• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cooperative Target Tracking of Multiple Autonomous Surface Vehicles Under Switching Interaction Topologies

    2023-03-27 02:38:06LangMaYuLongWangandQingLongHan
    IEEE/CAA Journal of Automatica Sinica 2023年3期

    Lang Ma, Yu-Long Wang,, and Qing-Long Han,

    Abstract—This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles (ASVs) under switching interaction topologies.For the target to be tracked, only its position can be measured/received by some of the ASVs, and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs’dynamics.Accordingly, a novel kinematic controller is designed, which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover, a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.

    I.INTRODUCTION

    MOTION control of autonomous surface vehicles (ASVs)has garnered widespread attention due to its extensive marine applications in military reconnaissance, environmental monitoring, ocean exploration, transportation, offshore inspections, etc.[1]–[3].Several interesting results about some typical motion control issues are reported in the literature, including heading control [4] and [5], dynamic positioning [6]–[9], target tracking [10]–[12], trajectory tracking [13]and [14], and path following [15]–[17].In particular, maritime target tracking, whose purpose is to drive corresponding marine vehicles to track a moving target, has received much attention [18].Generally, the only available target information is the instantaneous position and velocity [10].In the past two decades, some interesting control methods about maritime target tracking have been presented [10], [11] and[19]–[21].For example, a straight-line target tracking scenario is designed to track a high-speed target moving in a straight line [10].For an unmanned surface vehicle with unknown dynamics and bounded torques, a bounded neural network control scheme is given to track a target by using line-of-sight range and angle measurements [11].For an autonomous underwater vehicle, a prescribed performance bound method is presented to achieve target tracking and guarantee the transient performance [19].For an autonomous robotic vehicle, a switched logic-based control strategy is proposed to address a target tracking problem by utilizing range measurements only [20].Note that the above-referenced results mainly involve one-to-one tracking, i.e., one marine vehicle tracking one target.However, some maritime target tracking missions require the cooperation of a fleet of ASVs,which can improve flexibility, robustness, and efficiency of mission completion.For a group of ASVs, the cooperative target tracking problem is far from being resolved.Therefore,how to achieve cooperative target tracking for multiple ASVs deserves in-depth investigation, which is the first motivation of this paper.

    In most cases, it is assumed that both position and velocity information of the maritime target can be either measured or received by follower ASVs [10].For one ASV, however, it is costly and difficult to obtain the accurate velocity of the target [22] and [23].Thus, how to track a target by using only its position information measurement is of paramount importance.On the other hand, in a practical target tracking system composed of multiple ASVs, some of the ASVs cannot obtain the target information due to restrictions of distances and/or external environments.To address this problem, some existing results adopt leader-follower tracking control schemes(see in [10], [11], [22], [24]), which can be sketched as“ASV 1 tracks the target, ASV 2 follows ASV 1, ASV 3 follows ASV 2...”.This means that one ASV only has one neighbor.Specifically, one ASV can only track the target or follow another ASV by measuring/receiving information from it.In this case, if one communication link or one measuring device fails, the cooperative target tracking mission may fail.In the field of multi-agent system control, the distributed control scheme provides a solution to this dilemma [25]–[30].However, how to apply the distributed scheme to the cooperative target tracking is still challenging, not to mention in the case of lacking the target’s velocity information.This is the second motivation of this paper.

    The interaction between the target and the ASVs can be described by a communication network.In some existing results concerning cooperative control of multiple ASVs,interaction network topologies are assumed to be fixed[31]–[33].In practical maritime tracking applications, the connectivity of the corresponding interaction topology may switch due to link failures, sensor incapabilities, channel attenuation, alteration of missions, and disturbance of complex environments.This heightens the need for investigating the cooperative control problem of multiple ASVs under switching topologies.Actually, under switching topologies,the cooperative control of multi-agent systems has been studied in the existing literature [34]–[37].However, these results cannot be directly extended to the cooperative control of multiple ASVs.For a tracking system composed of multiple ASVs, the cooperative target tracking problem under switching topologies has not been adequately addressed hitherto.This is the third motivation of this paper.

    Based on the discussions above, this paper focuses on cooperative target tracking controller design for a maritime tracking system composed of multiple ASVs subject to switching interaction topologies.We consider the case that the velocity of the target to be tracked is unavailable to all the ASVs and only the position information of the target can be measured/received by some of the ASVs.This paper first starts with the cooperative target tracking control problem formulation, in which a distributed target tracking error is introduced.Then, in order to integrally estimate unknown target dynamics and neighboring ASVs’dynamics, a distributed extended state observer (DESO) is constructed.Accordingly,a novel kinematic controller is designed.Different from some existing kinematic controllers, it can take full advantage of known information and avoid the approximation of some virtual control vectors.Moreover, a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore, a distributed dynamic controller is designed to regulate the involved ASVs to achieve cooperative target tracking.The main contributions of this paper are highlighted as follows.

    1) For each ASV, a DESO taking into account switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs’dynamics.Compared with the extended state observer presented in [11], [16], [38], [39],the DESO in this paper is in a distributed manner, which is more suitable for estimating unknown dynamics including not only the target’s but also neighboring ASVs’information;

    2) A novel kinematic controller design method is proposed.It contains not only the estimated error term but also the actually known error term.This can make full use of known information.The approximation of some virtual control vectors can also be avoided;

    3) A distributed dynamic controller is designed to drive the involved ASVs to cooperatively track the target.It enables each ASV to adjust their forces and moments according to the received information from its neighbors.

    Notation:Throughout this paper,Iand 0 represent, respectively, an identity matrix and a zero matrix with appropriate dimensions.Inrepresents ann×nidentity matrix.0nis a column vector with all elements being 0.‖·‖ is the Euclidean norm.? denotes the matrix Kronecker product.For brevity,this paper omits the time argumentt, e.g.,x(t) is denoted asxin this paper.

    II.PRELIMINARIES

    In this paper, we consider a maritime target tracking system consisting ofNASVs, which aims to cooperatively track a marine target.

    This paper considers the case that linear and angular velocities of the target are unknown.Some of theNASVs can obtain the position vector information of the target, which means that the target is a neighbor of them.Treat the target as the node 0.The information exchange between the target and theNASVs can be described by a weighted and augmented graph G (with nodes 0, 1, 2,...,N).The graph G consists of graph G, the node 0, and edges between the target and ASVs whose neighbors contain the target.Denoteai0as the communication weight from the target to the ASVi(pinning weight),whereai0&gt;0 if the target is a neighbor of the ASVi; otherwise,ai0=0.The pinning matrix isD=diag{a10,a20,...,aN0}.

    III.PROBLEM FORMULATION

    The kinematical equation of the target is described by

    Fig.1.Diagram of the design process.

    IV.CONTROLLER DESIGN

    In this section, a DESO is first designed to estimate the integrated unknown dynamics of the target and neighboring ASVs.Accordingly, a novel kinematic controller design method is proposed.A disturbance observer is then given to estimate the unknown time-varying disturbance vectorwi.Next, a distributed dynamic controller is derived to regulate theNASVs to cooperatively track the target with kinematical equation (2).The design process is illustrated in Fig.1.

    A.Estimation of Unknown Dynamics

    B.Kinematic Controller Design

    C.Disturbance Observer Design

    Consider the following Lyapunov-Krasovskii functional candidate:

    D.Distributed Dynamic Controller Design

    In this subsection, a distributed dynamic controller is designed according to the DESO (8), the kinematic controller(19), and the disturbance observer (21).

    Consider the following Lyapunov-Krasovskii functional candidate:

    V.TARGET TRACKING PERFORMANCE ANALYSIS

    Fig.2.Switching interaction topologies.

    Fig.3.Switching signal.

    Based on the above-mentioned parameters and initial conditions, trajectories of the target and the five ASVs, distributed errors, and estimation errors of the DESO are illustrated in Figs.4?6, respectively.From Figs.4 and 5, one can see that the five ASVs can cooperatively track the target with desired accuracy under the influence of the switching topologies.Fig.6 shows the estimation errors of the DESO.This demonstrates the validity of the DESO.

    Fig.4.Trajectories of the target and the five ASVs, and their snapshots at two time instants.

    Then, we consider the case that the ideal relative vector function ηi0(?i∈V) is time-invariant.

    The five time-invariant ideal relative position vectors are described by

    Based on the above-mentioned parameters and initial conditions, the corresponding results are shown in Fig.7.From Fig.7, one can conclude that under the influence of switching topologies, the cooperative target tracking is achieved.

    Next, comparing Figs.4 and 7, we can observe that the two line formations formed by the five ASVs is in different reference frames.The formation in Fig.4 is in the body-fixed frame of the target, while the formation in Fig.7 is in the earth-fixed frame.This means that we can achieve cooperative target tracking in different reference frames by adjusting the ideal relative vector ηi0(?i∈V).

    VI.PERFORMANCE COMPARISON FOR DIFFERENT CONTROLLER DESIGN SCHEMES

    Fig.5.Distributed tracking errors.

    Fig.6.Estimation errors of the DESO.

    In this section, we compare the cooperative target tracking performance between the DESO-based tracking controller designed in this paper and the tracking controller designed in[12].We consider a maritime target tracking system with three ASVs.For comparison, the interaction topology is given as a fixed one, which is shown in Fig.8.

    Fig.7.Trajectories of the target and the five ASVs, and their snapshots at three time instants.

    Fig.8.Interaction topology of one target and three ASVs.

    The trajectory of the target is the same as the one in Section V.The three time-varying ideal relative position vectors are described by

    For the target to be tracked, its velocity is unavailable to all the ASVs, while its position information can only be measured/received by some of the ASVs.In this case, this paper uses coordinate transformation from ηitoeiand estimates the unknown dynamics γithrough a DESO, while in [12], each ASV needs to estimate the target’s position and velocity in the earth-fixed frame by a distributed observer.The difference makes the tracking performance different in this paper and[12].The trajectories of the three ASVs under the tracking controllers in this paper and [12] are presented in Fig.9.From Fig.9, one can see that the control scheme in this paper provides a smaller target tracking error.

    Fig.9.Trajectories of the three ASVs under the tracking controllers in this paper and [12].

    VII.CONCLUSIONS

    The cooperative target tracking has been addressed under switching interaction topologies.A DESO has been designed to integrally estimate unknown target dynamics and neighboring ASVs’dynamics.A novel kinematic controller has been designed, which can make full use of known information and avoid the approximation of some virtual control vectors.A disturbance observer has been presented to estimate unknown time-varying environmental disturbance.A distributed dynamic controller has been designed to regulate theNASVs to cooperatively track the target.Under switching interaction topologies, the effectiveness of the derived results has been demonstrated through cooperative target tracking performance analysis for a maritime target tracking system composed of five interacting ASVs.

    Motivated by [46] and [47], our future research will focus on the cooperative target tracking of multiple ASVs under actuator saturation and actuator faults.

    一级毛片我不卡| 一区福利在线观看| 成人亚洲精品一区在线观看| 亚洲精品视频女| 亚洲综合色惰| 午夜日韩欧美国产| 精品亚洲乱码少妇综合久久| 欧美日韩综合久久久久久| 香蕉国产在线看| av又黄又爽大尺度在线免费看| 七月丁香在线播放| 日韩大片免费观看网站| 亚洲婷婷狠狠爱综合网| 99久久人妻综合| 亚洲精品美女久久av网站| 91午夜精品亚洲一区二区三区| 观看av在线不卡| 国产视频首页在线观看| 少妇 在线观看| 国产精品麻豆人妻色哟哟久久| 精品少妇黑人巨大在线播放| 午夜日本视频在线| 国产日韩一区二区三区精品不卡| 国产一区二区 视频在线| 丝袜美足系列| 成年av动漫网址| 深夜精品福利| 69精品国产乱码久久久| 国产1区2区3区精品| 老汉色∧v一级毛片| 欧美老熟妇乱子伦牲交| 香蕉国产在线看| 亚洲情色 制服丝袜| 一二三四在线观看免费中文在| 日本91视频免费播放| 欧美最新免费一区二区三区| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 久久久久久久大尺度免费视频| 热99久久久久精品小说推荐| 男女啪啪激烈高潮av片| 伦理电影免费视频| 天堂俺去俺来也www色官网| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 久久青草综合色| 性色av一级| 亚洲欧美成人精品一区二区| 一区在线观看完整版| 天堂中文最新版在线下载| 午夜日本视频在线| 午夜久久久在线观看| 老司机影院成人| 亚洲国产毛片av蜜桃av| 成人毛片a级毛片在线播放| 大码成人一级视频| 亚洲四区av| 国产精品麻豆人妻色哟哟久久| 亚洲在久久综合| 久久免费观看电影| 亚洲欧洲国产日韩| 天美传媒精品一区二区| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 中文字幕色久视频| 国产精品99久久99久久久不卡 | 亚洲精品美女久久久久99蜜臀 | 熟女电影av网| 国产精品欧美亚洲77777| 下体分泌物呈黄色| 久久久久久久大尺度免费视频| av在线老鸭窝| 国产女主播在线喷水免费视频网站| av片东京热男人的天堂| 国产片特级美女逼逼视频| 国产成人精品一,二区| 久久人妻熟女aⅴ| 久久久久视频综合| 最近2019中文字幕mv第一页| 考比视频在线观看| 日本色播在线视频| 亚洲欧美一区二区三区久久| 青春草视频在线免费观看| 亚洲一码二码三码区别大吗| 国产精品欧美亚洲77777| 99热全是精品| 国产成人精品福利久久| 成人国语在线视频| 亚洲欧美一区二区三区国产| 精品少妇黑人巨大在线播放| 国产一区二区在线观看av| 99九九在线精品视频| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看 | 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 日韩伦理黄色片| 午夜福利视频精品| 在线观看免费视频网站a站| 亚洲av欧美aⅴ国产| 欧美另类一区| 晚上一个人看的免费电影| 看免费成人av毛片| 中国三级夫妇交换| 亚洲欧美日韩另类电影网站| 国产一区二区激情短视频 | 亚洲欧美色中文字幕在线| 高清黄色对白视频在线免费看| 日韩大片免费观看网站| 国产成人aa在线观看| 日韩视频在线欧美| 亚洲成色77777| 大香蕉久久成人网| 午夜激情久久久久久久| 一级黄片播放器| 人妻一区二区av| 制服诱惑二区| 亚洲欧美清纯卡通| 国产xxxxx性猛交| 老鸭窝网址在线观看| 伦理电影免费视频| 女人高潮潮喷娇喘18禁视频| 久久久亚洲精品成人影院| 久久人人爽av亚洲精品天堂| 老汉色∧v一级毛片| 亚洲精品一二三| 亚洲欧美精品自产自拍| 免费av中文字幕在线| 三级国产精品片| 不卡视频在线观看欧美| 成年女人毛片免费观看观看9 | 亚洲欧洲国产日韩| 久久久久精品性色| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 黑人巨大精品欧美一区二区蜜桃| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 天天躁日日躁夜夜躁夜夜| 国产免费又黄又爽又色| 日本av免费视频播放| 9191精品国产免费久久| 热99久久久久精品小说推荐| 搡女人真爽免费视频火全软件| 久久青草综合色| 国产精品久久久久久精品电影小说| 久久av网站| 乱人伦中国视频| 1024香蕉在线观看| 伦理电影大哥的女人| 亚洲av日韩在线播放| 久久久亚洲精品成人影院| 爱豆传媒免费全集在线观看| 久久97久久精品| 在线免费观看不下载黄p国产| 在线观看一区二区三区激情| 成人免费观看视频高清| 成人手机av| 男女国产视频网站| 国产精品久久久久久精品电影小说| 丝瓜视频免费看黄片| 亚洲,欧美,日韩| 欧美精品人与动牲交sv欧美| 亚洲伊人久久精品综合| 久久人人爽av亚洲精品天堂| 午夜影院在线不卡| 如日韩欧美国产精品一区二区三区| 免费观看性生交大片5| 日日啪夜夜爽| 欧美日韩成人在线一区二区| av国产久精品久网站免费入址| 欧美av亚洲av综合av国产av | 777米奇影视久久| 中国国产av一级| 亚洲精品第二区| 欧美日本中文国产一区发布| 一级片'在线观看视频| 三级国产精品片| 免费高清在线观看日韩| 搡老乐熟女国产| 精品99又大又爽又粗少妇毛片| 大陆偷拍与自拍| 国产成人精品婷婷| 久久久久久人人人人人| 亚洲一区二区三区欧美精品| 国产成人免费无遮挡视频| 人妻系列 视频| 老司机影院成人| av福利片在线| 制服人妻中文乱码| 一区二区三区乱码不卡18| 婷婷色av中文字幕| 性色av一级| 日本vs欧美在线观看视频| 汤姆久久久久久久影院中文字幕| 欧美最新免费一区二区三区| 亚洲熟女精品中文字幕| 亚洲情色 制服丝袜| 99热全是精品| 欧美变态另类bdsm刘玥| av网站免费在线观看视频| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 91成人精品电影| 叶爱在线成人免费视频播放| 最新中文字幕久久久久| 国产成人免费无遮挡视频| 狠狠精品人妻久久久久久综合| 蜜桃在线观看..| 亚洲熟女精品中文字幕| 中国国产av一级| 国产乱人偷精品视频| 日韩一本色道免费dvd| 啦啦啦在线免费观看视频4| 成年女人在线观看亚洲视频| 日本午夜av视频| 亚洲国产色片| 黑丝袜美女国产一区| 伦理电影免费视频| 久久狼人影院| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产mv在线观看视频| 欧美在线黄色| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 搡女人真爽免费视频火全软件| 亚洲精品日韩在线中文字幕| 99久久人妻综合| 成年动漫av网址| 2022亚洲国产成人精品| 丰满迷人的少妇在线观看| av女优亚洲男人天堂| 亚洲国产看品久久| 免费高清在线观看日韩| 国产极品粉嫩免费观看在线| 高清不卡的av网站| 考比视频在线观看| 国产麻豆69| 精品少妇内射三级| 黑人巨大精品欧美一区二区蜜桃| 中文天堂在线官网| av不卡在线播放| 亚洲在久久综合| av网站在线播放免费| 精品99又大又爽又粗少妇毛片| 人成视频在线观看免费观看| 99久久精品国产国产毛片| 国产成人一区二区在线| av一本久久久久| 女人高潮潮喷娇喘18禁视频| 一区在线观看完整版| 欧美精品亚洲一区二区| 欧美人与善性xxx| 国产国语露脸激情在线看| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 日韩制服骚丝袜av| 三上悠亚av全集在线观看| 伊人亚洲综合成人网| 大片免费播放器 马上看| 人妻一区二区av| 日韩av免费高清视频| 伊人久久大香线蕉亚洲五| av在线观看视频网站免费| 色婷婷久久久亚洲欧美| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | 女性被躁到高潮视频| 久久鲁丝午夜福利片| 国产男女内射视频| 亚洲国产毛片av蜜桃av| 亚洲av.av天堂| 成人二区视频| 亚洲人成电影观看| 9热在线视频观看99| 波野结衣二区三区在线| 国精品久久久久久国模美| 1024香蕉在线观看| 国产亚洲最大av| 免费黄频网站在线观看国产| 久久久久久伊人网av| 亚洲av综合色区一区| 男的添女的下面高潮视频| 99九九在线精品视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩精品成人综合77777| 久久国产亚洲av麻豆专区| 国产免费又黄又爽又色| 亚洲综合色惰| www.自偷自拍.com| 中文字幕人妻熟女乱码| 女的被弄到高潮叫床怎么办| 婷婷色麻豆天堂久久| 亚洲四区av| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 亚洲第一青青草原| 日本猛色少妇xxxxx猛交久久| 在线亚洲精品国产二区图片欧美| 国产精品偷伦视频观看了| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 日韩欧美精品免费久久| 日韩在线高清观看一区二区三区| 免费人妻精品一区二区三区视频| 嫩草影院入口| av有码第一页| 少妇猛男粗大的猛烈进出视频| 国产av一区二区精品久久| 国产男人的电影天堂91| 国产成人精品一,二区| 亚洲综合色惰| 精品亚洲成国产av| av片东京热男人的天堂| 日日啪夜夜爽| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 两个人免费观看高清视频| 日韩精品有码人妻一区| 国产精品蜜桃在线观看| 欧美日韩一级在线毛片| 黄色 视频免费看| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| 欧美最新免费一区二区三区| 午夜日韩欧美国产| 亚洲成人av在线免费| 久久热在线av| 欧美黄色片欧美黄色片| 丰满迷人的少妇在线观看| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| 少妇精品久久久久久久| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 一区在线观看完整版| 热re99久久精品国产66热6| 亚洲激情五月婷婷啪啪| 日韩 亚洲 欧美在线| 男女免费视频国产| 丰满少妇做爰视频| 一区二区日韩欧美中文字幕| 亚洲av成人精品一二三区| 秋霞在线观看毛片| 婷婷色麻豆天堂久久| 最近的中文字幕免费完整| 国产福利在线免费观看视频| 亚洲四区av| 日本-黄色视频高清免费观看| 黄色毛片三级朝国网站| 人人妻人人澡人人爽人人夜夜| 久久热在线av| 国产探花极品一区二区| 免费观看性生交大片5| 91精品三级在线观看| 观看美女的网站| 1024香蕉在线观看| 精品第一国产精品| 国产精品二区激情视频| 日本av手机在线免费观看| 亚洲,欧美,日韩| 欧美另类一区| 久久精品国产亚洲av天美| 在线看a的网站| 久久 成人 亚洲| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99久国产av精品国产电影| 精品少妇黑人巨大在线播放| 日本欧美视频一区| 久久久久久久久久人人人人人人| 中文字幕人妻熟女乱码| 日本欧美国产在线视频| 亚洲精品一二三| 久久这里只有精品19| 999精品在线视频| 久久人妻熟女aⅴ| 黄片播放在线免费| 精品亚洲乱码少妇综合久久| 免费高清在线观看视频在线观看| 成人影院久久| 男女午夜视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 十分钟在线观看高清视频www| 99久久精品国产国产毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最新中文字幕久久久久| 曰老女人黄片| 在线天堂最新版资源| 久久综合国产亚洲精品| 狠狠精品人妻久久久久久综合| 日本-黄色视频高清免费观看| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 久久久久久久久久久久大奶| videossex国产| 久久av网站| 国产精品免费大片| 日日啪夜夜爽| 免费观看a级毛片全部| 亚洲欧美精品综合一区二区三区 | 日本午夜av视频| 国产成人aa在线观看| 最近中文字幕2019免费版| 久久综合国产亚洲精品| 国产又爽黄色视频| 国产极品粉嫩免费观看在线| 国产精品国产三级国产专区5o| 久久女婷五月综合色啪小说| 久久久久久久久免费视频了| 亚洲国产看品久久| 日韩一卡2卡3卡4卡2021年| 精品国产超薄肉色丝袜足j| 男人操女人黄网站| 成年av动漫网址| 日韩一卡2卡3卡4卡2021年| 一个人免费看片子| 欧美另类一区| 日本黄色日本黄色录像| 天天躁日日躁夜夜躁夜夜| 亚洲欧美一区二区三区黑人 | 婷婷色麻豆天堂久久| 精品国产超薄肉色丝袜足j| 欧美日韩一级在线毛片| 免费黄频网站在线观看国产| 夫妻午夜视频| 捣出白浆h1v1| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 免费看av在线观看网站| 国产精品秋霞免费鲁丝片| av在线老鸭窝| 亚洲精品国产色婷婷电影| 欧美+日韩+精品| 亚洲色图综合在线观看| 你懂的网址亚洲精品在线观看| 国产精品久久久久成人av| 母亲3免费完整高清在线观看 | 免费观看在线日韩| a 毛片基地| 2022亚洲国产成人精品| 女人被躁到高潮嗷嗷叫费观| 国产一区二区三区av在线| 国产精品嫩草影院av在线观看| 日韩熟女老妇一区二区性免费视频| 欧美另类一区| 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 国产黄频视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久久久伊人网av| 欧美97在线视频| 国产男女内射视频| 精品少妇黑人巨大在线播放| 精品久久久精品久久久| 男女边摸边吃奶| 热re99久久精品国产66热6| 亚洲av成人精品一二三区| 国产精品麻豆人妻色哟哟久久| 又粗又硬又长又爽又黄的视频| 精品一品国产午夜福利视频| 久久久久久久精品精品| 中文字幕另类日韩欧美亚洲嫩草| av女优亚洲男人天堂| 大香蕉久久成人网| 久久精品久久久久久久性| 日韩人妻精品一区2区三区| 免费日韩欧美在线观看| 亚洲av日韩在线播放| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 欧美少妇被猛烈插入视频| 不卡视频在线观看欧美| 亚洲精品国产av成人精品| 一级,二级,三级黄色视频| 久热久热在线精品观看| 亚洲熟女精品中文字幕| 一区二区三区激情视频| 香蕉国产在线看| 18禁动态无遮挡网站| 色婷婷av一区二区三区视频| 少妇被粗大的猛进出69影院| xxxhd国产人妻xxx| 永久网站在线| 丝袜脚勾引网站| 国产免费福利视频在线观看| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 国产精品久久久久成人av| 一个人免费看片子| 欧美bdsm另类| 欧美日韩亚洲高清精品| 最新中文字幕久久久久| 精品99又大又爽又粗少妇毛片| 国产黄频视频在线观看| 少妇 在线观看| 视频在线观看一区二区三区| 丝袜脚勾引网站| 日韩人妻精品一区2区三区| 欧美成人精品欧美一级黄| 色吧在线观看| 黄片小视频在线播放| 精品国产国语对白av| 日韩人妻精品一区2区三区| 在线亚洲精品国产二区图片欧美| 国产精品亚洲av一区麻豆 | 满18在线观看网站| 老汉色∧v一级毛片| 少妇的丰满在线观看| 男人添女人高潮全过程视频| 各种免费的搞黄视频| 在线观看一区二区三区激情| 黑人猛操日本美女一级片| 欧美激情极品国产一区二区三区| 亚洲精品国产av成人精品| 亚洲欧洲日产国产| 成年人免费黄色播放视频| 色婷婷久久久亚洲欧美| 观看av在线不卡| 欧美97在线视频| 最近中文字幕高清免费大全6| 久久久久久久久久人人人人人人| 亚洲综合精品二区| 成人手机av| av在线老鸭窝| 人人澡人人妻人| 99国产综合亚洲精品| 国产日韩欧美视频二区| 亚洲国产av影院在线观看| 少妇的逼水好多| 好男人视频免费观看在线| 一级片免费观看大全| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 热re99久久精品国产66热6| 国产极品粉嫩免费观看在线| 精品一品国产午夜福利视频| 久久 成人 亚洲| 精品人妻偷拍中文字幕| 国产爽快片一区二区三区| 国产精品欧美亚洲77777| 国产免费现黄频在线看| 国产精品99久久99久久久不卡 | 国精品久久久久久国模美| 国产成人精品久久二区二区91 | av在线app专区| 国产片内射在线| 欧美日韩综合久久久久久| 麻豆乱淫一区二区| 一本—道久久a久久精品蜜桃钙片| 午夜免费男女啪啪视频观看| 毛片一级片免费看久久久久| 国产黄色免费在线视频| 丁香六月天网| 人人妻人人添人人爽欧美一区卜| 黑丝袜美女国产一区| 日韩中文字幕欧美一区二区 | 成年人免费黄色播放视频| 色播在线永久视频| 电影成人av| 亚洲美女搞黄在线观看| 色哟哟·www| 性高湖久久久久久久久免费观看| 曰老女人黄片| 搡女人真爽免费视频火全软件| 日韩精品免费视频一区二区三区| 啦啦啦中文免费视频观看日本| 精品国产露脸久久av麻豆| 超碰97精品在线观看| 久久久久视频综合| 免费大片黄手机在线观看| av女优亚洲男人天堂| 少妇人妻 视频| 国产午夜精品一二区理论片| av卡一久久| 久久99精品国语久久久| 日本欧美视频一区| 久久韩国三级中文字幕| 免费高清在线观看视频在线观看| 女人高潮潮喷娇喘18禁视频| 在线观看美女被高潮喷水网站| 香蕉丝袜av| 美女视频免费永久观看网站| √禁漫天堂资源中文www| 人人妻人人澡人人爽人人夜夜| 日韩 亚洲 欧美在线| 国产成人91sexporn| 91精品三级在线观看| 欧美日韩精品网址| 99热网站在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 宅男免费午夜| 又黄又粗又硬又大视频| av免费观看日本| 人妻 亚洲 视频| 最近手机中文字幕大全| 99香蕉大伊视频| 亚洲视频免费观看视频| 亚洲欧美清纯卡通| 最黄视频免费看| 亚洲欧美成人精品一区二区| 在现免费观看毛片| 国产欧美日韩综合在线一区二区| 日韩电影二区| 亚洲成人手机| 国产精品无大码| 亚洲精品久久成人aⅴ小说| 99久久综合免费| 国产精品一国产av| 亚洲国产看品久久| 国产成人av激情在线播放|