• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of the spatio-temporal evolution of the electron energy distribution function in a pulsed hollow-cathode discharge

    2023-03-15 00:54:20ASHURBEKOVIMINOVRABADANOVSHAKHSINOVZAKARYAEVAandKURBANGADZHIEVA
    Plasma Science and Technology 2023年3期

    N A ASHURBEKOV, K O IMINOV, K M RABADANOV,2,G S SHAKHSINOV, M Z ZAKARYAEVA,3 and M B KURBANGADZHIEVA,3

    1 Dagestan State University, Makhachkala 367002, Russia

    2 Department of Physics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China

    3 Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala 367003, Russia

    Abstract This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribution function(EEDF)of the plasma column and electrical characteristics of the nanosecond pulsed hollow cathode discharge at a gas pressure of 5 Torr are studied.The results show that the discharge development starts with the formation of an ionization front at the anode surface.The ionization front splits into two parts in the cathode cavity while propagating along its lateral surfaces.The ionization front formation leads to an increase in the fast isotropic EEDF component at its front, as well as in the anisotropic EEDF component.The accelerated electrons enter the cathode cavity, which significantly contributes to the formation of the highenergy EEDF component and EEDF anisotropy.

    Keywords:pulsed nanosecond discharge,electron energy distribution fuinction,hollow cathode,electron kinetics, gas discharge

    1.Introduction

    Analysis of the spatio-temporal kinetic evolution of electrons in a nanosecond pulse plasma discharge in noble gases is of considerable current scientific and practical interest[1-4].Since the properties of plasma as a whole are largely determined by the electrons, the electron energy distribution function (EEDF)constitutes one of the most important characteristics of nonequilibrium gas-discharge plasma [5].Due to the high spatiotemporal gradients of the electric field and charged particles in nanosecond pulsed discharge plasma,EEDF quantification using experimental methods remains a difficult and, as yet, unsolved problem.In this regard, global models represent a simple yet powerful tool for the calculation of the EEDF in nanosecond pulsed discharge plasma [6, 7].As is known, the most general method for calculation of the EEDF is numerically solving the electron Boltzmann equatio,i.e.,a non-linear integro-differential equation; the solution constitutes an extremely difficult issue.Therefore, it is usual to make several simplifications, allowing the equation to be solved for particular cases.Of particular interest here is the type of discharge characterized by the formation of different groups of electrons in the plasma; for example, a pulsed discharge from an extended hollow cathode producing fast and slow electron groups [8, 9].

    The calculation of the spatio-temporal EEDF in a pulsed discharge with a hollow cathode is an interesting and complex problem that has not yet been fully studied.Therefore, the present work aims to simulate the dynamics of the formation of a nanosecond pulsed argon discharge in an extended hollow cathode and to calculate the EEDF in various regions of the plasma column.Thus,this work is one count of attempted selfconsistent modeling of pulsed discharge plasma with the hollow cathode, and we hope that the obtained results will help to understand plasma processes and create a more accurate numerical model of pulsed gas discharges with weak anisotropy of the EEDF.

    2.Model description

    The modeling object is a high-voltage pulsed nanosecond argon discharge in an extended hollow cathode.In such a discharge system, electron emission from a cold cathode is caused by its bombardment with high-energy ions and atoms,as well as their acceleration in the cathode potential drop(CPD) area.This results in the generation of accelerated electrons, which has a significant effect on the EEDF formation[9].This design of a discharge chamber with a hollow cathode allows high current densities and radiation power to be obtained at relatively low applied voltages[9,10].To fully understand the physics of these processes and their effect on the main discharge properties, a more detailed study into the formation dynamics and spatio-temporal distribution of key discharge parameters is required.

    The discharge chamber is composed of a quartz tube with a diameter of 5 cm that contains a system of aluminium electrodes spaced 0.6 cm apart.The anode is a flat plate measuring 5 cm in length, 2 cm in width, and 0.5 cm in thickness.The cathode has the form of a cylindrical rod measuring 5 cm in length and 1.2 cm in diameter,along which a 0.2 cm wide and 0.6 cm deep slot is cut.For the entire electrode length, the discharge area is bounded by dielectric plates made of fibreglass laminate.The breakdown is carried out using a Blumlein-type high-voltage nanosecond pulse generator producing voltage pulses with a front edge of about 15 ns at an adjustable amplitude of up to 10 kV [10].

    The modeling area is rectangular, measuring 1.2 cm in length and 0.2 cm in width (figure 1).The discharge area for the entire length of the electrodes is limited by dielectric plates made of fibreglass.

    Figure 1.(a) Geometry of the modeling area and location of the points where the EEDF is calculated; (b) external circuit to the electrodes.

    To calculate the EEDF, it is necessary to solve the Boltzmann equation.As noted above, the challenging nature of the pulsed discharge problem,both in terms of its solution and required computational resources, explains the current lack of programs or program codes.Most publicly available program codes enable the numerical solution of the Boltzmann equation for steady direct current (DC) discharge and determination of the steady-state isotropic EEDF component[11].At present, there are software packages that allow us to calculate the EEDF in high-frequency discharges in a periodically changing electric field by applying a Fourier time series expansion at a given oscillation frequency [12].

    For the considered case of a nanosecond pulsed discharge in a hollow cathode with complex boundary conditions, it is an even more complicated problem to simulate the discharge development and calculate the EEDF in the plasma column,which still remains unsolved.The present work is among the first to propose a model that uses two programs to calculate the EEDF in pulsed discharges, in which high-energy electrons are formed during the breakdown.In practice, some assumptions are typically made depending on the conditions of discharge formation and set aims to simplify the issue and permit its subsequent solution.The calculation of the EEDF in the cathode and near-cathode regions is a different, complex and still unsolved problem and requires additional studies [13-16].Therefore, in our work, these areas of the discharge are not considered, since there is no local relation between the electric field and the EEDF of the cathode sheath plasma.Note that our experimental studies were carried out in a pressure range from 5 to 40 Torr.Therefore, to test the performance of the proposed method, the most critical(unfavourable)case for the local approximation of 5 Torr was taken, since the applicability of the local approximation is limited by higher pressures.Even under these conditions, as the below estimates show,the two-term approximation can be used to calculate the EEDF in the plasma column.Let us,therefore,establish two important conditions for the simulated discharge in argon at a gas pressure of p=5 Torr and an applied voltage of U0=1.2 kV, allowing the solution of the Boltzmann equation to be considerably simplified.The first step is to determine the mode of EEDF formation, while the second is to check the validity conditions of a two-term EEDF expansion.

    The EEDF formation mode can be analysed through the introduction of a relaxation parameter [5]

    whereνeis the frequency of electron-electron collisions,δis energy loss in elastic collisions,νea~ 3.5 × 1010s-1is the frequency of elastic collisions,ν* ~ 1 .3 × 109s-1is the frequency of inelastic collisions between electrons and atoms,τd=~ 4 × 10-8s is the time of free electron diffusion to plasma boundaries,Dr=~ 105cm2· s-1is the diffusion coefficient,υ=is the thermal velocity,ε~5 eV,2.4 × 10-3cmis the mean free path of electrons relative to elastic collisions,andL~ 6.3 × 10-2cmis the characteristic diffusion length.As a result,from equation(1)we can obtainK≈50,K?1,which means that volumetric collisions prevail over diffusion processes during EEDF relaxation,indicating a local EEDF formation mode.The validity conditions of the two-member EEDF expansion take the following form [5]:

    whereeEλ~ 1.2 × 10-19Jis the energy gained from the electric field in a mean free path (taking into account that up to 20% of U0drops in the plasma column), andw=meυ2/ 2 ~ 6.4 ×10-19J is the kinetic energy of electrons.The estimates indicate that the energy gained by the electron at the mean free path from the electric field does not exceed its kinetic energy.The conditions (2) are satisfied in the plasma column of the simulated discharge, and the assumption about weak EEDF anisotropy in the plasma is valid.Therefore,the EEDF in the simulated discharge can be obtained through a Legendre polynomial expansion.To this end, let us expand the spherical function for the EEDF in velocity space [17, 18]:

    whereθ,?are angles defining the velocity direction in a spherical coordinate system.

    Since even in our case of a strong non-uniform electric field the anisotropy of electron velocity distribution remains low, the classical (local) two-member approximation of the EEDF is sufficient [17, 18]:

    wheref0(w)is an isotropic EEDF component depending only on the change in velocity,f1(w) is an anisotropic EEDF component proportional to the direction cosines of the velocity vector,ne(r,t)is the electron density,andw=is the kinetic energy in eV.The isotropic EEDF componentf0(w) satisfies the following normalization condition:

    The Boltzmann kinetic equation for the isotropic partf0(w)of the EEDF in the absence of spatial dependence of the EEDF has the following form:

    The anisotropic componentf1(w) of the EEDF can be calculated as

    whereW(w) is the electron energy loss in elastic collisions andD(w) is the energy diffusion coefficient, which can be calculated as follows:

    whereCk(w) is a collision integral considering k inelastic reactions.

    To conduct numerical experiments,a non-stationary twodimensional axisymmetric model is developed taking into account the real geometry of the discharge area(figure 1),and our model consists of two modules:a COMSOL plasma fluid module [10] and a LisbOn KInetics Boltzmann (LoKI-B)kinetic module [4].The LoKI-B program is written with object-oriented programming in MATLAB [19].To communicate between COMSOL Multiphysics and MATLAB software,there is a special module called COMSOL LiveLink for MATLAB.To import/export this data from/to the LoKIB program, a special m-function is created and described in the COMSOL model,which extracts the values of the reduced field and other parameters necessary for calculating the Boltzmann equation in the LoKI-B program.From the COMSOL plasma fluid module, the LoKI-B kinetic module receives the following values as input parameters at each instant of time and at each point of the problem solution domain: reduced electric field, gas pressure, gas temperature,electron and ion densities, and distributions of excited state populations of the working gas, which are used to solve equations(6)and(7).This function uses the extracted values as input parameters for the LoKI-B program, after which it starts the calculation of the EEDF.Further, after the calculation, this m-function returns the EEDF to the COMSOL model,which is used in the future to calculate the kinetic and transport coefficients.The solution of this problem is selfconsistent.At startup, COMSOL automatically starts the MATLAB process, which calculates the function and returns its value to the COMSOL model.

    A detailed algorithm for the numerical solution of the Boltzmann equation is provided in [20].Using a finite difference scheme,the Boltzmann equation is discretized to find its solution.As output data,the LoKI-B kinetic module yields the isotropicf0and anisotropicf1EEDF components-and,as their sum,the total electron energy distribution function.This combined use of the two packages as a single unit provides a means to simulate the development of a non-uniform unsteady discharge and study the spatio-temporal evolution of the EEDF.

    The following values are selected as the initial conditions:ne(t= 0,x,y) =ni(t= 0,x,y) =n0,wheren0~ 108cm-3is the initial background plasma density.

    The experimentally determined experiment boundary conditions are as follows:

    (1)V= 0 is the cathode wall potential.

    (2)V=U(t)is the anode wall potential determined by pulse voltage from the experiment.Figure 2 shows an applied pulse voltage.

    (3) The boundary condition on the dielectric walls is as follows:

    where n is a normal vector;εris relative permittivity;dsis surface thickness;Vrefis reference potential, determined by the charge trapped on the dielectric surface;Dis electric displacement; andσsis surface charge density, defined asσs=n·Ji+n·Je,whereJiis a normal component of the total ion current density on the wall andJeis a normal component of the total electron current density on the wall.

    To set the form and parameters of the electric field potential,the voltage pulse U(t) applied to the discharge gap in the experiment is digitized.The characteristics of the discharge circuit are factored in through the introduction of a ballast resistor into the calculation model as perU=U0-Ip×Rb.When selecting the value ofRb,a coincidence is achieved between the calculated and experimentally determined discharge current pulses for a given voltage pulse.

    The argon chemistry model considered in this investigation includes four species: electrons, ground state argon atoms, argon atoms in the lowest-lying excited states including metastable argon atoms, and argon positive ions.

    The set of reactions for argon includes elastic collisions,the direct ionization of an atom by electron impact,excitation from the ground state,stepwise ionization from the metastable state, and Penning ionization.The set of plasma-chemical reactions is presented in table 1.

    Figure 2.Applied pulse voltage.

    3.Results and discussion

    The COMSOL Multiphysics plasma module is used to simulate the dynamics of discharge formation and development, yielding the spatio-temporal distribution of the main discharge plasma parameters in the gap and the cathode cavity.The LoKI-B package is simultaneously used to calculate the EEDF at various points in the discharge gap centre.As an example, figure 3 shows the results of simulating the distribution of electric potential and electric field, as well as the electron density in the gap and the cathode cavity.The distribution of potential and electric field along the discharge gap centre provides a means to trace the dynamics of discharge development and electric field penetration into the cathode cavity, as well as to estimate the maximum field values in the gap and the cathode cavity.In figure 3, the potential exhibits a gradual increase for the first 100 ns in the interelectrode gap when moving from the anode toward the cathode.After about 110 ns, it penetrates the cathode cavity,reaching the cavity bottom 150 ns after the moment the voltage is applied to the gap.Then,the potential continues to rise, reaching a maximum of 800 V after 200 ns at the cavity base(figure 3(c)).This is the point at which the cathode layer is completely formed with the redistributed potential.In the cathode layer, the drop amounts to 800 V, while the remaining potential drops are in the plasma column.Subsequently, a gradual reduction in the electric potential is observed in the gap and the cavity corresponding to the decrease in the applied voltage pulse (figure 3).

    Table 1.Set of reactions for argon used in the simulation.

    The simulation of the dynamics of the spatio-temporal electron density distribution indicates that at the initial stages of electrical gas breakdown formation, density redistribution of charged particles is observed due to the electrons being pulled to the anode.This factor leads to a decrease in electron density in the gap,whereas,in the cathode cavity and at the anode surface,it gradually rises.Approximately 80 ns after applying a voltage to the gap, a plasma bunch having an electron density of~1010cm-3forms in the centre at the anode surface.An ionization front originating from this point propagates toward the cathode.As it propagates,the electron density increases rapidly at and behind the ionization front.At a propagation speed of~3 × 107cm·s-1,the ionization front reaches the middle of the gap after about 100 ns(figure 3(a)).The calculations suggest that the electric field is focused at the front while moving together with the ionization front.The field reduction at the front in the gap amounts to ~8 × 103V·cm-1.By 110 ns, the electron density reaches ~1012cm-3and the ionization front penetrates the cathode cavity (figure 3(b)); then the ionization front splits into two parts, propagating along the lateral surfaces of the cavity and reaching its bottom.The discovered splitting effect of the ionization front allows us to understand the dynamics and mechanism of the formation of the spatio-temporal structure of ionization processes inside the hollow cathode.After that,a back ionization front is formed at the cavity bottom while filling the cavity with plasma, which leads to the formation of a plasma column in the cavity and the gap(figures 3(c)and(d)).The field is localized between the plasma column and the cathode cavity base in the cathode layer,where the maximum electric field drop reaches ~6 × 104V·cm-1.The maximum electron density in the plasma column observed inside the cathode cavity reaches~6 × 1014cm-3(figure 3(c)).

    Figures 4 and 5 show the results of EEDF calculations obtained at five points in the discharge gap centre located at different distances from the anode surface: point 1 located at a distance of 0.01 cm from the anode surface; point 2 located in the interelectrode gap centre;point 3 located right at the cathode inlet; point 4 located in the middle of the cathode cavity; and point 5 located at the base of the cathode cavity at a distance of 0.01 cm from the cavity bottom (figure 1).The calculations indicate that the directed energy acquired by free electrons during the breakdown process depends on the distance from the calculation point to the anode surface.In the interelectrode gap,the energy of such electrons increases as they move from the anode to the cathode,while in the cathode cavity,the energy is initially observed to decrease, with a sharp increase in the directed electron energy at the cavity base.A similar result is obtained for all the EEDFs calculated at different points.In the high-energy EEDF region, the isotropic and anisotropic EEDF components are approximately the same, while in the lowenergy region, the isotropic component exceeds the anisotropic component by almost two orders of magnitude(figures 4 and 5).

    Figure 4(a) shows the isotropic and anisotropic EEDF components calculated at point 1.As can be seen from the figure,the high-energy EEDF part increases at the beginning of the breakdown process near the anode,reaching its maximum by 80 ns, followed by a gradual decline.With an increase in the voltage applied to the gap, the density of electrons near the anode rises,while some of these electrons are accelerated when being pulled to the anode in the anode potential drop area before ionization front formation.After about 90 ns from the application of voltage to the gap,an ionization front starts propagating from the anode, pushing the applied field ahead.Behind the front of the anode, a reduction in the field is observed, along with a decrease in the energy of free electrons (figure 4(a)).At the second point,the EEDF has not been completely formed by 90 ns, since the ionization front has not yet reached this point.However,the formation of EEDF 10 ns later coincides with the moment when the ionization front arrives at point 2(figure 3(a)).A significant increase can be observed both in the isotropic and anisotropic EEDF components, while the tail of the anisotropic EEDF component is comparable to that of the isotropic component (figure 4(b)).This factor indicates the formation of accelerated electrons at the given point at this moment in time.As the ionization front propagates, virtually the entire electric field becomes concentrated at the ionization front [23].

    Figure 3.Distributions of electric potential (V), electric field (V·m-1), and electron density in the discharge gap at various times following voltage pulse applied to the discharge gap.

    Figure 4.Isotropic f0 (w ) and anisotropic f1 (w ) EEDF components on the discharge axis at points 1 (a) and 2 (b).

    The acceleration of free electrons while gaining energy in this region of the amplified electric field leads to a distortion of EEDF with an increase in its high-energy part.It can be seen that both the isotropic and anisotropic EEDF parts decrease over time.This means that the ionization front has passed, which leads to a decrease in the number of fast electrons at this point (figure 4(b)).At point 2, the energy of the fast EEDF part is nearly two times higher than those at point 3 (figure 5(a)) at the cathode inlet and point 4(figure 5(b))in the middle of the cavity.This can be attributed to the fact that the ionization front splits into two parts at the cavity inlet while propagating further along its lateral surfaces to the bottom.The electrons are primarily accelerated at the lateral surfaces of the cathode cavity,whereas in the centre of the cavity, a reduction in their number is observed(figures 5(a)and(b)).Figure 5(c)shows the EEDF calculated at point 5.It can be seen that the EEDF rapidly descends at 100 ns since the ionization front has not reached this point yet and few fast electrons are present.Over time, the EEDF becomes less steep.At 150 ns, the tail of the anisotropic EEDF component starts to exceed that of the isotropic EEDF component.Therefore, this is the moment at which highenergy electrons arrive at this point along with the ionization front.The high-energy EEDF part continues to grow to reach its maximum of 250 ns.The EEDF becomes markedly sloping, with a significantly greater tail of the anisotropic EEDF component than that of the isotropic EEDF component(figure 5(c)).This factor suggests that an additional beam of fast electrons arrives at point 1 at 250 ns,enriching the EEDF.As compared to a conventional anomalous glow discharge,hollow cathode discharge is distinguished by a sharp decrease in the CPD area.Its dimensions are such that the electrons emitted by the cathode pass the CPD area virtually without collisions to acquire an energy ofε=eUk,whereUkis the potential of the cathode layer [8, 9, 24].

    Figure 5.Isotropic f0 (w ) and anisotropic f1 (w ) EEDF components on the discharge axis at points 3 (a), 4 (b), and 5 (c).

    Let us estimate the size of the CPD area for the conditions of the discharge under consideration.Using the expression [24]

    we can obtain the CPD lengthdk≈ 1.5 × 10-2cm.The valueofdkis compared to the mean free path of electrons relative to elastic collisionsλ= 1/(N×σ) ≈ 3 × 10-2cm, whereN=3.35 ×1016×pTorr·cm-3,σ≈ 2 × 10-16cm2.Consequently,electrons emitted by the cathode pass the CPD area without collisions acquiring energy ofε~650 eV(figure 2(d)).By this time, as noted above, the cathode layer has completely formed in the cathode cavity, while electrons accelerated in the CPD area, among other factors, form the EEDF at point 5.

    4.Conclusion

    Therefore, the combined use of the two packages COMSOL Multiphysics and LoKI-B provides a tool to simulate the development of a non-uniform unsteady discharge for studying the spatio-temporal evolution of the EEDF.The calculations indicate that the discharge development starts with the formation of an ionization front at the anode surface.The ionization front, propagating from the anode to the cathode at 3 × 107cm·s-1, covers the discharge gap while penetrating the cathode cavity.In the cavity,the ionization front splits into two parts, propagating along its lateral surfaces to reach the bottom.Next, a back ionization front is formed at the cavity bottom while filling the cavity with plasma,which leads to the formation of a plasma column in the cavity and the gap.The EEDF varies significantly at different points on the axis of the plasma column.In the interelectrode gap and at the cathode inlet, the EEDF is formed by plasma electrons and electrons accelerated at the ionization front.In the cathode cavity,electrons are accelerated in the CPD area, which enriches the high-energy EEDF part and makes a significant contribution to the EEDF formation.In conclusion,it should be noted that the issue of calculating the EEDF in the cathode layers of the discharge requires additional studies [13-15].

    Acknowledgments

    This work was supported by the Russian Foundation for Basic Research (No.20-32-90150) and by State Assignment (No.FZNZ-2020-0002).

    ORCID iDs

    一级毛片我不卡| 久久ye,这里只有精品| 国产黄频视频在线观看| 多毛熟女@视频| 亚洲婷婷狠狠爱综合网| 午夜精品国产一区二区电影| av视频免费观看在线观看| 老司机影院毛片| av国产免费在线观看| 亚洲精品国产成人久久av| 欧美成人一区二区免费高清观看| 国产爽快片一区二区三区| 日韩成人伦理影院| 亚洲精品自拍成人| 国产高清国产精品国产三级 | 青春草亚洲视频在线观看| 中文字幕免费在线视频6| 久久毛片免费看一区二区三区| 女人久久www免费人成看片| 这个男人来自地球电影免费观看 | 亚洲欧美一区二区三区黑人 | 亚洲经典国产精华液单| 免费黄频网站在线观看国产| 亚洲精品国产av蜜桃| 国产v大片淫在线免费观看| 亚洲精品国产av蜜桃| 亚洲精品456在线播放app| 国语对白做爰xxxⅹ性视频网站| 日韩成人av中文字幕在线观看| 久久 成人 亚洲| 美女内射精品一级片tv| 在线 av 中文字幕| 国产乱人偷精品视频| 国产欧美亚洲国产| 亚洲怡红院男人天堂| 亚洲,一卡二卡三卡| 妹子高潮喷水视频| 国产一区二区三区综合在线观看 | 亚洲精品456在线播放app| 亚洲国产精品999| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| 美女cb高潮喷水在线观看| 亚洲国产精品国产精品| 性高湖久久久久久久久免费观看| 精品久久久久久电影网| 夜夜骑夜夜射夜夜干| 又爽又黄a免费视频| 欧美日本视频| 国产亚洲5aaaaa淫片| 免费av中文字幕在线| 亚洲av免费高清在线观看| 欧美极品一区二区三区四区| 大陆偷拍与自拍| 成人国产麻豆网| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 国产精品.久久久| 久久精品国产自在天天线| 久久青草综合色| 国产一级毛片在线| 在线精品无人区一区二区三 | 99久久人妻综合| 伦理电影大哥的女人| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 国产91av在线免费观看| 看十八女毛片水多多多| 我的女老师完整版在线观看| 亚洲国产最新在线播放| 国产成人a区在线观看| 日本-黄色视频高清免费观看| 国产精品一及| 激情五月婷婷亚洲| www.色视频.com| 国产av一区二区精品久久 | av专区在线播放| 99国产精品免费福利视频| 你懂的网址亚洲精品在线观看| 日产精品乱码卡一卡2卡三| 少妇人妻 视频| 中文精品一卡2卡3卡4更新| 国产精品女同一区二区软件| 最近中文字幕高清免费大全6| 我要看黄色一级片免费的| 青春草国产在线视频| 亚洲av在线观看美女高潮| 99热这里只有是精品50| 黄色日韩在线| 成人国产av品久久久| 亚洲怡红院男人天堂| 一区二区三区免费毛片| 日本欧美视频一区| 国产极品天堂在线| 久久国产亚洲av麻豆专区| 熟妇人妻不卡中文字幕| .国产精品久久| 少妇人妻久久综合中文| 亚洲国产色片| 中国美白少妇内射xxxbb| 亚洲欧美精品自产自拍| 亚洲成人av在线免费| 午夜激情福利司机影院| 国产精品熟女久久久久浪| 国产精品国产三级国产专区5o| 国产久久久一区二区三区| 午夜视频国产福利| 国产黄片美女视频| 午夜福利在线在线| 日韩大片免费观看网站| 丰满迷人的少妇在线观看| 毛片女人毛片| 亚洲精品国产av蜜桃| 亚洲精品一二三| 国产精品久久久久久久电影| 国产真实伦视频高清在线观看| 有码 亚洲区| 97精品久久久久久久久久精品| 尾随美女入室| 国产伦精品一区二区三区视频9| 欧美成人一区二区免费高清观看| 国产av一区二区精品久久 | 99九九线精品视频在线观看视频| 天堂俺去俺来也www色官网| 日韩成人伦理影院| 美女国产视频在线观看| 欧美xxxx性猛交bbbb| 中文资源天堂在线| 九九久久精品国产亚洲av麻豆| 国产精品久久久久成人av| 大又大粗又爽又黄少妇毛片口| 日韩一本色道免费dvd| 美女xxoo啪啪120秒动态图| 中文字幕制服av| 一个人看的www免费观看视频| 一本色道久久久久久精品综合| 下体分泌物呈黄色| 精品少妇黑人巨大在线播放| 99久久中文字幕三级久久日本| 中文乱码字字幕精品一区二区三区| 人妻 亚洲 视频| 一区二区三区精品91| 国产综合精华液| 久久99蜜桃精品久久| 午夜激情久久久久久久| 热re99久久精品国产66热6| 亚洲欧美日韩东京热| 日本wwww免费看| 色婷婷久久久亚洲欧美| 国产伦在线观看视频一区| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影小说 | 久热这里只有精品99| 国产亚洲5aaaaa淫片| 久久国产亚洲av麻豆专区| 亚洲国产毛片av蜜桃av| 久久国产乱子免费精品| 99久国产av精品国产电影| 午夜视频国产福利| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 九草在线视频观看| 2018国产大陆天天弄谢| 香蕉精品网在线| 国产高清不卡午夜福利| 成人影院久久| 99热这里只有精品一区| 大话2 男鬼变身卡| 久久青草综合色| tube8黄色片| 亚洲精品视频女| 久久99热这里只频精品6学生| 久久久久久久久久久丰满| 国产高潮美女av| 欧美性感艳星| 国产精品伦人一区二区| 在线观看免费视频网站a站| 久久99热这里只频精品6学生| 久久人人爽av亚洲精品天堂 | 久久久久久人妻| 99re6热这里在线精品视频| 国产极品天堂在线| 色哟哟·www| 亚洲av免费高清在线观看| 国产大屁股一区二区在线视频| 亚洲欧美日韩东京热| 蜜臀久久99精品久久宅男| 777米奇影视久久| 插阴视频在线观看视频| 超碰97精品在线观看| 亚洲av中文字字幕乱码综合| 成年美女黄网站色视频大全免费 | 亚洲欧美日韩无卡精品| 日本欧美国产在线视频| 黄色一级大片看看| 黑人猛操日本美女一级片| 狂野欧美激情性bbbbbb| 日韩 亚洲 欧美在线| 少妇被粗大猛烈的视频| 欧美少妇被猛烈插入视频| 亚洲国产色片| 欧美3d第一页| 一个人免费看片子| 在线播放无遮挡| 三级国产精品欧美在线观看| 国产黄频视频在线观看| 国内揄拍国产精品人妻在线| 精品久久久久久久久亚洲| xxx大片免费视频| 黄色怎么调成土黄色| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区| 亚洲人成网站在线观看播放| 免费播放大片免费观看视频在线观看| 国产成人aa在线观看| 大香蕉久久网| 精品午夜福利在线看| 建设人人有责人人尽责人人享有的 | 欧美最新免费一区二区三区| 欧美性感艳星| 午夜免费观看性视频| 成人国产麻豆网| 人妻少妇偷人精品九色| 国产黄片美女视频| 中国国产av一级| 中文字幕人妻熟人妻熟丝袜美| 午夜日本视频在线| 亚洲四区av| 日韩在线高清观看一区二区三区| 久久人人爽人人爽人人片va| 涩涩av久久男人的天堂| 一区二区三区精品91| 毛片女人毛片| .国产精品久久| 舔av片在线| 国产一区有黄有色的免费视频| 街头女战士在线观看网站| 99久国产av精品国产电影| 久久久久国产网址| 超碰av人人做人人爽久久| 少妇精品久久久久久久| 视频区图区小说| 亚洲精品第二区| 插逼视频在线观看| 啦啦啦视频在线资源免费观看| 欧美变态另类bdsm刘玥| 亚洲精品色激情综合| 欧美成人精品欧美一级黄| av在线蜜桃| 久久6这里有精品| av专区在线播放| 国产成人91sexporn| 秋霞在线观看毛片| 三级国产精品欧美在线观看| 春色校园在线视频观看| 大香蕉久久网| 天堂8中文在线网| 夜夜爽夜夜爽视频| 一本色道久久久久久精品综合| 香蕉精品网在线| 男女啪啪激烈高潮av片| 色婷婷久久久亚洲欧美| 日本免费在线观看一区| 天天躁日日操中文字幕| 国产精品久久久久久av不卡| 国产在线男女| 亚洲国产欧美在线一区| 最近最新中文字幕大全电影3| 午夜日本视频在线| 五月天丁香电影| 夫妻性生交免费视频一级片| av国产精品久久久久影院| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 日韩,欧美,国产一区二区三区| 一个人看的www免费观看视频| 狠狠精品人妻久久久久久综合| 黄色视频在线播放观看不卡| 国产乱来视频区| 大香蕉久久网| 大香蕉97超碰在线| 极品少妇高潮喷水抽搐| 亚洲精品aⅴ在线观看| 啦啦啦中文免费视频观看日本| 国产爽快片一区二区三区| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 一区二区三区免费毛片| av在线老鸭窝| 国产精品一区二区性色av| 国产精品一区二区在线不卡| 男人狂女人下面高潮的视频| 日日摸夜夜添夜夜添av毛片| 1000部很黄的大片| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 少妇人妻久久综合中文| 一区二区av电影网| 最近的中文字幕免费完整| 国产精品99久久久久久久久| 777米奇影视久久| 性色av一级| 亚洲色图av天堂| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 免费人妻精品一区二区三区视频| 插阴视频在线观看视频| 97超碰精品成人国产| 美女国产视频在线观看| 干丝袜人妻中文字幕| 91午夜精品亚洲一区二区三区| 大片免费播放器 马上看| 日韩在线高清观看一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产亚洲精品久久久com| 伊人久久精品亚洲午夜| 一级片'在线观看视频| 老熟女久久久| 欧美bdsm另类| 超碰97精品在线观看| 大话2 男鬼变身卡| 97热精品久久久久久| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 一级毛片aaaaaa免费看小| 色婷婷av一区二区三区视频| 18禁动态无遮挡网站| 亚洲精品视频女| 亚洲av免费高清在线观看| 国产黄片美女视频| 亚洲aⅴ乱码一区二区在线播放| 97超碰精品成人国产| 日本猛色少妇xxxxx猛交久久| av黄色大香蕉| 99久久精品热视频| 内地一区二区视频在线| 精品国产乱码久久久久久小说| 国产乱来视频区| 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 人体艺术视频欧美日本| videossex国产| 久久鲁丝午夜福利片| 激情 狠狠 欧美| 免费人成在线观看视频色| 高清日韩中文字幕在线| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 超碰97精品在线观看| 亚洲真实伦在线观看| 国产人妻一区二区三区在| 色网站视频免费| 精品少妇久久久久久888优播| 18+在线观看网站| 日韩av免费高清视频| 老师上课跳d突然被开到最大视频| 26uuu在线亚洲综合色| 成年免费大片在线观看| 国产亚洲5aaaaa淫片| 亚洲欧美一区二区三区国产| 午夜福利网站1000一区二区三区| 精品久久久久久久末码| 国产精品一区二区在线观看99| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看| av一本久久久久| 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 又爽又黄a免费视频| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 精品久久久久久电影网| 久久久久久久久久久丰满| 26uuu在线亚洲综合色| 亚洲av不卡在线观看| 亚洲美女黄色视频免费看| 少妇熟女欧美另类| 国产极品天堂在线| 99热这里只有是精品在线观看| 中文字幕av成人在线电影| 熟女人妻精品中文字幕| freevideosex欧美| 日韩一区二区三区影片| 深夜a级毛片| 美女高潮的动态| 亚洲精品乱码久久久久久按摩| 国产人妻一区二区三区在| 成人毛片a级毛片在线播放| 夜夜骑夜夜射夜夜干| 成人亚洲欧美一区二区av| 国产精品久久久久久av不卡| av福利片在线观看| 亚洲国产最新在线播放| 国产熟女欧美一区二区| 2021少妇久久久久久久久久久| 亚洲成色77777| 六月丁香七月| 国产av精品麻豆| 久久午夜福利片| 亚洲av二区三区四区| 国产免费视频播放在线视频| 亚洲经典国产精华液单| 六月丁香七月| 久久人妻熟女aⅴ| 99久国产av精品国产电影| 免费观看av网站的网址| 2021少妇久久久久久久久久久| 寂寞人妻少妇视频99o| 亚洲四区av| 亚洲欧美一区二区三区黑人 | 国产 一区 欧美 日韩| 少妇人妻久久综合中文| 国产日韩欧美在线精品| 2018国产大陆天天弄谢| 午夜免费观看性视频| 亚洲欧洲日产国产| 欧美高清成人免费视频www| 狂野欧美激情性xxxx在线观看| 人人妻人人看人人澡| 一级二级三级毛片免费看| 91狼人影院| 视频中文字幕在线观看| 国产在线免费精品| 久久午夜福利片| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 身体一侧抽搐| 亚洲人与动物交配视频| 欧美精品一区二区免费开放| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 成人综合一区亚洲| 国国产精品蜜臀av免费| 在线播放无遮挡| 欧美一区二区亚洲| 欧美激情极品国产一区二区三区 | 身体一侧抽搐| 久久人人爽人人片av| 亚洲精品,欧美精品| 国产69精品久久久久777片| 精品人妻视频免费看| 亚洲精品国产av蜜桃| 成人国产麻豆网| 国产乱人偷精品视频| 中国三级夫妇交换| 精品视频人人做人人爽| 噜噜噜噜噜久久久久久91| 亚洲无线观看免费| 啦啦啦中文免费视频观看日本| 国产在线免费精品| 我要看黄色一级片免费的| av在线蜜桃| 最近2019中文字幕mv第一页| 免费人妻精品一区二区三区视频| 国产91av在线免费观看| 一本色道久久久久久精品综合| 如何舔出高潮| 日产精品乱码卡一卡2卡三| 欧美丝袜亚洲另类| 久久热精品热| 色婷婷久久久亚洲欧美| 午夜福利在线观看免费完整高清在| 色婷婷久久久亚洲欧美| 亚洲精品,欧美精品| 亚洲精品国产av蜜桃| 最近最新中文字幕免费大全7| 妹子高潮喷水视频| 简卡轻食公司| 黄色一级大片看看| 一边亲一边摸免费视频| 免费看日本二区| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 免费黄频网站在线观看国产| 街头女战士在线观看网站| 99久久精品国产国产毛片| 岛国毛片在线播放| 久久久久人妻精品一区果冻| 欧美3d第一页| 久久久久久九九精品二区国产| 国产免费一区二区三区四区乱码| 99re6热这里在线精品视频| 少妇的逼好多水| 国产大屁股一区二区在线视频| 一区在线观看完整版| 久久精品夜色国产| 男女免费视频国产| 国语对白做爰xxxⅹ性视频网站| 日本黄色日本黄色录像| 久久久精品94久久精品| 99热这里只有是精品50| 日韩伦理黄色片| 久久久久久久大尺度免费视频| 亚洲综合色惰| 人妻 亚洲 视频| 在线观看美女被高潮喷水网站| 亚洲欧美日韩东京热| 精品久久久精品久久久| 男女啪啪激烈高潮av片| 欧美日韩亚洲高清精品| 亚州av有码| 国产精品国产av在线观看| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区黑人 | av在线app专区| 欧美另类一区| 国产成人精品福利久久| 婷婷色综合www| 免费高清在线观看视频在线观看| 欧美成人午夜免费资源| 国产精品欧美亚洲77777| 亚洲在久久综合| 日韩欧美精品免费久久| 91午夜精品亚洲一区二区三区| 纯流量卡能插随身wifi吗| 七月丁香在线播放| 少妇的逼水好多| 久久97久久精品| 久久人妻熟女aⅴ| 国产精品一二三区在线看| 一区二区av电影网| 少妇的逼水好多| 毛片一级片免费看久久久久| 日韩欧美 国产精品| 国产精品伦人一区二区| 一本色道久久久久久精品综合| 欧美日本视频| 国模一区二区三区四区视频| 三级国产精品欧美在线观看| 婷婷色av中文字幕| 18禁裸乳无遮挡动漫免费视频| 尾随美女入室| 美女内射精品一级片tv| 中文字幕av成人在线电影| 蜜桃久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 欧美人与善性xxx| 2021少妇久久久久久久久久久| 亚洲美女黄色视频免费看| 国产高清三级在线| 偷拍熟女少妇极品色| 欧美日韩一区二区视频在线观看视频在线| 韩国高清视频一区二区三区| 一级毛片 在线播放| 欧美高清成人免费视频www| 97热精品久久久久久| 国产极品天堂在线| 久久久a久久爽久久v久久| 久久久久人妻精品一区果冻| av天堂中文字幕网| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 在线播放无遮挡| 亚洲欧美清纯卡通| 国产黄频视频在线观看| 最近最新中文字幕大全电影3| 国产精品女同一区二区软件| 精品国产露脸久久av麻豆| 国产精品一区www在线观看| 精品国产乱码久久久久久小说| 日韩一区二区视频免费看| 毛片一级片免费看久久久久| 久久久午夜欧美精品| 伊人久久国产一区二区| 美女xxoo啪啪120秒动态图| 国产有黄有色有爽视频| 一级黄片播放器| 日本vs欧美在线观看视频 | 亚洲欧美精品自产自拍| 干丝袜人妻中文字幕| 国产亚洲91精品色在线| 女人久久www免费人成看片| 五月天丁香电影| av免费观看日本| 久久这里有精品视频免费| 欧美xxxx黑人xx丫x性爽| freevideosex欧美| videos熟女内射| 日本av手机在线免费观看| 青春草视频在线免费观看| 一区二区三区四区激情视频| 国产爱豆传媒在线观看| 九九爱精品视频在线观看| 国产精品一区二区在线不卡| 九九在线视频观看精品| 妹子高潮喷水视频| 九色成人免费人妻av| 内射极品少妇av片p| 国产精品一区www在线观看| 精品一区二区免费观看| 久久久久久久久久成人| 婷婷色综合www| 日韩中字成人| 日韩欧美一区视频在线观看 | 在现免费观看毛片| 又大又黄又爽视频免费| 欧美老熟妇乱子伦牲交| 老司机影院成人| 久久精品久久久久久噜噜老黄| 蜜桃在线观看..| 国产精品嫩草影院av在线观看| 看非洲黑人一级黄片| 成人午夜精彩视频在线观看| 久久午夜福利片| av播播在线观看一区| 免费少妇av软件| 大片免费播放器 马上看| 国产午夜精品久久久久久一区二区三区| 亚洲三级黄色毛片| 免费观看无遮挡的男女| 2022亚洲国产成人精品| 极品少妇高潮喷水抽搐| 91在线精品国自产拍蜜月| 人妻夜夜爽99麻豆av|