• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Early Minor-Fault Diagnosis Method for Lithium-Ion Battery Packs Based on Unsupervised Learning

    2023-03-27 02:41:10XinGuYunlongShangYongzheKangJinglunLiZihengMaoandChenghuiZhang
    IEEE/CAA Journal of Automatica Sinica 2023年3期

    Xin Gu, Yunlong Shang, Yongzhe Kang, Jinglun Li,Ziheng Mao, and Chenghui Zhang

    Dear Editor,

    Any fault of a battery system that is not handled timely can cause catastrophic consequences.Therefore, it is significant to diagnose battery faults early and accurately.Due to the complex nonlinear features and inconsistency of lithium batteries, traditional fault diagnosis methods usually fail to detect battery minor faults in the early stages.Therefore, this letter proposes a real-time unsupervised learning diagnosis approach for early battery faults based on improved principal component analysis.The technique rotates the battery pack voltage sequence into a new coordinate space through linear combination, while the detection metrics of square prediction errors and modified contribution plots are employed to achieve minor fault traceability.In addition, the training sample relies on the voltage sequence of the battery health state instead of the fault data, which is difficult to collect.Moreover, this approach can not only locate the battery cell where the fault occurs but also diagnose battery open-circuit and short-circuit faults as well as the occurrence and duration of the fault in real-time.Furthermore, the feasibility and stability of the proposed method are verified by applying different experimental data.In summary, the presented approach provides an easy-to-implement option that does not require accurate mathematical modeling,expert understanding, and complex computational processes.

    Related work: Faced with the scientific challenge of accelerated worldwide energy transition and deep decarbonization (i.e., a reduction of CO2emissions by about 8% per year), electric vehicles have become the future development trend and the focus of global competition [1] and [2].Currently, a lithium-ion pack is the first choice for an electric vehicle power source.However, according to incomplete statistics, 52% of electric vehicle faults come from lithium batteries[3].The lithium-ion battery system is a kind of complex structure with high nonlinearity and multiple individual hybrid connections.Hence, the early minor battery faults are hidden, gradual, and propagated, which was exceedingly difficult to trace the faults.Most existing battery management systems detect battery faults based on a voltage threshold, which can only be detected when the battery fault has progressed to a certain level.However, at this time, the battery fault has had an extremely serious and even irreversible impact on the life of the lithium battery [4] and [5].In addition, the fault of the battery may also cause a safety accident in the early stage [6].Therefore, it is urgent to develop a fast and accurate diagnosis method for battery minor faults in the early stages.

    Common battery faults mainly include overvoltage, undervoltage,external short circuit, internal short circuit, open circuit, connection fault, sensor fault, etc.Previous studies have introduced many battery fault detection methods, which can be divided into two categories: 1) model-based methods [7] and [8], 2) data-driven-based approach [9] and [10].Model-based methods compare residual signals with measured values or compare parameters (e.g., battery capacity, internal resistance) calculated by different algorithms.While the previous studies have achieved good diagnostic results,these methods are highly dependent on accurate mathematical models, which are susceptible to battery aging, external environment, etc.What’s more, the technique is only suitable for specific battery faults,which has poor applicability.In practical applications, it is difficult to build an exact battery model.Hence, this model-based approach is strenuous to apply to the battery management system of electric vehicles.With the development of the data age, data-driven methods have been employed to diagnose battery faults.It can be noted that the above method has the following problems.1) These methods require a large amount of hard-to-capture raw fault battery data to train the model; 2) For a neural network model, only the trained type of the fault can be predicted; 3) The data-driven diagnosis method has high computational complexity, which contradicts the battery management system with limited computing power.

    To solve the above problems, an unsupervised learning real-time battery fault diagnosis method is proposed in this letter.The square prediction errors (SPE) statistical evaluation method of principal component analysis was utilized to detect battery faults, which has an adaptive threshold based on data statistics, without human subjective intervention.At the same time, the battery fault type is determined by the improved contribution rate.The main contributions of this letter can be summarized as follows: 1) A practical unsupervised learning method is proposed to detect battery early minor faults.2) The improved contribution rate of principal components can locate faulty battery cells and detect the fault type.Meanwhile, the approach can diagnose the occurrence and duration of battery fault, which has low computational complexity, excellent real-time performance, and strong practicability.

    Proposed battery fault diagnosis method:

    Off-line principal component modeling: As a typical representative of unsupervised learning algorithms, principal component analysis invented by Karl Pearson is a wide algorithm for data feature extraction, which remains the critical information in a lower dimension.The raw data is separated into two data spaces: principal component subspace (PCS) and residual space (RS).The battery fault diagnosis method based on principal component analysis determines whether a fault occurs through the residual between the predicted and actual values.

    The number of principal elements affects the retention of the original data information, which is the key to build the principal element model.In general, the cumulative percent variance (CPV) is adopted to determine the number of principal elementsK.

    Experimental results:

    Feasibility verification: As shown in Fig.1, the voltage value of eight 18650-type cells connected in series under UDDS operating conditions.Although there are obvious abnormalities in Voltage2and Voltage6visible to the naked eye, they do not exceed the BMS alarm threshold, which belongs to minor faults.Specifically, an open-circuit fault occurred in battery-2, which lasted about 16 s.A short-circuit fault occurred in battery-6, which lasted for 32 s approximately.When the open/short circuit fault is eliminated, the cell voltage returns to normal.It is worth noting that cell voltages do not reach the cut-off voltage in any fault condition.Therefore, conventional threshold-based detection methods cannot generate alarms.To verify the feasibility of the improved method in this letter, Fig.2 represents the battery faults diagnosis results of the conventional way, which detected two times faults.The first fault occurred att=314 s and lasted 16 s approximately.The second fault happened at aboutt= 898 s and lasted 32 s.However, this traditional method cannot detect what type of fault has occurred.

    Fig.1.Cell voltages under UDDS drive cycles.

    Fig.2.Traditional contribution diagram detection results.

    Fig.3.Improved contribution diagram detection results.

    Stability verification: The external ambient temperature of the power battery is constantly changing in daily on-board work.Meanwhile, the performance of the battery is extremely sensitive to temperature changes.More importantly, the wide range of temperature changes can increase the possibility of battery fault.To highlight the stability of the proposed method under full climatic ambient temperature, Fig.4 demonstrates the battery fault diagnosis results under low temperatures.

    Fig.4.Fault diagnosis results at low temperature.(a) Battery voltage sequence at ?10°C; (b) Battery fault detection results at ?10°C.

    Fig.4(a) shows the original cell voltage sequences at ?10°C.Compared to Fig.1, it can be found that the voltage fluctuation becomes larger as the temperature decreases.Particularly, Fig.4(a) demonstrates a voltage sequence with a fluctuation range of about 0.4 V(3.00 V?3.40 V).This phenomenon illustrates that the working state of the battery is relatively stable in a high temperature environment.When the battery is in a low temperature environment, the state performance of the battery can be greatly affected.In addition, when a short-circuit fault occurs, the battery voltage fluctuation increases as the temperature decreases, which indicates that a serious short-circuit fault is likely to be derived from the low-temperature environment.

    Fig.4(b) presents the battery fault detection result at ?10 °C.For the fault ①, it can be clearly observed that the superlative battery fault diagnosis was achieved at an external environment of 25 °C,and the detection effect decreased as the temperature decreased.However, it is undeniable that the proposed method successfully detected the open-circuit battery fault at different temperatures.For the fault ②, the short-circuit battery fault was effectively diagnosed at any temperature.In short, this presented approach successfully diagnoses the fault in the battery pack, i.e., an open-circuit fault in battery-2 and a short-circuit fault in battery-6.It further illustrates that the proposed method can precisely locate and diagnose potential early faults in the battery under full climate.

    Conclusion:In this letter, a real-time unsupervised learning battery early fault diagnosis method based on improved principal component analysis was proposed to locate fault cells and detect fault types, which can also predict the occurrence and duration of faults at the same time.The proposed method does not require an accurate battery model and a complex hardware system as well as a large amount of battery data, thus saving modeling time and hardware cost.The algorithm description, working principle, feasibility analysis, and stability analysis are given.The main conclusions can be summarized as:

    1) This fault diagnosis scheme can detect the battery voltage in real-time by the improved principal component analysis, which can effectively discover early minor faults even if the battery voltage is within the rated safety range.

    2) The proposed method can successfully diagnose early battery faults from different temperature, which proves the stability.

    Acknowledgments:This letter was supported by the National Natural Science Foundation of China (62173211, 61821004, 62122041)and Natural Science Foundation of Shandong Province, China(ZR2021JQ25, ZR2019ZD09).

    天天添夜夜摸| 下体分泌物呈黄色| 欧美日韩亚洲高清精品| 亚洲,欧美精品.| 69av精品久久久久久| 国产成人一区二区三区免费视频网站| 欧美最黄视频在线播放免费 | 国产精品电影一区二区三区 | 国产极品粉嫩免费观看在线| 丁香六月欧美| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频| 青草久久国产| 法律面前人人平等表现在哪些方面| 人妻久久中文字幕网| 波多野结衣一区麻豆| 亚洲精华国产精华精| 国产伦人伦偷精品视频| 亚洲av成人av| 午夜福利免费观看在线| 丝袜美腿诱惑在线| 99国产综合亚洲精品| 国产精品免费一区二区三区在线 | 亚洲成人免费av在线播放| 老熟女久久久| 极品少妇高潮喷水抽搐| 高清视频免费观看一区二区| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 麻豆成人av在线观看| 国产淫语在线视频| 亚洲精华国产精华精| 美女扒开内裤让男人捅视频| 在线观看66精品国产| 日韩欧美一区视频在线观看| 在线观看免费日韩欧美大片| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕在线视频| 捣出白浆h1v1| 色婷婷av一区二区三区视频| 99国产精品一区二区三区| 久久国产乱子伦精品免费另类| 黑丝袜美女国产一区| 性少妇av在线| www日本在线高清视频| 午夜福利视频在线观看免费| 亚洲国产欧美一区二区综合| 美女扒开内裤让男人捅视频| 久久久精品区二区三区| 国产一区二区激情短视频| 好男人电影高清在线观看| 捣出白浆h1v1| 久久这里只有精品19| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡| 少妇裸体淫交视频免费看高清 | 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 国产一区有黄有色的免费视频| 大陆偷拍与自拍| 精品无人区乱码1区二区| 色播在线永久视频| 亚洲国产精品sss在线观看 | av福利片在线| 咕卡用的链子| 一级a爱片免费观看的视频| 免费观看人在逋| 夜夜夜夜夜久久久久| netflix在线观看网站| av天堂在线播放| 国产精品一区二区在线观看99| 精品一区二区三区四区五区乱码| 国产精品乱码一区二三区的特点 | 国产99久久九九免费精品| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av香蕉五月 | 在线天堂中文资源库| 一a级毛片在线观看| 五月开心婷婷网| 亚洲五月天丁香| 国产成人一区二区三区免费视频网站| 午夜久久久在线观看| 啦啦啦视频在线资源免费观看| 97人妻天天添夜夜摸| 午夜免费成人在线视频| 国产蜜桃级精品一区二区三区 | 亚洲av片天天在线观看| 国产精品98久久久久久宅男小说| 成人国产一区最新在线观看| a级片在线免费高清观看视频| 精品免费久久久久久久清纯 | 国产亚洲精品第一综合不卡| 一级,二级,三级黄色视频| 伦理电影免费视频| 久热爱精品视频在线9| 久久人人97超碰香蕉20202| 99国产极品粉嫩在线观看| 成年人午夜在线观看视频| 多毛熟女@视频| 高清在线国产一区| 亚洲av成人一区二区三| 建设人人有责人人尽责人人享有的| 国产亚洲精品第一综合不卡| 高清黄色对白视频在线免费看| 欧美中文综合在线视频| 美女视频免费永久观看网站| 亚洲性夜色夜夜综合| 成人国语在线视频| 精品福利观看| 免费在线观看完整版高清| tocl精华| 好看av亚洲va欧美ⅴa在| 丁香欧美五月| 十八禁网站免费在线| 高清毛片免费观看视频网站 | 午夜老司机福利片| 下体分泌物呈黄色| 亚洲精品国产精品久久久不卡| bbb黄色大片| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 亚洲熟女精品中文字幕| 99国产精品99久久久久| 一区福利在线观看| 操出白浆在线播放| 成年版毛片免费区| 天堂动漫精品| 国产单亲对白刺激| 亚洲精品在线美女| 精品久久久久久久毛片微露脸| 女人被狂操c到高潮| 手机成人av网站| 黄片小视频在线播放| 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 美女午夜性视频免费| a级毛片在线看网站| 欧美大码av| ponron亚洲| 欧美日韩乱码在线| av天堂久久9| 亚洲国产欧美日韩在线播放| 亚洲国产精品一区二区三区在线| 脱女人内裤的视频| 国产真人三级小视频在线观看| 最新的欧美精品一区二区| 日日爽夜夜爽网站| 人妻 亚洲 视频| 国产色视频综合| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品sss在线观看 | 欧美一级毛片孕妇| 国产精品亚洲一级av第二区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩高清在线视频| 婷婷成人精品国产| 精品久久久久久,| 宅男免费午夜| 国产欧美亚洲国产| 午夜福利免费观看在线| 人成视频在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| 最新在线观看一区二区三区| 黄色毛片三级朝国网站| 国产99白浆流出| 少妇被粗大的猛进出69影院| 一夜夜www| 日本vs欧美在线观看视频| 国产亚洲精品久久久久5区| 最新的欧美精品一区二区| 美女扒开内裤让男人捅视频| 在线十欧美十亚洲十日本专区| 精品电影一区二区在线| 一区二区日韩欧美中文字幕| 亚洲av第一区精品v没综合| 欧美丝袜亚洲另类 | 久久久国产成人精品二区 | 美国免费a级毛片| 日韩欧美国产一区二区入口| 电影成人av| 亚洲色图综合在线观看| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 欧美不卡视频在线免费观看 | 午夜精品在线福利| 精品无人区乱码1区二区| 王馨瑶露胸无遮挡在线观看| 婷婷成人精品国产| 久久久国产精品麻豆| 成人三级做爰电影| 热re99久久精品国产66热6| 国产av精品麻豆| 国产精品永久免费网站| 国产日韩欧美亚洲二区| 男人操女人黄网站| 香蕉久久夜色| 亚洲精品国产精品久久久不卡| 老司机福利观看| 999久久久精品免费观看国产| 久久中文字幕一级| 搡老乐熟女国产| 午夜免费成人在线视频| 久9热在线精品视频| 老司机亚洲免费影院| 老汉色av国产亚洲站长工具| 色尼玛亚洲综合影院| 三上悠亚av全集在线观看| 国产精品久久久久久人妻精品电影| 99精品在免费线老司机午夜| 国产真人三级小视频在线观看| 成人黄色视频免费在线看| 在线十欧美十亚洲十日本专区| 99国产精品免费福利视频| 日本vs欧美在线观看视频| 中文字幕高清在线视频| 欧美 日韩 精品 国产| 波多野结衣av一区二区av| 亚洲熟妇熟女久久| 亚洲一区二区三区欧美精品| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩一区二区三区精品不卡| 欧美成人午夜精品| 欧美激情 高清一区二区三区| 亚洲五月婷婷丁香| 我的亚洲天堂| 亚洲国产欧美日韩在线播放| 国产精品九九99| 精品熟女少妇八av免费久了| 免费一级毛片在线播放高清视频 | 黄片播放在线免费| 午夜精品国产一区二区电影| 俄罗斯特黄特色一大片| 欧美一级毛片孕妇| 又黄又爽又免费观看的视频| 亚洲国产看品久久| 一级,二级,三级黄色视频| 国产精品美女特级片免费视频播放器 | 欧美乱色亚洲激情| 嫁个100分男人电影在线观看| 成年人黄色毛片网站| 性少妇av在线| 超碰成人久久| 亚洲伊人色综图| 午夜福利免费观看在线| 无人区码免费观看不卡| 国产精品 欧美亚洲| 满18在线观看网站| 久久午夜亚洲精品久久| 久久久国产一区二区| 国产精品一区二区精品视频观看| 国产一区在线观看成人免费| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 欧美成人午夜精品| 天堂√8在线中文| 久久久国产成人免费| 超碰成人久久| 欧美日韩亚洲综合一区二区三区_| 免费观看精品视频网站| 欧美激情 高清一区二区三区| 亚洲第一欧美日韩一区二区三区| 十八禁高潮呻吟视频| 国产精华一区二区三区| 国产亚洲av高清不卡| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| 日韩欧美一区二区三区在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 成人亚洲精品一区在线观看| 窝窝影院91人妻| 久久精品国产清高在天天线| 国产精品免费大片| 亚洲国产精品sss在线观看 | 久久影院123| 国产一区有黄有色的免费视频| 国产欧美日韩综合在线一区二区| 亚洲熟女毛片儿| 亚洲精品中文字幕一二三四区| 亚洲成人手机| 成人免费观看视频高清| 精品国内亚洲2022精品成人 | 成熟少妇高潮喷水视频| 久久精品国产a三级三级三级| 国产av又大| 老司机亚洲免费影院| 精品久久久久久久毛片微露脸| 亚洲欧美日韩高清在线视频| 99精品欧美一区二区三区四区| 国产精品免费大片| 日韩精品免费视频一区二区三区| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 久久国产精品人妻蜜桃| 午夜免费观看网址| 成人影院久久| 国产91精品成人一区二区三区| 国产精品久久电影中文字幕 | 久99久视频精品免费| 天堂俺去俺来也www色官网| 久久久久久久精品吃奶| 757午夜福利合集在线观看| 巨乳人妻的诱惑在线观看| 精品久久久久久电影网| 国产精品综合久久久久久久免费 | 亚洲成人国产一区在线观看| av天堂久久9| 国产淫语在线视频| 美女扒开内裤让男人捅视频| 午夜福利欧美成人| 成人三级做爰电影| 国产精品香港三级国产av潘金莲| 欧美另类亚洲清纯唯美| 亚洲片人在线观看| www.精华液| 精品一区二区三卡| 99久久综合精品五月天人人| 一级a爱片免费观看的视频| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 十八禁人妻一区二区| 下体分泌物呈黄色| 亚洲五月天丁香| a级毛片黄视频| 91av网站免费观看| 日韩免费高清中文字幕av| 国产成人精品在线电影| 国精品久久久久久国模美| 高清视频免费观看一区二区| 亚洲在线自拍视频| 深夜精品福利| 一级毛片女人18水好多| 日本黄色日本黄色录像| 久久国产亚洲av麻豆专区| 天堂√8在线中文| 国产成人av激情在线播放| 在线免费观看的www视频| 亚洲精品国产色婷婷电影| 久久精品熟女亚洲av麻豆精品| 91麻豆av在线| av在线播放免费不卡| 中出人妻视频一区二区| 国产xxxxx性猛交| 久久久久视频综合| 久久狼人影院| 欧美国产精品一级二级三级| 亚洲精品一二三| 黄色丝袜av网址大全| 午夜福利一区二区在线看| 成年女人毛片免费观看观看9 | 久久久精品国产亚洲av高清涩受| 丝瓜视频免费看黄片| 国产成人av教育| 老熟妇仑乱视频hdxx| av福利片在线| 人人妻,人人澡人人爽秒播| 国产成人av教育| 自线自在国产av| 午夜老司机福利片| 精品亚洲成国产av| 777米奇影视久久| 国产真人三级小视频在线观看| 亚洲第一欧美日韩一区二区三区| 成年动漫av网址| 成人三级做爰电影| 国产精品久久久人人做人人爽| 成人18禁在线播放| 91麻豆精品激情在线观看国产 | 日本黄色视频三级网站网址 | 亚洲美女黄片视频| 狂野欧美激情性xxxx| 91成人精品电影| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲| 777米奇影视久久| 日韩 欧美 亚洲 中文字幕| 欧美成人免费av一区二区三区 | 亚洲免费av在线视频| videos熟女内射| 狂野欧美激情性xxxx| 99re在线观看精品视频| 夫妻午夜视频| 人妻一区二区av| 两个人看的免费小视频| 精品人妻熟女毛片av久久网站| 精品久久久久久久久久免费视频 | 午夜福利在线免费观看网站| 亚洲专区字幕在线| cao死你这个sao货| 午夜两性在线视频| 99精品久久久久人妻精品| 好男人电影高清在线观看| 精品久久久久久电影网| 巨乳人妻的诱惑在线观看| 国产男女内射视频| 一进一出好大好爽视频| 9色porny在线观看| 成年人免费黄色播放视频| 看片在线看免费视频| 国产精品.久久久| 久久精品国产综合久久久| 免费观看人在逋| 色老头精品视频在线观看| 亚洲五月天丁香| 一区二区三区激情视频| 后天国语完整版免费观看| 三上悠亚av全集在线观看| 免费在线观看亚洲国产| 日本欧美视频一区| √禁漫天堂资源中文www| 热99久久久久精品小说推荐| 精品少妇久久久久久888优播| 亚洲中文av在线| 久久精品国产综合久久久| 久久人妻熟女aⅴ| 国产乱人伦免费视频| 这个男人来自地球电影免费观看| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美98| 精品一区二区三卡| 最近最新中文字幕大全电影3 | 国产人伦9x9x在线观看| 精品人妻熟女毛片av久久网站| 一级毛片高清免费大全| 免费女性裸体啪啪无遮挡网站| 亚洲一区中文字幕在线| 久久性视频一级片| 好男人电影高清在线观看| 女人被狂操c到高潮| 日韩制服丝袜自拍偷拍| 久久久久国内视频| 女人爽到高潮嗷嗷叫在线视频| 99re6热这里在线精品视频| 国产伦人伦偷精品视频| а√天堂www在线а√下载 | 国产又爽黄色视频| 麻豆国产av国片精品| www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 搡老乐熟女国产| 成年动漫av网址| 十分钟在线观看高清视频www| 精品电影一区二区在线| 久久国产亚洲av麻豆专区| 大码成人一级视频| 人人妻,人人澡人人爽秒播| 免费观看a级毛片全部| av免费在线观看网站| 老熟妇乱子伦视频在线观看| 国产精品自产拍在线观看55亚洲 | 热re99久久精品国产66热6| 在线观看一区二区三区激情| 天堂√8在线中文| 看免费av毛片| 国产一区有黄有色的免费视频| x7x7x7水蜜桃| 久久人人97超碰香蕉20202| 亚洲av日韩精品久久久久久密| 欧美精品av麻豆av| av视频免费观看在线观看| 大片电影免费在线观看免费| 99久久人妻综合| 99香蕉大伊视频| 热re99久久精品国产66热6| 18禁裸乳无遮挡免费网站照片 | 丁香六月欧美| 亚洲视频免费观看视频| 色尼玛亚洲综合影院| 日韩精品免费视频一区二区三区| 可以免费在线观看a视频的电影网站| 国产日韩欧美亚洲二区| 免费不卡黄色视频| 伊人久久大香线蕉亚洲五| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 成年人黄色毛片网站| 激情视频va一区二区三区| 亚洲人成电影观看| 国产精品免费视频内射| 久久亚洲真实| 国产乱人伦免费视频| 男女下面插进去视频免费观看| 下体分泌物呈黄色| 精品福利永久在线观看| 色婷婷久久久亚洲欧美| 母亲3免费完整高清在线观看| 女同久久另类99精品国产91| 久久久久国内视频| 一边摸一边做爽爽视频免费| 中国美女看黄片| 精品一区二区三区四区五区乱码| 美女国产高潮福利片在线看| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 国产男女超爽视频在线观看| 色综合婷婷激情| 天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 丝袜美腿诱惑在线| 国产精品久久久久成人av| 国产av精品麻豆| 中文字幕精品免费在线观看视频| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 黄频高清免费视频| 搡老熟女国产l中国老女人| 午夜福利在线免费观看网站| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 精品第一国产精品| 国产精品二区激情视频| 两个人看的免费小视频| 人妻一区二区av| 亚洲精品久久午夜乱码| 岛国毛片在线播放| 真人做人爱边吃奶动态| 国产欧美亚洲国产| 人人妻人人添人人爽欧美一区卜| 丰满的人妻完整版| 高清在线国产一区| 一进一出好大好爽视频| 免费av中文字幕在线| 黄色女人牲交| 91大片在线观看| 99热只有精品国产| 黄色怎么调成土黄色| 亚洲精品美女久久久久99蜜臀| 日日夜夜操网爽| 久久久久久久午夜电影 | 久久热在线av| 男女床上黄色一级片免费看| 免费观看精品视频网站| 黄色视频不卡| 亚洲成人手机| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 99国产精品一区二区蜜桃av | 最近最新免费中文字幕在线| av免费在线观看网站| 桃红色精品国产亚洲av| 久久久久久免费高清国产稀缺| 欧美日韩视频精品一区| 12—13女人毛片做爰片一| 久9热在线精品视频| 久久精品国产亚洲av香蕉五月 | 国产一区有黄有色的免费视频| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 久久人妻av系列| 19禁男女啪啪无遮挡网站| 国产成人精品久久二区二区免费| 久久国产精品大桥未久av| 一本大道久久a久久精品| 久久人妻熟女aⅴ| 成年人午夜在线观看视频| 国产伦人伦偷精品视频| 岛国在线观看网站| 国产成人精品无人区| av免费在线观看网站| 大香蕉久久成人网| 国产高清视频在线播放一区| 免费在线观看亚洲国产| 亚洲国产精品sss在线观看 | 久久香蕉激情| 亚洲少妇的诱惑av| 大码成人一级视频| av视频免费观看在线观看| 淫妇啪啪啪对白视频| 视频区欧美日本亚洲| 国产免费男女视频| 日韩人妻精品一区2区三区| 精品一区二区三区视频在线观看免费 | 纯流量卡能插随身wifi吗| 免费不卡黄色视频| 国产一区在线观看成人免费| 久久午夜综合久久蜜桃| 俄罗斯特黄特色一大片| 美女视频免费永久观看网站| 法律面前人人平等表现在哪些方面| 露出奶头的视频| 激情视频va一区二区三区| 成熟少妇高潮喷水视频| 成人亚洲精品一区在线观看| 日韩中文字幕欧美一区二区| 老司机福利观看| 一个人免费在线观看的高清视频| 精品国产亚洲在线| 色综合欧美亚洲国产小说| 成人亚洲精品一区在线观看| 精品国产亚洲在线| 校园春色视频在线观看| 亚洲人成77777在线视频| 国产99白浆流出| 欧美中文综合在线视频| 精品国产一区二区三区久久久樱花| 欧美日韩av久久| 99香蕉大伊视频| 欧美精品高潮呻吟av久久| 久久精品亚洲av国产电影网| 久久精品91无色码中文字幕| 嫩草影视91久久| 亚洲国产中文字幕在线视频| 国产欧美亚洲国产| 成年人午夜在线观看视频| 香蕉国产在线看| 国产日韩欧美亚洲二区| 欧美国产精品一级二级三级| 国产免费现黄频在线看|