• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-Driven Modeling of Maritime Transportation: Key Issues,Challenges, and Solutions

    2023-03-22 08:04:40DnZhugeShuinWngLuZhenHrilosPsrftis
    Engineering 2023年12期

    Dn Zhuge, Shuin Wng, Lu Zhen, Hrilos N.Psrftis

    a School of Management, Shanghai University, Shanghai 200444, China

    b Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China

    c Department of Technology, Management and Economics, Technical University of Denmark, Kgs Lyngby 2800, Denmark

    1.Uncertainty in maritime transportation

    Maritime transportation plays a central role in global logistics systems.Over 80%of international trade is carried out via the maritime transportation network [1], which has received widespread attention from academia and industry.In the shipping network,ports are the vertices where large numbers of activities occur,including cargo loading, unloading, and transshipment.Ships sailing between different ports travel along routes that form the links of the network.Shipping operation studies usually cover ship routing, schedule design, fleet deployment, and network design.

    Port operation is a typical research area in the maritime industry.Most related research works focus on a deterministic operational environment.However, port operations in reality involve many uncertain factors,such as uncertain ship arrival times,uncertain tugging process times,uncertain loading and unloading times,uncertain berth availability, uncertain quay crane availability, and uncertain yard space availability [2-5].

    Shipping operations also include numerous uncertainties.For example,sea conditions(i.e.,currents and tides)and weather conditions cannot be predicted[6],and different sea and weather conditions have different impacts on sailing speed and thus on sailing time.Moreover,transport demand between origin and destination ports—especially spot market demand—is usually uncertain [7,8],and the actual transport volume may be restricted by the availability of ship capacity[9].In addition,marine fuel price is volatile,and price fluctuations will lead to different sailing speed decisions and fuel consumption [10,11].

    All these uncertainties in port and shipping operations affect maritime transportation planning.Making port or shipping operation decisions without considering such uncertainties is rarely applicable in practice.Therefore, it is extremely important to pay attention to uncertain factors in order to improve the efficiency of port activities and shipping companies.

    2.Challenges in maritime transportation modeling under uncertainty

    As discussed above, it is both important and necessary to consider uncertain factors when addressing research problems on maritime transportation.In this section,we analyze the challenges of introducing such uncertainties into maritime transportation models.The uncertainties within port and shipping activities lead to difficulty in developing maritime transportation models.One possible reason is that it can be difficult to collect historical data related to port and shipping activities.Another reasonable explanation is that port and shipping operations cannot be predicted accurately in advance,while decisions on subsequent visited ports and sailing voyages will be affected by previous decisions; therefore, it is difficult to make optimal decisions for an entire voyage,considering the uncertainties of future maritime transportation activities.

    The joint influence of various uncertain factors further increases the modeling difficulty.Take an Asian Pacific liner service route in COSCO Shipping Lines as an example (Fig.1) [12].A liner ship departs from the first port of call (Xiamen) according to the schedule designed by the shipping company; then,the sailing time to the second port of call (Shekou) is uncertain,mainly due to the uncertain conditions of sea, weather, and machines.As a result, the arrival time at the port of Shekou is uncertain, which is combined with an uncertain port time due to uncertain loading and unloading container volumes, as well as available port facilities.Therefore, the departure time from the port of Shekou also cannot be predicted.The liner ship then visits the ports of Hong Kong, Sydney, Melbourne, and Brisbane and returns to the port of Xiamen, with the designed schedule of each port being affected by the uncertainties of previous voyages and current port activities.The combination of all the uncertain factors on a service route complicates the construction of an optimization model for the route, and the model is even more complicated when extended to the whole shipping network.

    Solving a maritime transportation model under a multitude of uncertain factors is extremely difficult, due to its complexity.Therefore, when developing maritime transportation models,how to present a solution method that can simultaneously guarantee the accuracy of the solutions while requiring an acceptable computation time is a key concern.A focus on developing solution methods will further increase the difficulty of model construction.

    Fig.1.An Asian Pacific liner service route.

    3.Data-driven modeling in maritime transportation optimization

    The challenges of the construction of maritime transportation models that stem from uncertainties indicate a demand for data gathering.Hence, several measures have been applied to collect and handle maritime industry data in order to develop data-driven models.A common measure is to generate port and shipping operation scenarios based on historical data.Maritime transportation data can be obtained from various databases, such as Shipping Intelligence Network, The Shipping Database, and VesselsValue.For research problems with limited cases, uncertainties can be investigated by generating a few scenarios; for research problems with numerous cases, the Monte-Carlo sampling method is often used to produce a considerable number of scenarios in order to simulate the real operation environment.Compared with deterministic models,maritime transportation models based on simulation scenarios can generate solutions with lower expected costs or higher expected profits.

    Another effective measure is to provide real-time data—typically, automatic identification system (AIS) data.The AIS is an automatic tracking system that uses transceivers on ships.All passenger ships and international voyaging ships with 300 or more gross tonnage are required to install the AIS.Ships equipped with AIS transceivers can deliver voyage information to base stations and allow maritime authorities to monitor ship movements.The AIS can provide considerable amounts of real-time information,including the ship name, ship draft, location, course, speed, and other details.A large number of reports can be produced by analyzing AIS data.According to updated real-time and forecast data based on AIS data and reports, port and shipping activities (e.g.,ship schedule, sailing path and speed, and port service time window) can be redesigned for cost savings or profit maximization.AIS data has also been used in recent greenhouse gas(GHG)studies by the International Maritime Organization(IMO)to estimate GHG emissions from the world commercial fleet.

    The introduction of the emerging technology of blockchain into the maritime industry is also effective in optimizing port and shipping operations.Blockchain can facilitate information sharing and communication within the maritime transportation network and mitigate the management complexity caused by uncertainties.Information in a blockchain scheme can be divided into interdependent blocks, such as shipping companies, consignors, and port operators.By introducing a blockchain, the data from different blocks of maritime industry—such as the AIS data from ship voyages, the container transportation demand information from consignors, and reports on container handling progress from port operators—can be integrated.The blocks in the blockchain can exchange information and take advantage of the shared data to improve operation management.Some practical applications of blockchain are as follows: Blockchain in Transport Alliance was built as a trade data-sharing platform enterprise alliance in 2017,and Maersk and IBM established a shipping transaction platform(TradeLens) using blockchain in 2018.

    The three measures discussed above—that is, generating port and shipping operation scenarios based on historical data, providing real-time information such as AIS data, and introducing blockchain into the maritime industry—can overcome the challenges in data collection and the joint effect of various uncertain factors.Based on the obtained historical or real-time data, data-driven models can be proposed for maritime transportation problems with uncertain factors.It should be noted that, when building data-driven models, methods for solving models—such as neural network and other machine learning models and sample average approximation methods—should be developed simultaneously in order to validate that the proposed models can be solved effectively and efficiently.To further alleviate the effect of uncertainties in port and shipping activities,the development of maritime transportation models from a data-driven perspective by integrating maritime transportation data and blockchain is essential.However,the application of blockchain in maritime transportation still presents significant obstacles, which predominantly include incomplete information records in the maritime industry, the incompatibility of different systems, and blockchain’s immature technology and application.Therefore, the blockchain system in the maritime industry must be improved, on the basis of which port and shipping models can be developed to further optimize maritime transportation decisions.

    Acknowledgments

    The authors would like to thank the editor and anonymous reviewers for their constructive suggestions on improving this paper.This research was supported by the National Natural Science Foundation of China (71831008, 72025103, and 72071173).

    99久久精品一区二区三区| 久久精品91蜜桃| 亚洲国产欧美人成| 成人毛片a级毛片在线播放| 可以在线观看毛片的网站| 中文字幕人妻熟人妻熟丝袜美| 最近的中文字幕免费完整| 日本欧美国产在线视频| 亚洲五月天丁香| 国产精品人妻久久久影院| 男女下面进入的视频免费午夜| 少妇高潮的动态图| 人人妻人人看人人澡| 国产精品国产三级国产专区5o | 色吧在线观看| 可以在线观看毛片的网站| 国产综合懂色| 能在线免费观看的黄片| 日韩成人av中文字幕在线观看| or卡值多少钱| 国内少妇人妻偷人精品xxx网站| 性插视频无遮挡在线免费观看| 少妇猛男粗大的猛烈进出视频 | 亚洲精华国产精华液的使用体验| 日日干狠狠操夜夜爽| 亚洲一级一片aⅴ在线观看| 成人高潮视频无遮挡免费网站| 国产精品人妻久久久久久| 亚洲图色成人| 久久人人爽人人片av| 性插视频无遮挡在线免费观看| 亚洲av电影在线观看一区二区三区 | 18+在线观看网站| 啦啦啦韩国在线观看视频| a级一级毛片免费在线观看| 国产亚洲精品av在线| 国产伦在线观看视频一区| 91狼人影院| 亚洲最大成人中文| 黄色配什么色好看| 国产免费男女视频| 国产精品.久久久| www.av在线官网国产| 国产精品国产高清国产av| 成人午夜精彩视频在线观看| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩高清专用| 国产精品久久久久久av不卡| 国产黄a三级三级三级人| 日韩中字成人| 又粗又爽又猛毛片免费看| 老司机影院毛片| 久久久久久久久中文| 99热这里只有是精品50| 国产精品久久电影中文字幕| 日日干狠狠操夜夜爽| 最近最新中文字幕免费大全7| 亚洲欧美精品专区久久| 高清午夜精品一区二区三区| 国产毛片a区久久久久| 久久鲁丝午夜福利片| 国产av一区在线观看免费| 男人狂女人下面高潮的视频| av女优亚洲男人天堂| 精品欧美国产一区二区三| 国产高清有码在线观看视频| 国产亚洲午夜精品一区二区久久 | 最近中文字幕高清免费大全6| videossex国产| 精品一区二区免费观看| 最新中文字幕久久久久| 自拍偷自拍亚洲精品老妇| 日本五十路高清| 国产熟女欧美一区二区| 久久久久久久久久久免费av| 伦理电影大哥的女人| 大香蕉久久网| 亚洲经典国产精华液单| 三级男女做爰猛烈吃奶摸视频| 欧美激情国产日韩精品一区| 久久久欧美国产精品| 亚洲av中文字字幕乱码综合| 在线播放国产精品三级| 亚洲av不卡在线观看| 精品一区二区三区视频在线| 男插女下体视频免费在线播放| 一区二区三区四区激情视频| 一级二级三级毛片免费看| 丰满乱子伦码专区| 国产精品一区二区三区四区久久| www.色视频.com| 日本五十路高清| 日日啪夜夜撸| 国产 一区精品| 中文天堂在线官网| 男的添女的下面高潮视频| 22中文网久久字幕| 在线观看av片永久免费下载| 国产高潮美女av| 久久久久久九九精品二区国产| 国产熟女欧美一区二区| 少妇高潮的动态图| 欧美人与善性xxx| 看免费成人av毛片| 亚洲色图av天堂| 亚洲精华国产精华液的使用体验| 国产av一区在线观看免费| 亚洲人与动物交配视频| 男人和女人高潮做爰伦理| 久久久久九九精品影院| 国产精品久久久久久av不卡| 在线观看美女被高潮喷水网站| a级毛片免费高清观看在线播放| 亚洲av福利一区| 日本猛色少妇xxxxx猛交久久| 亚州av有码| 欧美日韩精品成人综合77777| 蜜臀久久99精品久久宅男| 欧美区成人在线视频| 免费观看在线日韩| 91午夜精品亚洲一区二区三区| 人人妻人人澡欧美一区二区| 色噜噜av男人的天堂激情| 丰满人妻一区二区三区视频av| 又粗又硬又长又爽又黄的视频| 丰满乱子伦码专区| 亚洲欧美日韩卡通动漫| 久久久久九九精品影院| 熟女人妻精品中文字幕| 18禁动态无遮挡网站| 国产精品永久免费网站| 日韩一区二区视频免费看| 91狼人影院| 亚洲色图av天堂| 国产女主播在线喷水免费视频网站 | 亚洲欧美中文字幕日韩二区| 极品教师在线视频| 亚洲av成人精品一区久久| 联通29元200g的流量卡| 国产午夜精品论理片| 国产探花极品一区二区| 国产黄片美女视频| 午夜福利在线观看免费完整高清在| 日韩欧美 国产精品| 久久精品国产自在天天线| av又黄又爽大尺度在线免费看 | 国产亚洲av嫩草精品影院| 免费黄色在线免费观看| 日韩欧美国产在线观看| 一个人看视频在线观看www免费| 亚洲成色77777| 精品人妻偷拍中文字幕| 亚洲欧洲国产日韩| 国产精品爽爽va在线观看网站| 女人十人毛片免费观看3o分钟| 男人和女人高潮做爰伦理| 免费在线观看成人毛片| 国产v大片淫在线免费观看| av黄色大香蕉| 国产成人午夜福利电影在线观看| h日本视频在线播放| 在线观看av片永久免费下载| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲91精品色在线| 美女内射精品一级片tv| 国产免费又黄又爽又色| 国产欧美日韩精品一区二区| www.av在线官网国产| 精品人妻偷拍中文字幕| 久久婷婷人人爽人人干人人爱| 亚州av有码| 国产视频首页在线观看| 日韩欧美精品免费久久| 亚洲精品456在线播放app| 国产精品电影一区二区三区| 九草在线视频观看| 久久久久久九九精品二区国产| 午夜a级毛片| 亚洲国产欧洲综合997久久,| 我要搜黄色片| 国内精品宾馆在线| 国产一级毛片在线| 免费观看精品视频网站| 国产成人一区二区在线| 夜夜看夜夜爽夜夜摸| 亚洲精品自拍成人| 高清日韩中文字幕在线| 在线观看美女被高潮喷水网站| 禁无遮挡网站| 欧美另类亚洲清纯唯美| 国产欧美日韩精品一区二区| 国产白丝娇喘喷水9色精品| 日韩av不卡免费在线播放| 26uuu在线亚洲综合色| 偷拍熟女少妇极品色| 国产精品嫩草影院av在线观看| 成人鲁丝片一二三区免费| 欧美成人精品欧美一级黄| 国产精品电影一区二区三区| 99视频精品全部免费 在线| 亚洲精品,欧美精品| 中文精品一卡2卡3卡4更新| 久久6这里有精品| 国产精品国产三级国产专区5o | 成人国产麻豆网| 亚洲av电影在线观看一区二区三区 | 国产精品嫩草影院av在线观看| 又爽又黄无遮挡网站| 十八禁国产超污无遮挡网站| 一个人看视频在线观看www免费| 日韩一本色道免费dvd| 免费不卡的大黄色大毛片视频在线观看 | 亚洲第一区二区三区不卡| av免费观看日本| 淫秽高清视频在线观看| 一区二区三区免费毛片| 欧美丝袜亚洲另类| 久久精品国产鲁丝片午夜精品| 熟妇人妻久久中文字幕3abv| 亚洲精品日韩在线中文字幕| 久久这里只有精品中国| 乱人视频在线观看| 精品欧美国产一区二区三| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 天天躁夜夜躁狠狠久久av| 一边亲一边摸免费视频| 日韩欧美精品免费久久| 国产精品伦人一区二区| 久久久久久久久中文| 免费看a级黄色片| 久久精品影院6| 卡戴珊不雅视频在线播放| 青春草国产在线视频| 国产淫语在线视频| 熟女电影av网| 亚洲美女视频黄频| 国产黄色小视频在线观看| 久久久久九九精品影院| 久久99热6这里只有精品| 成人综合一区亚洲| 国产高清不卡午夜福利| 1000部很黄的大片| 久久婷婷人人爽人人干人人爱| 国国产精品蜜臀av免费| 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 少妇熟女aⅴ在线视频| 国产爱豆传媒在线观看| 久久婷婷人人爽人人干人人爱| 成人漫画全彩无遮挡| 精品欧美国产一区二区三| 男女那种视频在线观看| 人人妻人人澡人人爽人人夜夜 | 青春草视频在线免费观看| 色网站视频免费| 精品人妻视频免费看| 国产视频首页在线观看| 国产精品熟女久久久久浪| 久久精品国产亚洲av天美| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 亚洲精品国产成人久久av| 国产精品熟女久久久久浪| 老师上课跳d突然被开到最大视频| 久久久久久久久久久免费av| 免费观看a级毛片全部| 亚洲最大成人av| 最近的中文字幕免费完整| 亚洲丝袜综合中文字幕| 永久网站在线| 色吧在线观看| 国产成人a∨麻豆精品| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 中文欧美无线码| 97在线视频观看| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂 | 99九九线精品视频在线观看视频| 熟女人妻精品中文字幕| 精品久久久噜噜| 亚洲第一区二区三区不卡| 日本wwww免费看| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 91aial.com中文字幕在线观看| 亚洲国产欧美人成| 最近2019中文字幕mv第一页| 成人综合一区亚洲| 七月丁香在线播放| 亚洲精品影视一区二区三区av| 国产91av在线免费观看| 99久久九九国产精品国产免费| 久久久久精品久久久久真实原创| 精品欧美国产一区二区三| 亚洲在线观看片| 纵有疾风起免费观看全集完整版 | 夫妻性生交免费视频一级片| 菩萨蛮人人尽说江南好唐韦庄 | 尤物成人国产欧美一区二区三区| .国产精品久久| 亚洲伊人久久精品综合 | 亚洲精品乱码久久久v下载方式| 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| 欧美一区二区亚洲| 成年免费大片在线观看| 看黄色毛片网站| av在线观看视频网站免费| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 女人久久www免费人成看片 | 亚洲欧美精品综合久久99| 九草在线视频观看| 最新中文字幕久久久久| 国语对白做爰xxxⅹ性视频网站| 中文在线观看免费www的网站| 夜夜看夜夜爽夜夜摸| 亚洲欧洲日产国产| 一级av片app| www.色视频.com| 男女视频在线观看网站免费| 久久人人爽人人片av| 国产伦一二天堂av在线观看| 免费观看a级毛片全部| 综合色丁香网| 亚洲人成网站在线播| 亚洲av二区三区四区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人a区在线观看| 一区二区三区高清视频在线| 免费观看性生交大片5| 国产精品永久免费网站| 精品国产一区二区三区久久久樱花 | 高清在线视频一区二区三区 | 26uuu在线亚洲综合色| 日韩av在线大香蕉| 久久精品国产亚洲av天美| 黄色日韩在线| 国产精品久久久久久精品电影| 亚洲精品影视一区二区三区av| 国产乱人偷精品视频| 波野结衣二区三区在线| av免费在线看不卡| 日本一二三区视频观看| 天堂网av新在线| 国产精品综合久久久久久久免费| 成人特级av手机在线观看| 欧美丝袜亚洲另类| 久久久久免费精品人妻一区二区| 亚洲自拍偷在线| 亚洲av熟女| 国产久久久一区二区三区| 久久久久久久久久久免费av| 国产欧美另类精品又又久久亚洲欧美| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 只有这里有精品99| 狠狠狠狠99中文字幕| 高清毛片免费看| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 秋霞在线观看毛片| 看免费成人av毛片| www.色视频.com| 日韩亚洲欧美综合| 成人午夜精彩视频在线观看| 国产真实伦视频高清在线观看| 久久6这里有精品| 观看免费一级毛片| 汤姆久久久久久久影院中文字幕 | 欧美bdsm另类| 亚洲精品国产av成人精品| 国产欧美日韩精品一区二区| 欧美又色又爽又黄视频| 精品久久国产蜜桃| 久久精品国产99精品国产亚洲性色| 国产黄片美女视频| 国产私拍福利视频在线观看| 国产精品久久久久久精品电影小说 | 国产精品久久久久久久久免| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 69人妻影院| 2022亚洲国产成人精品| 国产高潮美女av| 国产亚洲av嫩草精品影院| 亚洲国产欧美在线一区| 亚洲欧洲国产日韩| av卡一久久| 精品久久久久久久久久久久久| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 哪个播放器可以免费观看大片| 午夜a级毛片| 国内精品宾馆在线| 国产伦一二天堂av在线观看| 美女国产视频在线观看| 最近2019中文字幕mv第一页| 亚洲,欧美,日韩| av免费在线看不卡| 日韩一区二区三区影片| av天堂中文字幕网| 亚洲av成人av| 女的被弄到高潮叫床怎么办| 国产av码专区亚洲av| 最近视频中文字幕2019在线8| 亚洲精品乱码久久久v下载方式| 国产精品综合久久久久久久免费| 一个人免费在线观看电影| 欧美高清性xxxxhd video| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 99久久精品一区二区三区| 精华霜和精华液先用哪个| 午夜精品在线福利| 看免费成人av毛片| 最近最新中文字幕免费大全7| 国产中年淑女户外野战色| 伦理电影大哥的女人| 一级毛片久久久久久久久女| 又黄又爽又刺激的免费视频.| 日本一本二区三区精品| a级一级毛片免费在线观看| 哪个播放器可以免费观看大片| 视频中文字幕在线观看| 亚洲av不卡在线观看| 精品人妻偷拍中文字幕| videossex国产| 国产精品不卡视频一区二区| 国产精品久久久久久精品电影| 日韩一区二区三区影片| 天堂中文最新版在线下载 | 亚洲不卡免费看| 又粗又爽又猛毛片免费看| 91在线精品国自产拍蜜月| 国产探花在线观看一区二区| 午夜a级毛片| 国产美女午夜福利| 岛国毛片在线播放| АⅤ资源中文在线天堂| 特大巨黑吊av在线直播| 精品一区二区三区人妻视频| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 精品国产三级普通话版| 中文字幕精品亚洲无线码一区| 伦理电影大哥的女人| 国产精品三级大全| 久久精品国产亚洲av天美| 亚洲国产精品sss在线观看| 国产淫片久久久久久久久| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 夜夜爽夜夜爽视频| 色综合亚洲欧美另类图片| 中文字幕免费在线视频6| 久久热精品热| 免费观看的影片在线观看| 最近中文字幕2019免费版| av视频在线观看入口| 国产精品野战在线观看| 亚洲国产精品专区欧美| 国产精品国产三级国产专区5o | 丰满少妇做爰视频| 欧美+日韩+精品| 国产一区二区在线av高清观看| 99久久人妻综合| 久久99蜜桃精品久久| 1024手机看黄色片| 最近中文字幕2019免费版| 亚洲欧美日韩卡通动漫| 国产又色又爽无遮挡免| 国产精品一区二区三区四区久久| 成年av动漫网址| 日产精品乱码卡一卡2卡三| 国内精品宾馆在线| 久久久久国产网址| 噜噜噜噜噜久久久久久91| 久久精品国产亚洲av天美| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 成人美女网站在线观看视频| 九九久久精品国产亚洲av麻豆| 免费黄网站久久成人精品| 日日啪夜夜撸| 免费观看的影片在线观看| 欧美不卡视频在线免费观看| 九九热线精品视视频播放| 99热这里只有是精品50| 最新中文字幕久久久久| 免费看av在线观看网站| 日韩人妻高清精品专区| 老司机影院成人| 精品国产露脸久久av麻豆 | 国产成人免费观看mmmm| 欧美丝袜亚洲另类| 永久免费av网站大全| 最近手机中文字幕大全| 国产黄片美女视频| 69av精品久久久久久| 亚洲精品日韩在线中文字幕| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 国产免费视频播放在线视频 | 在线播放无遮挡| 久久久久久久午夜电影| 天堂网av新在线| 色吧在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲怡红院男人天堂| 午夜福利成人在线免费观看| 日本与韩国留学比较| 午夜激情福利司机影院| ponron亚洲| 老司机影院成人| 亚洲欧美精品自产自拍| 美女cb高潮喷水在线观看| 成人亚洲欧美一区二区av| 一二三四中文在线观看免费高清| 国产成人一区二区在线| 一级二级三级毛片免费看| 久久这里有精品视频免费| 长腿黑丝高跟| 午夜精品一区二区三区免费看| 亚洲精品乱久久久久久| 国产精品永久免费网站| 亚洲欧美成人综合另类久久久 | 日本色播在线视频| 女人被狂操c到高潮| 人人妻人人澡欧美一区二区| 韩国av在线不卡| 国产极品天堂在线| 亚洲人与动物交配视频| 成人毛片60女人毛片免费| 老司机影院成人| 亚洲中文字幕一区二区三区有码在线看| 亚洲婷婷狠狠爱综合网| 亚洲成人av在线免费| 亚洲精品影视一区二区三区av| 亚洲经典国产精华液单| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜 | 99久久中文字幕三级久久日本| 精品久久久久久久久久久久久| 精品久久久久久电影网 | 99久久精品热视频| 国产av一区在线观看免费| 亚洲伊人久久精品综合 | av福利片在线观看| 国模一区二区三区四区视频| 亚洲经典国产精华液单| 色播亚洲综合网| 国产精品.久久久| 91久久精品国产一区二区成人| 三级经典国产精品| 毛片一级片免费看久久久久| 天天一区二区日本电影三级| 国产黄色小视频在线观看| 免费看光身美女| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品久久精品一区二区三区| 亚洲,欧美,日韩| 免费大片18禁| 两性午夜刺激爽爽歪歪视频在线观看| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 国产精品一区二区在线观看99 | 麻豆国产97在线/欧美| 亚洲人成网站在线观看播放| 成人特级av手机在线观看| 联通29元200g的流量卡| a级毛片免费高清观看在线播放| 看黄色毛片网站| 久久综合国产亚洲精品| 欧美激情国产日韩精品一区| 最近中文字幕高清免费大全6| 看免费成人av毛片| 天天躁日日操中文字幕| 少妇高潮的动态图| 18禁在线无遮挡免费观看视频| 精品国产露脸久久av麻豆 | 亚洲国产精品专区欧美| 中文在线观看免费www的网站| 国产高清视频在线观看网站| 日韩视频在线欧美| 久久久久久久久久黄片| av在线老鸭窝| 99在线人妻在线中文字幕| 欧美高清成人免费视频www| 我要搜黄色片| 亚洲最大成人中文| 99国产精品一区二区蜜桃av| 人人妻人人澡人人爽人人夜夜 | 亚洲av成人av| 国产成人午夜福利电影在线观看| 18禁在线播放成人免费| 国产探花极品一区二区| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 国产片特级美女逼逼视频| 汤姆久久久久久久影院中文字幕 | 在线观看美女被高潮喷水网站| 黄色配什么色好看| 一区二区三区免费毛片| 午夜福利在线观看免费完整高清在| 国产精品一区www在线观看| 91久久精品电影网|