試驗(yàn)中耗水量較大,同時(shí)考慮到試驗(yàn)基地的最大供電功率,本研究僅在溫升為0.5 ℃的工況下(14.3 ℃)開展過魚試驗(yàn)。為不影響過魚試驗(yàn)的有效開展,進(jìn)行過魚試驗(yàn)時(shí),在暫養(yǎng)池中隨機(jī)選擇健康個(gè)體,在測(cè)試段下游的放魚區(qū)中部同時(shí)放入5~10條試驗(yàn)魚,多條試驗(yàn)魚的體長范圍誤差控制在20%以內(nèi)。將試驗(yàn)魚在放魚區(qū)內(nèi)等待20~30 min,使魚類能夠適應(yīng)明渠水槽中的水溫與水流環(huán)境,之后打開測(cè)試段下游的攔魚格柵,并同步啟動(dòng)測(cè)試段的攝像系統(tǒng)開始記錄水槽內(nèi)魚類的游泳行為信息,即完成一組試驗(yàn)。試驗(yàn)過程中,為了盡量消除除水溫條件外,其他外界環(huán)境對(duì)魚類行為的影響,試驗(yàn)在開展過程中,過魚設(shè)施1上游加熱區(qū)、過魚設(shè)施2及主渠道內(nèi)三股來流均來自于同一根管道,然后再進(jìn)行分流,即試驗(yàn)過程中可以保證三股來流的初始水溫、DO(dissolved oxygen)、pH值等水環(huán)境條件一致。同時(shí),在無加熱條件下,主渠道兩岸岸邊區(qū)域的流速分布測(cè)量結(jié)果一致。為了測(cè)試光環(huán)境的差別,試驗(yàn)中利用特安斯高精度測(cè)光儀對(duì)主渠道兩岸區(qū)域的光照強(qiáng)度進(jìn)行了測(cè)試,結(jié)果顯示無差異。由此可以認(rèn)為,試驗(yàn)過程中兩側(cè)的水環(huán)境條件及光環(huán)境條件一致,進(jìn)而忽略除變量條件外其他因素對(duì)試驗(yàn)魚上溯的影響。
將試驗(yàn)魚放置放魚區(qū),放魚區(qū)距離魚道進(jìn)口下游6.5 m,放魚區(qū)下游即為明渠水流溢出口,受到溢出口的紊動(dòng)摻混影響,放魚區(qū)內(nèi)的水溫均勻,即試驗(yàn)魚在放魚區(qū)內(nèi)不受過魚設(shè)施1水溫魚1的影響。提起攔魚格柵后,試驗(yàn)魚開始上溯。整個(gè)試驗(yàn)過程中要保證模型周圍無人為行動(dòng)或噪聲等因素干擾。重復(fù)上述試驗(yàn)步驟,可獲得多組試驗(yàn)數(shù)據(jù),試驗(yàn)組次數(shù)量需滿足統(tǒng)計(jì)學(xué)意義。
本研究中,將物理模型測(cè)試區(qū)域分為冷水區(qū)域和溫水區(qū)域,冷水區(qū)域?yàn)槊髑A(chǔ)水溫,而溫水區(qū)域則為高于基礎(chǔ)水溫的區(qū)域范圍,該區(qū)域由水溫?fù)交鞌U(kuò)散模擬結(jié)果確定。此外,還分別定義過魚設(shè)施1、2進(jìn)口附近區(qū)域?yàn)檎T魚區(qū)域,該區(qū)域?yàn)檫^魚設(shè)施進(jìn)口上游1倍至下游2倍的進(jìn)口寬度區(qū)域。嘗試是近幾年用于描述目標(biāo)魚上溯動(dòng)機(jī)的一種新概念,關(guān)注目標(biāo)魚在上溯過程中嘗試進(jìn)入魚道進(jìn)口的上溯行為過程[31]。本文結(jié)合視頻監(jiān)測(cè)結(jié)果,將在魚道進(jìn)口誘魚區(qū)域內(nèi)出現(xiàn)明顯停滯的上溯魚數(shù)量占總上溯魚數(shù)量的比例定義為嘗試率,出現(xiàn)停滯的上溯魚可由魚道繼續(xù)上溯,也可進(jìn)一步越過魚道進(jìn)口沿明渠上溯。試驗(yàn)魚上溯過程中的路徑采用logger pro 軟件收集和分析。
結(jié)合處理后的數(shù)據(jù),統(tǒng)計(jì)分析試驗(yàn)樣本在溫水區(qū)域上溯的數(shù)量、冷水區(qū)域上溯的數(shù)量、由溫水區(qū)進(jìn)入冷水區(qū)上溯或由冷水區(qū)進(jìn)入溫水區(qū)上溯的數(shù)量、以及分別在過魚設(shè)施1和2有效區(qū)域內(nèi)停滯的數(shù)量。此外,將放魚區(qū)內(nèi)不進(jìn)行上溯、上溯途中折回以及沿明渠中線上溯的試驗(yàn)魚定為上溯失敗的樣本。
為了準(zhǔn)確反映溫差效應(yīng)對(duì)過魚對(duì)象行為的影響規(guī)律,本研究結(jié)合三維水溫水動(dòng)力數(shù)值模擬方法,對(duì)不同溫差條件下試驗(yàn)區(qū)域內(nèi)的水溫水動(dòng)力結(jié)果進(jìn)行預(yù)測(cè),以期判別水溫條件改變對(duì)水動(dòng)力條件的影響規(guī)律。三維水溫水動(dòng)力數(shù)學(xué)模型基于Boussinesq假定建立,采用RNG-紊流模型結(jié)合傳熱方程進(jìn)行水溫水動(dòng)力模擬[33-34],傳熱方程如下:
式中為流體的密度,kg/m3;為時(shí)間,s;為流速,m/s;為溫度,K;為流體的傳熱系數(shù),取值0.6 W/(m×K);c為比熱容,取值4 182 J/(kg×K)。
模擬過程中,過魚設(shè)施及明渠上游設(shè)定流量邊界,并賦予來流水溫,下游為自由出流邊界,同時(shí),水體表面賦予大氣溫度。過魚設(shè)施及明渠邊壁采用無滑移邊界條件,且為絕熱邊界。計(jì)算模擬區(qū)域與物理模型試驗(yàn)區(qū)域一致,考慮到原型中魚道與河道的流速量值,通過比尺換算,過魚設(shè)施1和2流量魚1、魚2均設(shè)計(jì)為0.007 5 m3/s,上游明渠來流量渠分別設(shè)計(jì)為0.16、0.32 m3/s。參考物理模型試驗(yàn)設(shè)計(jì)參數(shù),過魚設(shè)施2及明渠來流水溫魚2、渠均為13.8 ℃,過魚設(shè)施1來流水溫T魚1為14.3 ℃。在此基礎(chǔ)上,為進(jìn)一步對(duì)比分析溫差對(duì)過魚設(shè)施進(jìn)口附近水動(dòng)力的影響,本研究進(jìn)一步增加溫升分別為1.0 ℃(水溫14.8 ℃)和2.0 ℃(水溫15.8 ℃)開展數(shù)值模擬研究。
為驗(yàn)證數(shù)值模擬結(jié)果的可靠性,本文選取明渠來流量渠為0.16 m3/s、過魚設(shè)施1來流水溫魚1為14.3 ℃工況,采用JM6200I高精度數(shù)字溫度計(jì)對(duì)明渠段魚道進(jìn)口下游沿程水溫進(jìn)行測(cè)量,設(shè)備精度為±0.05%。離岸0.2 m、水下0.1 m的沿程水溫試驗(yàn)結(jié)果與數(shù)值模擬結(jié)果的對(duì)比如圖3所示。由圖3可見,數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果吻合良好,最大相對(duì)誤差為1.5%,兩者均表現(xiàn)出水溫在魚道進(jìn)口下游迅速升高而后緩慢下降的趨勢(shì),該水溫衰減規(guī)律與文獻(xiàn)[34]現(xiàn)場(chǎng)監(jiān)測(cè)結(jié)果一致。由此表明,數(shù)值模擬結(jié)果可信,可以用于預(yù)測(cè)不同工況下過魚設(shè)施下游水溫水動(dòng)力結(jié)果。
注:橫坐標(biāo)表示遠(yuǎn)離魚道進(jìn)口的距離。下同。
改變過魚設(shè)施1來流水溫魚1及渠道來流量渠條件,不同工況過魚設(shè)施下游水動(dòng)力預(yù)測(cè)結(jié)果如圖4所示。由于計(jì)算水槽內(nèi)流態(tài)均勻,無漩渦、回流等流態(tài)存在,因此本文不再展示流態(tài)計(jì)算結(jié)果,僅開展流速相關(guān)分析。此外,鑒于該部分研究的重點(diǎn)在于論證溫差是否會(huì)對(duì)水動(dòng)力條件產(chǎn)生顯著影響,因此文中忽略垂向的流速分布變化,僅選取水下單層平面流速分布開展分析。
由圖4a可見,受魚道出流影響岸邊流速加大,且沿寬度方向擴(kuò)散,魚道出流與明渠水流交匯處流速量值約為0.30 m/s,在剪切應(yīng)力的影響下,明渠兩岸岸邊(離岸距離小于0.5 m)流速沿程衰減至0.24 m/s,略大于明渠中央(離岸距離大于0.5 m)流速0.22 m/s。由熱力學(xué)理論可知,受熱浮力及水黏性變化等影響,當(dāng)兩股水流存在溫度差時(shí),明渠內(nèi)的流速分布與等溫條件下流速分布具有一定差異。然而,盡管魚1與魚2存在0.5 ℃的溫差,但明渠兩岸岸邊流速分布及量值基本對(duì)稱(圖4a)。且當(dāng)進(jìn)一步增大魚1,明渠兩岸岸邊流速分布及量值仍基本對(duì)稱,如圖4b和4c所示??梢娫诒疚谋尘跋聹夭钤龃髮?duì)水動(dòng)力條件影響不明顯。這是由于本研究中魚道流量較小,盡管魚道出流水溫增加0.5~2.0 ℃,但魚道出流熱流量僅占明渠內(nèi)熱流量的5%左右,由此導(dǎo)致水體熱浮力效應(yīng)有限,進(jìn)而溫差對(duì)流速分布的影響甚微。
圖4d為增大明渠來流量條件下過魚設(shè)施下游水動(dòng)力結(jié)果。預(yù)測(cè)結(jié)果表明,該條件下明渠兩岸岸邊流速及量值仍表現(xiàn)出基本對(duì)稱的分布規(guī)律,然而與圖4a所示結(jié)果不同,明渠兩岸岸邊(離岸距離小于0.2 m)流速略小于明渠中央(離岸距離大于0.2 m)流速。由于魚道出池水流流速與明渠內(nèi)水流流速相當(dāng),與前一工況不同,魚道出池水流前行受阻,僅附壁前行(圖5)。由圖4和圖5可知,如果魚道出池水流流速不變時(shí),增大明渠流量后,魚道出池水流對(duì)明渠水流的影響寬度由0.5 m縮窄到0.2 m,且魚道出池水流流速與明渠流速相當(dāng),也就是說,對(duì)于洄游魚類而言魚道出池水流(吸引流)將不再明顯,進(jìn)而增加上溯魚類發(fā)現(xiàn)魚道進(jìn)口的難度。
注:縱坐標(biāo)表示遠(yuǎn)離明渠中線的距離;Q渠表示上游明渠來流量;T魚1表示過魚設(shè)施1來流水溫;過魚設(shè)施2及明渠來流水溫均為13.8 ℃。下同。
圖5 魚道進(jìn)口附近流線圖
由熱力學(xué)理論可知,當(dāng)具有水溫差的兩股水流摻混后會(huì)迅速發(fā)生熱量交換,低溫水體的溫度在摻混區(qū)迅速上升,而后逐步降低直至與環(huán)境水體一致[35]。圖6為改變過魚設(shè)施1來流水溫魚1及渠道來流量渠條件,不同工況過魚設(shè)施下游水溫沿程分布的預(yù)測(cè)結(jié)果。其中,圖6a、6b和6c分別為溫差0.5、1.0和2.0 ℃的渠道水溫沿程分布的預(yù)測(cè)結(jié)果。由圖6可見,隨著溫差的增大,明渠右岸的沿程水溫量值逐漸增加,明渠末端附近,即下游橫向距離為5.0 m、離岸0.2 m處,岸邊水溫增幅僅為0.1~0.2 ℃,約占魚道進(jìn)口溫差增幅(渠?魚1=0.5~1.0 ℃)的30%。另外,對(duì)比圖中結(jié)果可知,3種溫差條件下魚道進(jìn)口下游溫水區(qū)域基本一致,結(jié)合圖4和圖5可見,溫水區(qū)域主要集中在魚道出池水流的流線區(qū)域,并不隨溫差的增大而發(fā)生變化。分析其原因,這可能是由于本研究中明渠流量約為魚道流量的20倍,魚道流量與明渠流量差距明顯所致。眾所周知,具有較高水溫的魚道出池水流進(jìn)入明渠后,溫差效應(yīng)影響的區(qū)域主要取決于魚道出池水流與明渠水流的熱流量比。然而,本文的研究對(duì)象分別為魚道出池水流與明渠水流,如前所述,兩者流量差距明顯,實(shí)際工程中亦如此[36],由此致使溫差量值對(duì)熱流量比的影響遠(yuǎn)小于流量的影響,即熱流量差距明顯。換而言之,溫差效應(yīng)影響的區(qū)域主要取決于魚道出池水流的流量大小,而溫差量值則對(duì)岸邊水溫量值的影響較大。
為論證上述觀點(diǎn),本文進(jìn)一步提取了增大明渠水流流量條件下的平面水溫分布預(yù)測(cè)結(jié)果,如圖6d所示。對(duì)比圖6a和圖6d可見,當(dāng)明渠流量增大后,即魚道出池水流流量與明渠水流流量比(魚1/渠)減小,岸邊水溫沿程衰減規(guī)律及量值與流量增大前基本一致,然而溫水區(qū)域范圍則明顯減小,與圖4d所示的魚道出池水流的流線區(qū)域一致。由此可進(jìn)一步斷定,對(duì)于魚道工程而言,上游庫區(qū)水溫分層導(dǎo)致的溫差效應(yīng)影響的區(qū)域取決于魚道流量,而岸邊水溫量值則取決于溫差的大小。
圖6 不同工況下游水溫預(yù)測(cè)結(jié)果
由上文分析可知,魚道出池水流與明渠水流溫差的存在,對(duì)進(jìn)口下游流速及溫水區(qū)域分布影響甚微,而對(duì)岸邊水溫量值影響則較大。由此可以判斷,當(dāng)魚道出池水流與明渠上游水動(dòng)力條件不發(fā)生變化時(shí),溫差效應(yīng)的存在對(duì)洄游魚類上溯及集誘魚的影響主要體現(xiàn)在水溫本身對(duì)洄游魚類的影響,而非溫差效應(yīng)引起的水動(dòng)力改變對(duì)洄游魚類的影響。為分析水溫本身如何影響洄游魚類的上溯路線及魚道進(jìn)口集誘魚效果,本文在大比尺水槽模型中開展了實(shí)魚過魚試驗(yàn)。根據(jù)前文過魚試驗(yàn)方法的介紹,同時(shí)考慮到流量改變對(duì)岸邊水溫分布規(guī)律的影響較為有限,本研究過魚試驗(yàn)背景條件選擇為:渠道流量渠為0.16 m3/s,渠道水溫渠為13.8 ℃,渠道水深渠為0.4 m,過魚設(shè)施流量魚1、魚2均為0.007 5 m3/s,過魚設(shè)施1水溫魚1為14.3 ℃,過魚設(shè)施2水溫魚2為13.8 ℃,魚道水深魚為0.2 m,試驗(yàn)魚樣本數(shù)量55條。
圖7為試驗(yàn)魚上溯路徑示意圖,試驗(yàn)結(jié)果中,有效過魚試驗(yàn)樣本數(shù)量為41尾,其中直接沿冷水區(qū)域上溯樣本數(shù)量為16尾,占總樣本量的39%;沿溫水區(qū)域上溯樣本數(shù)量為25尾,占總樣本量的61%;沿冷水區(qū)域過渡至溫水區(qū)域上溯樣本數(shù)量為5尾,占總樣本量的12%;沿溫水區(qū)域過渡至冷水區(qū)域上溯的樣本數(shù)量為0尾。此外,在冷水有效區(qū)域出現(xiàn)停滯的樣本數(shù)量為5尾,嘗試率為31%;在溫水有效區(qū)域出現(xiàn)停滯的樣本數(shù)量為12尾,嘗試率為48%,較冷水區(qū)域,嘗試率提高了17個(gè)百分點(diǎn)。由于齊口裂腹魚喜好渠底上溯,而模型設(shè)計(jì)中考慮了工程實(shí)際情況,魚道底部與渠底存在高差,進(jìn)而導(dǎo)致試驗(yàn)樣本中進(jìn)入魚道的樣本數(shù)量較少,僅在溫水區(qū)域發(fā)現(xiàn)2尾,統(tǒng)計(jì)學(xué)意義不大。
前文水溫預(yù)測(cè)結(jié)果可知,進(jìn)口下游溫水區(qū)域水溫較冷水區(qū)域水溫高0.1~0.2 ℃,而沿溫水區(qū)域上溯的試驗(yàn)樣本數(shù)量明顯高于沿冷水區(qū)域上溯的樣本數(shù)量,這可能與魚類本身的體表熱受體(Surface temperature receptors)有關(guān),魚類可以通過體表熱受體探知極小水溫的改變,同時(shí)結(jié)合中樞神經(jīng)系統(tǒng)影響魚類正常游泳過程中復(fù)雜而又非常完整的一系列肌肉收縮,進(jìn)而激發(fā)其相關(guān)行為特征[22,37]。由此可見,洄游魚類能夠感知河道內(nèi)0.1~0.2 ℃的水溫差,且溫水區(qū)域?qū)τ隰~類上溯路線的選擇具有一定的誘導(dǎo)作用。進(jìn)一步對(duì)比試驗(yàn)錄像發(fā)現(xiàn),洄游魚類上溯具有一定的集群效應(yīng),例如一組試驗(yàn)中試驗(yàn)樣本為10尾,有6尾樣本集群由冷水區(qū)域上溯,且集體未在進(jìn)口有效區(qū)域內(nèi)出現(xiàn)停滯;而其余4尾則分散由溫水區(qū)域上溯,并有3尾樣本在進(jìn)口有效區(qū)域內(nèi)出現(xiàn)停滯。另外試驗(yàn)過程中還發(fā)現(xiàn),當(dāng)3尾以上的樣本集群上溯時(shí),樣本在進(jìn)口有效區(qū)域的嘗試率基本為0,無論在冷水區(qū)域亦或溫水區(qū)域內(nèi)。而當(dāng)3尾以下的樣本上溯時(shí),樣本在冷水和溫水有效區(qū)域的嘗試率分別達(dá)到50%和67%。可見,集群效應(yīng)對(duì)進(jìn)口有效區(qū)域的嘗試率影響較大,然而河流中魚類多以集群形式上溯[38-39],因此如何有效地吸引集群魚類調(diào)整上溯路線應(yīng)是今后的研究重點(diǎn)。
圖7 試驗(yàn)魚上溯路徑示意圖
綜上所述,無論從魚類洄游路線還是過魚設(shè)施進(jìn)口嘗試率考慮,溫水區(qū)域?qū)︿в昔~類更具有吸引力,即上游水庫水溫分層導(dǎo)致的溫差效應(yīng)在一定程度上有利于洄游魚類發(fā)現(xiàn)魚道進(jìn)口并在進(jìn)口區(qū)域聚集,改善過魚設(shè)施進(jìn)口集誘魚效果,進(jìn)而提升過魚效果。
本研究分別開展了三維水溫水動(dòng)力數(shù)值模擬與實(shí)魚過魚試驗(yàn),探討了溫差效應(yīng)對(duì)洄游魚類上溯行為的影響,得到如下結(jié)論:
1)在溫差為0.5~2.0 ℃條件下,過魚設(shè)施進(jìn)口下游流速分布及量值基本一致,均為0.24 m/s左右,魚道出池水流與明渠水流溫差的改變對(duì)進(jìn)口附近水動(dòng)力條件影響甚微;魚道出池水流與明渠水流流量比值的改變對(duì)進(jìn)口附近水動(dòng)力條件影響較大,魚道出池水流對(duì)明渠水流的影響寬度由0.5 m縮窄到0.2 m。
2)在魚道出池水流與明渠水流流量比值不變條件下,溫差條件的改變對(duì)溫水區(qū)域?qū)挾鹊挠绊戄^小,而對(duì)水溫量值影響較大,岸邊水溫增幅約為0.5 ℃,溫差效應(yīng)影響的區(qū)域取決于魚道出池水流流量。
3)相較于冷水區(qū)域,溫水區(qū)域?qū)τ隰~類上溯路線的選擇具有一定的誘導(dǎo)作用,上溯樣本數(shù)量占總樣本量的61%;溫水有效區(qū)域的嘗試率為48%,冷水有效區(qū)域的嘗試率為31%。
4)集群效應(yīng)對(duì)進(jìn)口有效區(qū)域的嘗試率影響較大,當(dāng)3尾以上的樣本集群上溯時(shí),進(jìn)口有效區(qū)域的嘗試率基本為0,而當(dāng)3尾以下的樣本上溯時(shí),冷水中嘗試率則達(dá)到50%以上。
該研究可為研究人員嘗試采用改變水溫調(diào)整洄游魚類上溯路線,提升魚道過魚效果提供思路。然而,由于影響魚類上溯行為的因素眾多,且魚種的不同其上溯行為同樣具有差異,致使基于水溫調(diào)整改善魚道過魚效果的相關(guān)研究尚處于起步探索階段。本研究中試驗(yàn)魚僅為裂腹魚,且樣本量較少,目前尚難以準(zhǔn)確定量反映溫差效應(yīng)對(duì)洄游魚類上溯及聚集的影響規(guī)律,多魚種、大樣本量、多環(huán)境量等是今后研究人員開展進(jìn)一步研究要考慮的試驗(yàn)條件。此外,魚類趨向行為對(duì)不同溫度水流響應(yīng)的生理學(xué)分析至關(guān)重要,然而遺憾的是,由于魚類在運(yùn)動(dòng)過程中對(duì)溫度的選擇行為是魚類根據(jù)外界條件和自身需求做出的一個(gè)非常復(fù)雜的綜合選擇的行為,屬于交叉學(xué)科范疇,目前未見深入的相關(guān)研究工作,同樣需要在未來的工作中進(jìn)一步開展。
[1] 周建軍,張曼. 當(dāng)前長江生態(tài)環(huán)境主要問題與修復(fù)重點(diǎn)[J]. 環(huán)境保護(hù),2017,45(15):17-24.
[2] 陳凱麒,常仲農(nóng),曹曉紅,等. 我國魚道建設(shè)現(xiàn)狀與展望[J]. 水利學(xué)報(bào),2012,43(2):182-188.
CHEN Kaiqi, CHANG Zhongnong, CAO Xiaohong, et al. Status and prospection of fish pass construction in China[J]. Journal of Hydraulic Engineering, 2012, 43(2): 182-188. (in Chinese with English abstract)
[3] ZHENG T, NIU Z, SUN S, HUANG W, et al. Optimizing fish-friendly flow pattern in vertical slot fishway based on fish swimming capability validation[J]. Ecological Engineering, 2022, 185: 106796.
[4] 劉志雄,周赤,黃明海. 魚道應(yīng)用現(xiàn)狀和研究進(jìn)展[J]. 長江科學(xué)院院報(bào),2010,27(4):28-31,35.
LIU Zhixiong, ZHOU Chi, HUANG Minghai. Situation and development of fishway research and application[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(4): 28-31, 35. (in Chinese with English abstract)
[5] 湯優(yōu)敏,申劍,吳世勇,等. DG水電站魚道工程規(guī)劃設(shè)計(jì)[C]// 中國大壩工程學(xué)會(huì). 國際碾壓混凝土壩技術(shù)新進(jìn)展與水庫大壩高質(zhì)量建設(shè)管理——中國大壩工程學(xué)會(huì)2019年學(xué)術(shù)年會(huì)論文集. 北京:中國三峽出版社,2019:700-705.
[6] 陳靜,郎建,何濤,等. 高壩魚道工程設(shè)計(jì)案例分析[J]. 水生態(tài)學(xué)雜志,2013,34(4):19-25.
CHEN Jing, LANG Jian, HE Tao, et al. Analysis on engineering design of fishway in high dam[J]. Journal of Hydroecology, 2013, 34(4): 19-25. (in Chinese with English abstract)
[7] 陳國柱,王猛,王海勝,等. 枕頭壩一級(jí)水電站豎縫式魚道過魚效果初探[J]. 水力發(fā)電,2018,44(7):4-8,58.
CHEN Guozhu, WANG Meng, WANG Haisheng, et al. Preliminary study on fish passing effect of the vertical-slot fishway in Zhentouba I hydropower station[J]. Water Power, 2018, 44(7): 4-8, 58. (in Chinese with English abstract)
[8] 曹娜,鐘治國,曹曉紅,等. 我國魚道建設(shè)現(xiàn)狀及典型案例分析[J]. 水資源保護(hù),2016,32(6):156-162.
CAO Na, ZHONG Zhiguo, CAO Xiaohong, et al. Status of fishway construction in China and typical case analysis[J]. Water Resources Protection, 2016, 32(6): 156-162. (in Chinese with English abstract)
[9] NOONAN M J, GRANT J W A, JACKSON C D. A quantitative assessment of fish passage efficiency[J]. Fish and Fisheries, 2012, 13(4): 450-464.
[10] ROSCOE D W, HINCH S G. Effectiveness monitoring of fish passage facilities: Historical trends, geographic patterns and future directions[J]. Fish and Fisheries, 2010, 11(1): 12-33.
[11] SANZ-RONDA F J, BRAVO-CóRDOBA F J, SáNCHEZ- PéREZ A, et al. Passage performance of technical pool-type fishways for potamodromous cyprinids: Novel experiences in semiarid environments[J]. Water, 2019, 11(11): 2362.
[12] 廖伯文,安瑞冬,李嘉,等. 高壩過魚設(shè)施集誘魚進(jìn)口水力學(xué)條件數(shù)值模擬與模型試驗(yàn)研究[J]. 工程科學(xué)與技術(shù),2018,50(5):87-93.
LIAO Bowen, AN Ruidong, LI Jia, et al. Numerical simulation and model test study on the hydrodynamic conditions of fish luring inlet of fish-crossing facility in high dam[J]. Advanced Engineering Sciences, 2018, 50(5): 87-93. (in Chinese with English abstract)
[13] WILLIAMS J G, ARMSTRONG G, KATOPODIS C, et al. Thinking like a fish: A key ingredient for development of effective fish passage facilities at river obstructions[J]. River Research and Applications, 2012, 28(4): 407-417.
[14] GISEN D C, WEICHERT R B, NESTLER J M. Optimizing attraction flow for upstream fish passage at a hydropower dam employing 3D Detached-Eddy Simulation[J]. Ecological Engineering, 2017, 100: 344-353.
[15] 鄭鐵剛,孫雙科,柳海濤,等. 基于魚類行為學(xué)與水力學(xué)的水電站魚道進(jìn)口位置選擇[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):164-170.
ZHENG Tiegang, SUN Shuangke, LIU Haitao, et al. Preliminary study on the location choice method of fishway entrance in large hydropower project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 164-170. (in Chinese with English abstract)
[16] 王從鋒,陳明明,劉德富,等. 基于葛洲壩1號(hào)船閘模型的水流誘魚試驗(yàn)研究[J]. 長江流域資源與環(huán)境,2016,25(6):974-980.
WANG Congfeng, CHEN Mingming, LIU Defu, et al. Experimental study about attractive effects for fish in different flow velocity by the model of the no.1 ship lock of the Gezhou dam[J]. Resources and Environment in the Yangtze Basin, 2016, 25(6): 974-980. (in Chinese with English abstract)
[17] 湯荊燕,高策,陳旻,等. 不同流態(tài)對(duì)魚道進(jìn)口誘魚效果影響的實(shí)驗(yàn)研究[J]. 紅水河,2013,32(1):34-39,44.
TANG Jingyan, GAO Ce, CHEN Min, et al. Study on influence of different flow patterns on fish attracting effect at fish way entrance[J]. Hong Shui River, 2013, 32(1): 34-39, 44. (in Chinese with English abstract)
[18] CAUDILL C C, KEEFER M L, CLABOUGH T S, et al. Indirect effects of impoundment on migrating fish: Temperature gradients in fish ladders slow dam passage by adult Chinook Salmon and Steelhead[J]. Plos One, 2013, 8(12): e85586.
[19] 陳棟為,陳國柱,趙再興,等. 貴州光照水電站疊梁門分層取水效果監(jiān)測(cè)[J]. 環(huán)境影響評(píng)價(jià),2016,38(3):45-48.
CHEN Dongwei, CHEN Guozhu, ZHAO Zaixing, et al. Effect examination of stoplog stratified intake structure in Guangzhao hydropower station in Guizhou: A case study of the pearl river basin Guangzhao hydropower station[J]. Environmental Impact Assessment, 2016, 38(3): 45-48. (in Chinese with English abstract)
[20] 李坤,曹曉紅,溫靜雅,等. 糯扎渡水電站疊梁門試運(yùn)行期實(shí)測(cè)水溫與數(shù)值模擬水溫對(duì)比分析[J]. 水利水電技術(shù),2017,48(11):156-162,186.
LI Kun, CAO Xiaohong, WEN Jingya, et al. Comparative analysis between numerically simulated water temperature and measured water temperature during commissioning of stoplog gate for Nuozhadu Hydropower Station[J]. Water Resources and Hydropower Engineering, 2017, 48(11): 156-162, 186. (in Chinese with English abstract)
[21] WALBERG E. Effect of increased water temperature on warm water fish feeding behavior and habitat use[J]. Journal of Undergraduate Research at Minnesota State University, Mankato, 2011, 11: 13.
[22] SULLIVAN C M. Temperature reception and responses in fish[J]. Journal of the Fisheries Research Board of Canada, 1954, 11(2): 153-170.
[23] 張先炳,胡亞萍,楊威,等. 水溫對(duì)淡水溫水性魚類生命活動(dòng)的影響[J]. 水生態(tài)學(xué)雜志,2021,42(4):117-122.
ZHANG Xianbing, HU Yaping, YANG Wei, et al. Effect of water temperature on the life activities of temperate freshwater fish[J]. Journal of Hydroecology, 2021, 42(4): 117-122. (in Chinese with English abstract)
[24] BAR N S, RADDE N. Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model[J]. BMC Systems Biology, 2009, 3: 107.
[25] 呂為群,袁明哲. 溫度變化對(duì)魚類行為影響的研究進(jìn)展[J]. 上海海洋大學(xué)學(xué)報(bào),2017,26(6):828-835.
LV Weiqun, YUAN Mingzhe. The literature review of temperature change effect on fish behavior[J]. Journal of Shanghai Ocean University, 2017, 26(6): 828-835. (in Chinese with English abstract)
[26] 段辛斌,俞立雄,羅宏偉,等. 兩種溫度條件下四種魚類臨界游泳速度的比較[J]. 動(dòng)物學(xué)雜志,2015,50(4):529-536.
DUAN Xinbin, YU Lixiong, LUO Hongwei, et al. Critical swimming speed comparison of four species of fish at two acclimation temperature[J]. Chinese Journal of Zoology, 2015, 50(4): 529-536. (in Chinese with English abstract)
[27] 郭子琪,李廣寧,郄志紅,等. 水溫對(duì)豎縫式魚道中齊口裂腹魚上溯行為影響試驗(yàn)研究[J]. 中國水利水電科學(xué)研究院學(xué)報(bào),2021,19(2):255-261.
GUO Ziqi, LI Guangning, QIE Zhihong, et al. Study on effect of water temperature on migration ofin vertical slot fishway[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(2): 255-261. (in Chinese with English abstract)
[28] 孟立霞,張文華.齊口裂腹魚人工養(yǎng)殖技術(shù)[J].中國水產(chǎn),2011(5):45-46.
[29] 蔡露,侯軼群,金瑤,等. 魚游泳能力對(duì)體長的響應(yīng)及其在魚道設(shè)計(jì)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(5):209-215.
CAI Lu, HOU Yiqun, JIN Yao, et al. Response of fish swimming ability to body length and its application in fishway design[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 209-215. (in Chinese with English abstract)
[30] WANG R W, DAVID L, LARINIER M. Contribution of experimental fluid mechanics to the design of vertical slot fish passes[J]. Knowledge and Management of Aquatic Ecosystems, 2010(396): 2.
[31] GOERIG E, WASSERMAN B A, CASTRO-SANTOS T, et al. Body shape is related to the attempt rate and passage success of brook trout at in‐stream barriers[J]. Journal of Applied Ecology, 2020, 57(1): 91-100.
[32] 郄志紅,劉輝,吳鑫淼,等. 旋流式魚道的構(gòu)建與水力特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):119-125.
QIE Zhihong, LIU Hui, WU Xinmiao, et al. Establishment of swirling-flow fishway and analysis of its hydraulic characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 119-125. (in Chinese with English abstract)
[33] 吳素杰,宗全利,鄭鐵剛,等. 高寒區(qū)多口融冰井引水渠道水溫變化三維模擬及井群優(yōu)化布置[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):130-137.
WU Sujie, ZONG Quanli, ZHENG Tiegang, et al. 3D simulation on water temperature change of diversion channel and optimal arrangement of multi-wells at high altitude and cold regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 130-137. (in Chinese with English abstract)
[34] ZHENG T, ZONG Q, SUN S, et al. Field and numerical study on a heat-exchange process for thermal side effluent in the cold regions of China[J]. Journal of Hydrology, 2021, 603: 126989.
[35] SHAMMAA Y, ZHU D Z. Experimental study on selective withdrawal in a two-layer reservoir using a temperature- control curtain[J]. Journal of Hydraulic Engineering, ASCE, 2010, 136(4): 234-246.
[36] 呂海艷,徐威,葉茂. 魚道水力學(xué)試驗(yàn)研究[J]. 水電站設(shè)計(jì),2011,27(4):102-105,109.
[37] BARTOLINI T, BUTAIL S, PORFIRI M. Temperature influences sociality and activity of freshwater fish[J]. Environmental Biology of Fishes, 2015, 98(3): 825-832.
[38] 朱天然,孫林,李嘉,等. 齊口裂腹魚集群行為對(duì)流態(tài)的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(11):144-150.
ZHU Tianran, SUN Lin, LI Jia, et al. Response of the behavior of theto the flow pattern[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 144-150. (in Chinese with English abstract)
[39] BREHMER P, CHI T D, MOUILLOT D. Amphidromous fish school migration revealed by combining fixed sonar monitoring (horizontal beaming) with fishing data[J]. Journal of Experimental Marine Biology & Ecology, 2006, 334(1): 139-150.
Effects of water temperature on luring fish in the inlet zone of fish passage facilities
ZHENG Tiegang1, SUN Shuangke1, LIU Haitao1, LI Guangning1, TU Chengyi2, LIU Songtao1, SHI Kai1
(1.100038; 2.311122)
The stratification of water temperature in the reservoir and the separation of fish passage is one of the ecological environmental effects resulting from the construction of water conservancy and hydropower projects. Fish passing is a key index to evaluate the success of fish passage facilities. One of the primary challenges can be determined whether the temperature difference near the inlet of the fish passage facility will affect the luring fish in the inlet zones in the high dam project with the stratified water temperature. Therefore, this study aims to establish a three-dimensional water temperature hydrodynamic mathematical model and a physical model, including the inlet section of the fish passage facility and river section. Some experiments were also carried out to predict the water temperature hydrodynamic and fish behavior. A series of biological experiments were conducted in November 2021, with a discharge of 0.007 5 m3/s and a water depth of 0.2 m for the fishway. Juvenile(length range: 9.0 cm± 1.5 cm) was used in this case, and the number of tested fish was 55. The tested fish were held in a rectangular tank (1 m×1 m×1 m) for at least 24 h between tests for recovery. Among them, the tested fish in the experiment was selected randomly. The results showed that there was little influence of temperature difference between the flow from the fishway inlet and that in the channel on the hydrodynamics in the inlet zone for the fishway in the high dam project. The area that affected by the temperature difference was depended mainly on the fishway discharge, while the water temperature near the shore depended on the temperature difference. Once the flow from the fishway inlet was constant, the increasement of discharge of the channel was reduced the influence area of the flow from the fishway inlet, and then increased the difficulty for the migratory fish to find the fishway inlet. The migrating rate along the cold-water area was 39%, and the attempt rate in the inlet zone was 31%, while the migrating rate along the warm-water area was 61% and the attempt rate in the inlet zone was 48%. In addition, five migrating fishes were observed from the cold- to the warm-water area, accounting for 12% of the total tested fish. The warm-water area was more attractive to the migratory fish. The temperature difference was conducive to the migratory fish to find the fishway inlet, and then gather in the inlet zone. The cluster effect posed a great influence on the attempt rate in the inlet zone. Once the samples with less than 3 tails were migrating, the attempt rate of samples in the cold and warm water areas reached 50% and 67%, respectively. Consequently, the migrating route of migratory fish can be expected to be adjusted by changing the water temperature, and then effectively attract the cluster fish, which can get the better effect of luring fish to fish-passing facilities. The finding can greatly contribute to the technological level of fish passage facilities.
temperature; facility; model; water temperature stratification; luring fish; temperature difference effect;
10.11975/j.issn.1002-6819.202210076
TV61
A
1002-6819(2023)-01-0195-08
鄭鐵剛,孫雙科,柳海濤,等. 過魚設(shè)施進(jìn)口區(qū)域水溫對(duì)集誘魚效果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(1):195-202.doi:10.11975/j.issn.1002-6819.202210076 http://www.tcsae.org
ZHENG Tiegang, SUN Shuangke, LIU Haitao, et al. Effects of water temperature on luring fish in the inlet zone of fish passage facilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 195-202. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210076 http://www.tcsae.org
2022-10-11
2022-12-29
國家重點(diǎn)研發(fā)計(jì)劃(2022YFC3204203);國家重點(diǎn)實(shí)驗(yàn)室自主研發(fā)項(xiàng)目(SKL2020TS04)
鄭鐵剛,博士,正高級(jí)工程師,研究方向?yàn)樯鷳B(tài)水力學(xué)。Email:zhengtg@iwhr.com