• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Early Minor-Fault Diagnosis Method for Lithium-Ion Battery Packs Based on Unsupervised Learning

    2023-03-27 02:41:10XinGuYunlongShangYongzheKangJinglunLiZihengMaoandChenghuiZhang
    IEEE/CAA Journal of Automatica Sinica 2023年3期

    Xin Gu, Yunlong Shang, Yongzhe Kang, Jinglun Li,Ziheng Mao, and Chenghui Zhang

    Dear Editor,

    Any fault of a battery system that is not handled timely can cause catastrophic consequences.Therefore, it is significant to diagnose battery faults early and accurately.Due to the complex nonlinear features and inconsistency of lithium batteries, traditional fault diagnosis methods usually fail to detect battery minor faults in the early stages.Therefore, this letter proposes a real-time unsupervised learning diagnosis approach for early battery faults based on improved principal component analysis.The technique rotates the battery pack voltage sequence into a new coordinate space through linear combination, while the detection metrics of square prediction errors and modified contribution plots are employed to achieve minor fault traceability.In addition, the training sample relies on the voltage sequence of the battery health state instead of the fault data, which is difficult to collect.Moreover, this approach can not only locate the battery cell where the fault occurs but also diagnose battery open-circuit and short-circuit faults as well as the occurrence and duration of the fault in real-time.Furthermore, the feasibility and stability of the proposed method are verified by applying different experimental data.In summary, the presented approach provides an easy-to-implement option that does not require accurate mathematical modeling,expert understanding, and complex computational processes.

    Related work: Faced with the scientific challenge of accelerated worldwide energy transition and deep decarbonization (i.e., a reduction of CO2emissions by about 8% per year), electric vehicles have become the future development trend and the focus of global competition [1] and [2].Currently, a lithium-ion pack is the first choice for an electric vehicle power source.However, according to incomplete statistics, 52% of electric vehicle faults come from lithium batteries[3].The lithium-ion battery system is a kind of complex structure with high nonlinearity and multiple individual hybrid connections.Hence, the early minor battery faults are hidden, gradual, and propagated, which was exceedingly difficult to trace the faults.Most existing battery management systems detect battery faults based on a voltage threshold, which can only be detected when the battery fault has progressed to a certain level.However, at this time, the battery fault has had an extremely serious and even irreversible impact on the life of the lithium battery [4] and [5].In addition, the fault of the battery may also cause a safety accident in the early stage [6].Therefore, it is urgent to develop a fast and accurate diagnosis method for battery minor faults in the early stages.

    Common battery faults mainly include overvoltage, undervoltage,external short circuit, internal short circuit, open circuit, connection fault, sensor fault, etc.Previous studies have introduced many battery fault detection methods, which can be divided into two categories: 1) model-based methods [7] and [8], 2) data-driven-based approach [9] and [10].Model-based methods compare residual signals with measured values or compare parameters (e.g., battery capacity, internal resistance) calculated by different algorithms.While the previous studies have achieved good diagnostic results,these methods are highly dependent on accurate mathematical models, which are susceptible to battery aging, external environment, etc.What’s more, the technique is only suitable for specific battery faults,which has poor applicability.In practical applications, it is difficult to build an exact battery model.Hence, this model-based approach is strenuous to apply to the battery management system of electric vehicles.With the development of the data age, data-driven methods have been employed to diagnose battery faults.It can be noted that the above method has the following problems.1) These methods require a large amount of hard-to-capture raw fault battery data to train the model; 2) For a neural network model, only the trained type of the fault can be predicted; 3) The data-driven diagnosis method has high computational complexity, which contradicts the battery management system with limited computing power.

    To solve the above problems, an unsupervised learning real-time battery fault diagnosis method is proposed in this letter.The square prediction errors (SPE) statistical evaluation method of principal component analysis was utilized to detect battery faults, which has an adaptive threshold based on data statistics, without human subjective intervention.At the same time, the battery fault type is determined by the improved contribution rate.The main contributions of this letter can be summarized as follows: 1) A practical unsupervised learning method is proposed to detect battery early minor faults.2) The improved contribution rate of principal components can locate faulty battery cells and detect the fault type.Meanwhile, the approach can diagnose the occurrence and duration of battery fault, which has low computational complexity, excellent real-time performance, and strong practicability.

    Proposed battery fault diagnosis method:

    Off-line principal component modeling: As a typical representative of unsupervised learning algorithms, principal component analysis invented by Karl Pearson is a wide algorithm for data feature extraction, which remains the critical information in a lower dimension.The raw data is separated into two data spaces: principal component subspace (PCS) and residual space (RS).The battery fault diagnosis method based on principal component analysis determines whether a fault occurs through the residual between the predicted and actual values.

    The number of principal elements affects the retention of the original data information, which is the key to build the principal element model.In general, the cumulative percent variance (CPV) is adopted to determine the number of principal elementsK.

    Experimental results:

    Feasibility verification: As shown in Fig.1, the voltage value of eight 18650-type cells connected in series under UDDS operating conditions.Although there are obvious abnormalities in Voltage2and Voltage6visible to the naked eye, they do not exceed the BMS alarm threshold, which belongs to minor faults.Specifically, an open-circuit fault occurred in battery-2, which lasted about 16 s.A short-circuit fault occurred in battery-6, which lasted for 32 s approximately.When the open/short circuit fault is eliminated, the cell voltage returns to normal.It is worth noting that cell voltages do not reach the cut-off voltage in any fault condition.Therefore, conventional threshold-based detection methods cannot generate alarms.To verify the feasibility of the improved method in this letter, Fig.2 represents the battery faults diagnosis results of the conventional way, which detected two times faults.The first fault occurred att=314 s and lasted 16 s approximately.The second fault happened at aboutt= 898 s and lasted 32 s.However, this traditional method cannot detect what type of fault has occurred.

    Fig.1.Cell voltages under UDDS drive cycles.

    Fig.2.Traditional contribution diagram detection results.

    Fig.3.Improved contribution diagram detection results.

    Stability verification: The external ambient temperature of the power battery is constantly changing in daily on-board work.Meanwhile, the performance of the battery is extremely sensitive to temperature changes.More importantly, the wide range of temperature changes can increase the possibility of battery fault.To highlight the stability of the proposed method under full climatic ambient temperature, Fig.4 demonstrates the battery fault diagnosis results under low temperatures.

    Fig.4.Fault diagnosis results at low temperature.(a) Battery voltage sequence at ?10°C; (b) Battery fault detection results at ?10°C.

    Fig.4(a) shows the original cell voltage sequences at ?10°C.Compared to Fig.1, it can be found that the voltage fluctuation becomes larger as the temperature decreases.Particularly, Fig.4(a) demonstrates a voltage sequence with a fluctuation range of about 0.4 V(3.00 V?3.40 V).This phenomenon illustrates that the working state of the battery is relatively stable in a high temperature environment.When the battery is in a low temperature environment, the state performance of the battery can be greatly affected.In addition, when a short-circuit fault occurs, the battery voltage fluctuation increases as the temperature decreases, which indicates that a serious short-circuit fault is likely to be derived from the low-temperature environment.

    Fig.4(b) presents the battery fault detection result at ?10 °C.For the fault ①, it can be clearly observed that the superlative battery fault diagnosis was achieved at an external environment of 25 °C,and the detection effect decreased as the temperature decreased.However, it is undeniable that the proposed method successfully detected the open-circuit battery fault at different temperatures.For the fault ②, the short-circuit battery fault was effectively diagnosed at any temperature.In short, this presented approach successfully diagnoses the fault in the battery pack, i.e., an open-circuit fault in battery-2 and a short-circuit fault in battery-6.It further illustrates that the proposed method can precisely locate and diagnose potential early faults in the battery under full climate.

    Conclusion:In this letter, a real-time unsupervised learning battery early fault diagnosis method based on improved principal component analysis was proposed to locate fault cells and detect fault types, which can also predict the occurrence and duration of faults at the same time.The proposed method does not require an accurate battery model and a complex hardware system as well as a large amount of battery data, thus saving modeling time and hardware cost.The algorithm description, working principle, feasibility analysis, and stability analysis are given.The main conclusions can be summarized as:

    1) This fault diagnosis scheme can detect the battery voltage in real-time by the improved principal component analysis, which can effectively discover early minor faults even if the battery voltage is within the rated safety range.

    2) The proposed method can successfully diagnose early battery faults from different temperature, which proves the stability.

    Acknowledgments:This letter was supported by the National Natural Science Foundation of China (62173211, 61821004, 62122041)and Natural Science Foundation of Shandong Province, China(ZR2021JQ25, ZR2019ZD09).

    av国产免费在线观看| 亚洲性久久影院| 91狼人影院| 日韩中文字幕欧美一区二区| 成人三级黄色视频| 我要看日韩黄色一级片| 午夜爱爱视频在线播放| 在线播放国产精品三级| 欧美精品啪啪一区二区三区| 国产av在哪里看| 精品乱码久久久久久99久播| 精品久久久久久久末码| 久久精品国产99精品国产亚洲性色| 中文字幕人妻熟人妻熟丝袜美| 中国美白少妇内射xxxbb| 久久精品91蜜桃| 久久精品国产自在天天线| 国产精品三级大全| 在线免费十八禁| 亚洲精品乱码久久久v下载方式| 欧美日本视频| 97碰自拍视频| 有码 亚洲区| 97热精品久久久久久| 久久久国产成人精品二区| 可以在线观看毛片的网站| 国产黄片美女视频| 在线观看一区二区三区| 最近视频中文字幕2019在线8| 精品欧美国产一区二区三| 欧美日韩亚洲国产一区二区在线观看| 色5月婷婷丁香| 悠悠久久av| 他把我摸到了高潮在线观看| 性插视频无遮挡在线免费观看| 少妇人妻精品综合一区二区 | 亚洲熟妇熟女久久| videossex国产| 最新在线观看一区二区三区| 日韩欧美在线乱码| 国产爱豆传媒在线观看| 免费电影在线观看免费观看| 最后的刺客免费高清国语| 亚洲欧美精品综合久久99| 小蜜桃在线观看免费完整版高清| 日韩欧美 国产精品| 高清日韩中文字幕在线| 一个人观看的视频www高清免费观看| 韩国av在线不卡| 人妻丰满熟妇av一区二区三区| 国产探花极品一区二区| 亚洲精品成人久久久久久| 久久久精品欧美日韩精品| 日韩亚洲欧美综合| 成人一区二区视频在线观看| 成人av一区二区三区在线看| 少妇的逼好多水| 美女cb高潮喷水在线观看| 精品久久久久久成人av| 久久久久国产精品人妻aⅴ院| 人人妻,人人澡人人爽秒播| 长腿黑丝高跟| 亚洲欧美日韩高清专用| 免费在线观看日本一区| 亚洲中文字幕日韩| 免费不卡的大黄色大毛片视频在线观看 | 欧美bdsm另类| 毛片一级片免费看久久久久 | 22中文网久久字幕| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看 | 色噜噜av男人的天堂激情| 乱人视频在线观看| 成人鲁丝片一二三区免费| 午夜视频国产福利| 午夜福利高清视频| 噜噜噜噜噜久久久久久91| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 日本-黄色视频高清免费观看| 久久精品国产亚洲av香蕉五月| 一区二区三区四区激情视频 | 日韩 亚洲 欧美在线| 天堂网av新在线| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 99久久精品国产国产毛片| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 无遮挡黄片免费观看| 中文字幕熟女人妻在线| 在线看三级毛片| 小蜜桃在线观看免费完整版高清| 亚洲乱码一区二区免费版| 噜噜噜噜噜久久久久久91| 国产美女午夜福利| 赤兔流量卡办理| 99久久久亚洲精品蜜臀av| 深夜精品福利| 1024手机看黄色片| 精品国内亚洲2022精品成人| 午夜福利在线在线| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 国产精品国产高清国产av| 搡老岳熟女国产| 国产黄色小视频在线观看| 国产视频内射| 天天一区二区日本电影三级| 男人舔女人下体高潮全视频| 国产精品久久视频播放| 精品久久久噜噜| 999久久久精品免费观看国产| 99久久中文字幕三级久久日本| 最后的刺客免费高清国语| 又爽又黄a免费视频| .国产精品久久| 国产伦精品一区二区三区视频9| 一个人观看的视频www高清免费观看| 亚洲avbb在线观看| 欧美日韩综合久久久久久 | 中出人妻视频一区二区| 国产乱人伦免费视频| 男女做爰动态图高潮gif福利片| 天美传媒精品一区二区| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 一进一出好大好爽视频| 1024手机看黄色片| 中文字幕高清在线视频| 亚洲真实伦在线观看| 亚洲性夜色夜夜综合| 久久精品国产亚洲网站| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| av在线老鸭窝| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 国产淫片久久久久久久久| 日日夜夜操网爽| 午夜福利高清视频| 亚洲性夜色夜夜综合| 国产单亲对白刺激| 麻豆成人av在线观看| 99久久中文字幕三级久久日本| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 国内精品美女久久久久久| 国产精品人妻久久久影院| 国内精品宾馆在线| 麻豆一二三区av精品| 91午夜精品亚洲一区二区三区 | 国产精品1区2区在线观看.| 搡女人真爽免费视频火全软件 | 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 极品教师在线视频| 国产欧美日韩一区二区精品| 亚洲在线自拍视频| 亚洲成人久久性| 国国产精品蜜臀av免费| 女的被弄到高潮叫床怎么办 | 亚洲成人久久爱视频| 国产精品人妻久久久久久| 国产av在哪里看| 日日干狠狠操夜夜爽| 别揉我奶头 嗯啊视频| 国产白丝娇喘喷水9色精品| 久久这里只有精品中国| 久久久久国内视频| 国产在线男女| 无遮挡黄片免费观看| 免费搜索国产男女视频| 国产 一区 欧美 日韩| 国产免费一级a男人的天堂| 色哟哟·www| xxxwww97欧美| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 99热6这里只有精品| 亚洲va日本ⅴa欧美va伊人久久| eeuss影院久久| 日本 欧美在线| 日本一本二区三区精品| 久久人人精品亚洲av| 91久久精品国产一区二区成人| 又爽又黄a免费视频| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 久久香蕉精品热| 哪里可以看免费的av片| 成熟少妇高潮喷水视频| 1000部很黄的大片| 欧美日韩乱码在线| 乱码一卡2卡4卡精品| 12—13女人毛片做爰片一| 综合色av麻豆| 免费黄网站久久成人精品| 亚洲中文字幕日韩| 亚洲av日韩精品久久久久久密| 成人鲁丝片一二三区免费| 欧美最新免费一区二区三区| 亚洲av成人av| 两人在一起打扑克的视频| 亚洲欧美日韩东京热| 亚洲美女视频黄频| 成人av在线播放网站| 色5月婷婷丁香| 久久婷婷人人爽人人干人人爱| 99久久精品国产国产毛片| 精品久久久久久久人妻蜜臀av| 久久国产乱子免费精品| 午夜精品久久久久久毛片777| 国产午夜精品论理片| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 老司机深夜福利视频在线观看| 精品国产三级普通话版| 日韩 亚洲 欧美在线| 一个人看视频在线观看www免费| 国产免费av片在线观看野外av| 麻豆成人午夜福利视频| 国语自产精品视频在线第100页| 美女高潮喷水抽搐中文字幕| 欧美中文日本在线观看视频| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 国产成人a区在线观看| 97碰自拍视频| a在线观看视频网站| 看黄色毛片网站| 男女下面进入的视频免费午夜| 亚洲欧美清纯卡通| 国产精品99久久久久久久久| 波多野结衣高清作品| 麻豆精品久久久久久蜜桃| 亚洲色图av天堂| 免费电影在线观看免费观看| 蜜桃亚洲精品一区二区三区| 国产高潮美女av| 亚洲av第一区精品v没综合| 国产大屁股一区二区在线视频| 久久欧美精品欧美久久欧美| 久久午夜福利片| 日本一本二区三区精品| 黄片wwwwww| 久久九九热精品免费| 韩国av一区二区三区四区| 男人舔女人下体高潮全视频| x7x7x7水蜜桃| 亚洲专区国产一区二区| av在线天堂中文字幕| 直男gayav资源| 日本免费一区二区三区高清不卡| 国产精品久久视频播放| 色综合婷婷激情| 久久这里只有精品中国| 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品色激情综合| 国产视频内射| 12—13女人毛片做爰片一| 岛国在线免费视频观看| 成人精品一区二区免费| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 黄色日韩在线| 免费看美女性在线毛片视频| 中文字幕久久专区| 久久亚洲精品不卡| 99热这里只有是精品在线观看| 99视频精品全部免费 在线| 亚洲最大成人av| 色尼玛亚洲综合影院| 国产爱豆传媒在线观看| 久久久久九九精品影院| 欧美日韩国产亚洲二区| АⅤ资源中文在线天堂| 别揉我奶头 嗯啊视频| 国产精品久久久久久亚洲av鲁大| 久久久久国内视频| 国内精品一区二区在线观看| 欧美一区二区国产精品久久精品| 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| 麻豆精品久久久久久蜜桃| 熟女电影av网| 少妇猛男粗大的猛烈进出视频 | 人妻丰满熟妇av一区二区三区| www日本黄色视频网| 久9热在线精品视频| 99久久九九国产精品国产免费| 琪琪午夜伦伦电影理论片6080| 日本三级黄在线观看| 久久欧美精品欧美久久欧美| 亚洲欧美清纯卡通| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯| 免费av观看视频| 免费电影在线观看免费观看| 中出人妻视频一区二区| 亚洲精品一区av在线观看| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| or卡值多少钱| 联通29元200g的流量卡| 一区福利在线观看| 成年免费大片在线观看| 亚洲 国产 在线| 国模一区二区三区四区视频| 变态另类成人亚洲欧美熟女| 噜噜噜噜噜久久久久久91| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 国产熟女欧美一区二区| 亚洲精品影视一区二区三区av| 亚洲国产日韩欧美精品在线观看| 床上黄色一级片| 尤物成人国产欧美一区二区三区| 男人舔女人下体高潮全视频| 男人狂女人下面高潮的视频| 国产精品久久久久久亚洲av鲁大| 久久久久九九精品影院| 一个人看的www免费观看视频| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久久久久久| 国产 一区精品| 51国产日韩欧美| 亚洲人成网站在线播放欧美日韩| 一区二区三区四区激情视频 | 免费观看精品视频网站| 国产精品国产三级国产av玫瑰| 又爽又黄无遮挡网站| 国产免费一级a男人的天堂| 色精品久久人妻99蜜桃| 白带黄色成豆腐渣| 岛国在线免费视频观看| 两性午夜刺激爽爽歪歪视频在线观看| av在线天堂中文字幕| 国产欧美日韩精品一区二区| 深夜精品福利| 国产高清三级在线| 久久久成人免费电影| 成人二区视频| 最好的美女福利视频网| 国产成人av教育| 亚洲一区二区三区色噜噜| 一边摸一边抽搐一进一小说| 亚洲av二区三区四区| 免费看美女性在线毛片视频| netflix在线观看网站| 久久人人爽人人爽人人片va| 九色国产91popny在线| 久久精品国产自在天天线| aaaaa片日本免费| 两个人的视频大全免费| 国产精品嫩草影院av在线观看 | 99国产精品一区二区蜜桃av| 亚洲精华国产精华液的使用体验 | 国产91精品成人一区二区三区| 欧美3d第一页| 午夜影院日韩av| 51国产日韩欧美| 国内精品美女久久久久久| 日韩欧美精品免费久久| 网址你懂的国产日韩在线| 超碰av人人做人人爽久久| 久久久久久久久中文| 九色成人免费人妻av| 非洲黑人性xxxx精品又粗又长| 中文资源天堂在线| 国内精品美女久久久久久| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9| 看免费成人av毛片| 极品教师在线免费播放| 可以在线观看毛片的网站| 亚洲自偷自拍三级| 日韩欧美国产在线观看| 日日撸夜夜添| 日本在线视频免费播放| 一区福利在线观看| 欧美高清性xxxxhd video| 一级a爱片免费观看的视频| 国产视频内射| 国产三级在线视频| 亚洲欧美激情综合另类| 午夜免费成人在线视频| 在线免费观看不下载黄p国产 | 麻豆av噜噜一区二区三区| 97碰自拍视频| x7x7x7水蜜桃| av中文乱码字幕在线| 午夜激情欧美在线| 久久欧美精品欧美久久欧美| 免费在线观看成人毛片| 嫩草影视91久久| 可以在线观看的亚洲视频| 99久久久亚洲精品蜜臀av| 在现免费观看毛片| 亚洲国产高清在线一区二区三| videossex国产| 婷婷精品国产亚洲av| 少妇猛男粗大的猛烈进出视频 | 国产免费男女视频| 一级毛片久久久久久久久女| 国产伦在线观看视频一区| 露出奶头的视频| 国产欧美日韩精品一区二区| 色综合站精品国产| 亚洲精华国产精华液的使用体验 | 免费高清视频大片| 成人一区二区视频在线观看| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 日本一本二区三区精品| 日韩欧美三级三区| 天堂网av新在线| 国产男人的电影天堂91| 免费人成在线观看视频色| 欧美黑人欧美精品刺激| 精品久久久噜噜| 十八禁网站免费在线| 成人综合一区亚洲| 日本精品一区二区三区蜜桃| 久久久精品大字幕| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 十八禁网站免费在线| 免费观看精品视频网站| 琪琪午夜伦伦电影理论片6080| 天堂av国产一区二区熟女人妻| 成人一区二区视频在线观看| 少妇丰满av| 亚洲欧美精品综合久久99| www日本黄色视频网| 无人区码免费观看不卡| 国产精品98久久久久久宅男小说| 免费搜索国产男女视频| h日本视频在线播放| 亚洲国产欧美人成| 日本一本二区三区精品| 少妇的逼好多水| 99久久精品一区二区三区| 国产精品人妻久久久影院| 午夜精品一区二区三区免费看| 深夜精品福利| 日韩一区二区视频免费看| 成人特级av手机在线观看| 国产亚洲精品综合一区在线观看| 免费大片18禁| 成人国产综合亚洲| 国产精品久久视频播放| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看 | 一边摸一边抽搐一进一小说| 999久久久精品免费观看国产| 1024手机看黄色片| 欧美+亚洲+日韩+国产| 国内精品久久久久久久电影| 午夜影院日韩av| 亚洲欧美精品综合久久99| 国内揄拍国产精品人妻在线| 国产又黄又爽又无遮挡在线| 国产亚洲91精品色在线| 午夜免费男女啪啪视频观看 | 日本黄色片子视频| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看 | 亚洲欧美清纯卡通| 自拍偷自拍亚洲精品老妇| 美女高潮的动态| av国产免费在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久中文看片网| av在线老鸭窝| 国产一区二区在线av高清观看| 午夜视频国产福利| 亚洲av一区综合| 婷婷亚洲欧美| 高清毛片免费观看视频网站| 色哟哟哟哟哟哟| 精品人妻熟女av久视频| 午夜福利高清视频| 欧美丝袜亚洲另类 | 亚洲在线自拍视频| 亚洲无线在线观看| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 亚洲第一区二区三区不卡| 麻豆成人午夜福利视频| 免费看a级黄色片| 国产单亲对白刺激| 九九久久精品国产亚洲av麻豆| 乱码一卡2卡4卡精品| 久久精品影院6| 国产亚洲精品综合一区在线观看| 日日干狠狠操夜夜爽| 又紧又爽又黄一区二区| 一本久久中文字幕| 日韩人妻高清精品专区| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 国产成人a区在线观看| 欧美一区二区国产精品久久精品| 特级一级黄色大片| 免费搜索国产男女视频| 永久网站在线| 少妇人妻精品综合一区二区 | 亚洲av五月六月丁香网| 久久九九热精品免费| 男人舔奶头视频| 婷婷丁香在线五月| 美女黄网站色视频| 看黄色毛片网站| 亚洲七黄色美女视频| 99视频精品全部免费 在线| 成人性生交大片免费视频hd| 国产精品无大码| 国内久久婷婷六月综合欲色啪| 亚洲精品色激情综合| 久久久久久久久中文| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 一进一出抽搐动态| www日本黄色视频网| 久久人妻av系列| 成人特级av手机在线观看| 日韩,欧美,国产一区二区三区 | 精品人妻1区二区| 亚洲欧美精品综合久久99| 我的女老师完整版在线观看| 国产伦精品一区二区三区四那| 日本免费a在线| 又紧又爽又黄一区二区| 成人性生交大片免费视频hd| 美女大奶头视频| 99久久成人亚洲精品观看| 久久人人爽人人爽人人片va| 伦精品一区二区三区| 97热精品久久久久久| 欧美一区二区精品小视频在线| 性欧美人与动物交配| 婷婷六月久久综合丁香| 成人欧美大片| 国产黄色小视频在线观看| 99视频精品全部免费 在线| 亚洲人与动物交配视频| 少妇丰满av| 午夜精品一区二区三区免费看| av在线天堂中文字幕| av天堂中文字幕网| 国产麻豆成人av免费视频| 黄片wwwwww| 精品久久久噜噜| 日韩欧美免费精品| 麻豆成人av在线观看| 亚洲人与动物交配视频| 少妇丰满av| 免费在线观看日本一区| 一夜夜www| 中文亚洲av片在线观看爽| 国产中年淑女户外野战色| 男女下面进入的视频免费午夜| 精品久久久噜噜| 少妇裸体淫交视频免费看高清| 99视频精品全部免费 在线| 午夜激情欧美在线| 婷婷六月久久综合丁香| 看片在线看免费视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区性色av| 男人狂女人下面高潮的视频| 免费不卡的大黄色大毛片视频在线观看 | 日日摸夜夜添夜夜添av毛片 | ponron亚洲| 午夜福利成人在线免费观看| 国产国拍精品亚洲av在线观看| 伊人久久精品亚洲午夜| 亚洲av免费高清在线观看| av中文乱码字幕在线| 日韩欧美国产在线观看| 乱人视频在线观看| 久久香蕉精品热| 亚洲成a人片在线一区二区| 免费av毛片视频| netflix在线观看网站| 在线观看午夜福利视频| 97碰自拍视频| 又爽又黄a免费视频| 亚洲狠狠婷婷综合久久图片| 国产精品1区2区在线观看.| 51国产日韩欧美| 男女做爰动态图高潮gif福利片| 午夜视频国产福利| 亚洲五月天丁香| 国产乱人视频| 日本在线视频免费播放| 露出奶头的视频| 女同久久另类99精品国产91| xxxwww97欧美| 97超视频在线观看视频| 内射极品少妇av片p| 久久久色成人| av国产免费在线观看| 成人一区二区视频在线观看| 亚洲黑人精品在线| 在线观看av片永久免费下载| 国产久久久一区二区三区|