• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polyaniline-supported tungsten-catalyzed oxidative deoximation reaction with high catalyst turnover number

    2023-03-14 06:52:30WenLiFengWangYaochengShiLeiYu
    Chinese Chemical Letters 2023年1期

    Wen Li,Feng Wang,Yaocheng Shi,Lei Yu

    School of Chemistry and Chemical Engineering,Yangzhou University, Yangzhou 225002,China

    Keywords:Deoximation Carbonyl Tungsten Free radical reaction Oxidation

    ABSTRACT Polyaniline-supported tungsten (W@PANI) was easily prepared by immersing polyaniline (PANI) in the aqueous solution of Na2WO4.It was found to be an efficient catalyst for oxidative deoximation reaction,the very important transformation for pharmaceutical industry.Besides the green features,the method employed very few of catalytic tungsten (0.048 mol% vs.oxime substrates),resulting in the high turnover numbers (TONs) of the catalyst (ca.103 mol/mol) and the low metal residues in product (<0.1 ppm).The reaction is applicable for a variety of substrates,including those containing heterocycles,which are key intermediates in medicine synthesis.It has also been successfully magnified to kilogram scale production to afford the desired carbonyl products smoothly.

    Deoximation reaction is an important transformation for pharmaceutical industry [1,2].Since oximes are usually stable crystals with relatively high melting points,the oximation-deoximation processes can be employed in protection,characterization and purification of the carbonyl-containing compounds.For example,the strategy has been successfully applied in the total synthesis of erythronolide A,a macro-cyclic antibiotic molecule bearing an endocyclic carbonyl [3].It is also applied to purify watermelon ketone in industrial production [4].Deoximation reaction can be employed to synthesize carbonyl-containing products from the non-carbonyl starting materials,and the conversion of limonene to carvone is a typical example [5–7].The reaction can be performed by using acidic promoters,but the employed stoichiometric/excess additives [8] or irritant reagents [9–11] may be hazardous to the environments.Catalytic oxidative deoximation reaction may afford alternatives occurring under neutral conditions [11–18].During the past five years,we have developed a series of catalytic oxidative deoximation reactions by using H2O2or molecular oxygen as the clean oxidants [19–25].In these reactions,organoselenium [19,20,25] or organotellurium [21,22] compounds,diaryl ketones [23] or free radical initiators such as azodiisobutyronitrile(AIBN) [24] were employed as the catalyst,while FeCl3[20] orNhydroxyphthalimide [25] were used as the additives to promote the catalyst activity.However,despite the high cost of organoselenium [19,20,25] or organotellurium [21,22] compounds,the employed catalyst dosage was high in these reactions [19–22,24,25]resulting in the low catalyst turnover numbers (TONs<100) unfavorable for industrial grade production.The visible light-driven autocatalytic oxidative deoximation reactions might not require additional catalyst,but the limitations of light absorption properties of substrates restricted its application scope of substrates [23].Thus,developing novel catalysts for the reactions that can run with high TONs and wide substrate scope is essential from the practical application viewpoint.

    On the other hand,polyanilines (PANIs) have been found to be good supports for nano-metal catalysts [26].Although anilines may be toxic,their polymers are less toxic and safe to the environments [27,28].Since the aniline monomers are easily available and cheap chemicals,it is acceptable to use PANIs as the industrial catalyst supports from an economic point of view.In comparison with the traditional inorganic supports,PANIs are versatile materials and their electrical properties can be adjusted by introducing a series of functional groups into the aromatic rings of aniline monomers,which may exert significant influences on the catalytic activities of the prepared nano-metal catalysts [29,30].In our cases,we have successfully developed the organoseleniumcatalyzed green oxidative polymerization of anilines to prepare PANIs under mild and green conditions [31].The PANIs-supported nano-metal catalysts (M@PANIs) were then developed and have been successfully applied in Suzuki–Miyaura [32],Heck [33],Sonogashira [34],Buchwald-Hartwig [35] and Ullmann [29] coupling reactions.Notably,M@PANIs were found to be highly efficient and could catalyze the coupling reactions with very high catalyst turnover numbers (TONs) [29–35].Inspired by these findings,we began our project on M@PANIs-catalyzed oxidative deoximation reactions,which were different to the reported coupling reactions and were more challenging objectives.Tungsten-mediated deoximation has already been achieved [36].Although the method requiring stoichiometric/excess tungsten salt and zinc reductant is not environment friendly,it inspires us to design the W@PANI catalyst [37] and employ it in the oxidative deoximation reactions.Herein,we wish to report our findings.

    PANI could be synthesizedviathe oxidative polymerization reaction of aniline by using H2O2as the oxidant [31].It was then immersed in aqueous Na2WO4to upload tungstenviathe coordination of the involved nitrogen with the metal.The prepared W@PANI was employed as catalyst for the oxidative deoximation reaction of (E)-1-(3-chlorophenyl)ethan-1-one oxime (1a).The reaction solvent was initially screened and the results were summarized in Table S1 (Supporting information).Heating the reaction mixtures in EtOH at 80 °C for 24 h,the desired (E)-1-(3-chlorophenyl)ethan-1-one (2a) could be obtained in only 42% yield(Table S1,entry 1).Ester solvents,such as EtOAc,dimethyl carbonate (DMC) and diethyl carbonate (DEC) were tested,but the deoximation reaction could hardly occur (Table S1,entries 2–4).The reactions in 1,4-dioxane orN,N-dimethylformamide (DMF) led to 2a in moderate yields (Table S1,entries 5 and 6).MeCN as a high polar organic solvent could well dissolve both of the substrate and H2O2oxidant.It was screened out to be a favorable solvent,affording 2a in 72% yield under the mild conditions (Table S1,entry 7).

    The catalyst and H2O2dosages of the reaction were then optimizedviaa series of control reactions performed on the basis of the conditions described in Table S1,entry 7.It was found that,for the reaction of 0.5 mol of 1a,using 20 mg of W@PANI catalyst should be preferable,affording 2a in 77% yield (Fig.S1a in Supporting information).Reducing or enhancing the employed catalyst amount both resulted in the incomplete conversion of the substrate.In the cases using high loading catalyst,the catalytic metal might led to the H2O2decomposition,and this has been proved by the control experiment in which H2O2was added in batches.For example,in the reaction using 40 mg of W@PANI for 0.5 mmol of 1a,the product 2a was obtained in only 40% yield.However,if H2O2was introduced in four batches every 6 h,the yield of 2a could be significantly enhanced to 73%.The same technique did not work for the reaction using 20 mg of W@PANI for 0.5 mmol of 1a,for which the yield of 2a decreased to 75% contrarily when H2O2was introduced in four batches.The results in Fig.S1b (Supporting information) clearly indicated that H2O2was an essential oxidant for the reaction.The yield of 2a rose along with the increasing H2O2dosage and reached its peak when 100 mol% of H2O2vs.1a was employed,i.e.the theoretically required molar amount.Using excess H2O2resulted in the decreased 2a yield due to the generation of a series of over-oxidized by-products such as the ester and the carboxylic acid.

    The reaction kinetics was then studiedviaa series of control experiments within different reaction times from 1 h to 24 h.The yields of 2a as well as the unconverted 1a recovery ratio data were recorded and illustrated by Fig.S2 (Supporting information).The yield of 2a increased sharply to 69% within the first 6 h,and then gradually increased to 77% after the 24 h reaction.Simultaneously,the unreacted 1a ratio decreased along with the increasing 2a yield.It was supposed that the exhaustion of H2O2might result in the significantly decreased reaction speed at 6 h,after which the oxygen in air could participate the reaction as the oxidant.This hypothesis could be verified by control experiments described and discussed in the mechanism study sectionvide infra.

    The application scope of the reaction was examined by treating a series of oxime substrates 1 under the optimized reaction conditions (Table 1).Since ICP-MS analysis has indicated that the tungsten content in W@PANI was 0.22 wt%,it can be calculated that the reaction employed only 0.048 mol% of tungsten.Similarly,the catalyst turnover number (TON) of the reaction of 1a could be calculated to be 1.6×103accordingly (Table 1,entry 1),which was obviously higher than that of the reported works [19–22,24,25].Other electron-deficient or -sufficient methyl ketoximes such as 1b–1h were all fit for the reaction,affording the corresponding ketones 2b–2h in 62%–84% yields with 103grade TONs (Table 1,entries 2–8).It was notable that the ortho substituent of the substrate did not affect the reaction (Table 1,entries 3 and 5).The reaction of 0.5 mmol of 1-phenylethan-1-one oxime (1i) afforded 2i in 78% yield,and the product yield was enhanced to 89% in the magnified reaction using 200 mmol of 1i,in which the produced 2i was isolated by distillation other than chromatography separation to reduce the loss of weight caused by its volatility (Table 1,entry 9).The distillation residue containing catalytic species could be reused by adding fresh reactant and oxidant and heating,and it gave 2i in 86% yield (Table 1,entry 9).In comparison with 1i,the reaction of 1-phenylbutan-1-one oxime (1j) afforded 2j in decreased yield,indicating that the prolonged aliphatic chain might hinder the reaction due to its elevated steric hindrance (Table 1,entry 10).However,the reactivity of substrate 1k bearing bulky naphthyl was hardly influenced,and its reaction led to 2k in 84%yield (Table 1,entry 11).

    Diaryl ketoximes,in regardless of their substituent electroproperties,were also favorable substrates,and their reactions occurred smoothly to produce the related ketones in moderate to good yields (Table 1,entries 12–18).Although the reactions were performed under oxidative conditions,it could still tolerate the reductive substituents such as aniline and phenol in substrates in certain degree (Table 1,entries 15 and 16).The W@PANI-catalyzed oxidative deoximation reaction could be successfully applied in the reactions of heterocycle-containing substrates,which might widely exist in pharmaceutical intermediates.In the reaction of(Z)-phenyl(thiophen-2-yl)methanone oxime (1s),the catalyst was not poisoned by the containing sulfur in substrate and it could afford the desired product 2s in 64% yield (Table 1,entry 19).The reaction of 0.5 mmol of (Z)-1-(furan-2-yl)ethan-1-one oxime (1t)led to 2t in 40% yield.Like the case of 1i,the reaction could be magnified to the scale using 200 mmol of 1t to produce 2t in 53%yield (Table 1,entry 20).Cyclic ketoximes such as 1u and 1v were also tested,and their reactions occurred smoothly to produce 2u and 2v in 81% and 77% yields respectively (Table 1,entries 21 and 22).The reaction of benzaldoxime 1w led to benzaldehyde(2w) in 42% yield,and the deeper oxidation and dehydration reaction by-products such as benzoic acid and benzonitrile were also obtained in 18% and 37% yields respectively (Table 1,entry 23).The catalyst has been successfully employed in our drug development project.For example,catalyzed by W@PANI,the oxidative deoximation of Cefixime derivative ethyl 2-(2-aminothiazol-4-yl)-2-(hydroxyimino)acetate (1x) could produce the related 2x in 71%yield (Table 1,entry 24).Notably,the tungsten residues in products were very low,making this protocol favorable for practical applications in pharmaceutical industry.

    The mechanism of this W@PANI-catalyzed oxidative deoximation is our next concern and control experiments were conducted to get information for mechanism study (Table 2).The reaction could not occur without oxidant (Table 2,entry 1),and this result verified that it was an oxidative deoximation reaction other than the acid-promoted conversion.Without H2O2,heating 1a and the W@PANI in open air or O2could also produce 2a in 8% or 17% yield(Table 2,entries 2 and 3).Moreover,the product yield decreased when performing the reaction in N2atmosphere protection (Table 2,entries 5vs.4).Comparison of the above results indicated that the oxygen in air might also participate the reaction,in accordance with kinetic study results shown in Fig.S2 (Supporting information).Using Na2WO4as catalyst instead of W@PANI resulted in decreased product yield (Table 2,entries 6vs.4),showing that PANI support played significant roles in the catalytic system for dispersing the nano metal particles so that the catalytic sites could contact with the reactant sufficiently.Since the reaction could be obviously retarded by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or hydroquinone (HQ),the free radical scavengers,it was supposed that the processes might occurviaa free radical reaction route(Table 2,entries 7–10) [38].The reaction without any catalyst led to 2a in only 7% yield,showing that W@PANI catalyst was essential for the transformation (Table 2,entry 11).Moreover,it was found that althoughca.42% of W@PANI dissolved in MeCN,the leaked ratio of tungsten in solution during the process was very low(Table S2 in Supporting information),attesting that the reaction was catalyzed by PANI-supported tungsten,other than the leaked metal salt species.The strong coordination of nitrogen in PANI with the metal could well restrain the leaking during the reaction process.

    Table 1 Substrate extension for the W@PANI-catalyzed oxidative deoximation reactiona.

    Thus,on the basis of the experimental results as well as reference reports,a plausible mechanism of the reaction could be supposed (Scheme 1).First,the thermo-promoted homogeneous cleavage of the peroxy bond in H2O2might lead to hydroxyl radicals[39],which reacted with the high valent tungstate species 3 in W@PANIviathe single electron transfer reaction to produce the active tungstate radicals 4 [40].Like the organotellurium-catalyzed oxidative deoximation reactions that also occurredviafree radical mechanism,the tungstate radicals 4 could react with oximes 1 to produce the intermediate 5,which was unstable and could soon decomposed,affording the tungsten species 6,products 2,and HNO [21,22].Oxidation of HNO led to nitrate,which was stable and could be detected by X-ray photoelectron spectroscopy(XPS) analysis [21].Oxidation of 6 could regenerate the catalytic species 4 and restart the catalysis circle [41].

    In conclusion,W@PANI-catalyzed oxidative deoximation reaction could occur under mild and green conditions.It was of broadsubstrate scope involving the heterocycle-containing substrates,which might be useful pharmaceutical intermediates.In comparison with the reported catalytic oxidative deoximation reactions,the catalyst TON of the reaction was very high and this advantage could reduce the catalyst cost and metal residue in products.The work also demonstrates that the oxygen transfer features of metal nanoparticles anchored on PANI could be utilized in the green oxidation reactions with high efficiency [42].Continuous investigations are ongoing in our laboratory to apply the related technique in pharmaceutical intermediate production.

    Table 2 Control experiments.a

    Scheme 1.Possible mechanisms of the reaction.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We thank Jiangsu Provincial Six Talent Peaks Project (No.XCL-090),Natural Science Foundation of Jiangsu Province (No.BK20181449),and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.05.019.

    一级毛片电影观看| 久久人人爽av亚洲精品天堂 | 国产成人freesex在线| 成年版毛片免费区| 九九在线视频观看精品| 亚洲精华国产精华液的使用体验| 国产欧美日韩精品一区二区| 亚洲丝袜综合中文字幕| 91精品一卡2卡3卡4卡| 欧美成人午夜免费资源| 亚洲精品一区蜜桃| 日韩成人伦理影院| 国产伦在线观看视频一区| 人妻 亚洲 视频| 精品视频人人做人人爽| 亚洲最大成人中文| 国产欧美亚洲国产| 久久久午夜欧美精品| 国产av不卡久久| 久久午夜福利片| 九九爱精品视频在线观看| 在线精品无人区一区二区三 | 永久免费av网站大全| 高清日韩中文字幕在线| 精品一区二区三区视频在线| 精品视频人人做人人爽| 国产午夜福利久久久久久| 成人黄色视频免费在线看| 夫妻午夜视频| 国产在视频线精品| 成人二区视频| 国产欧美日韩一区二区三区在线 | 内地一区二区视频在线| 嘟嘟电影网在线观看| 伊人久久国产一区二区| 欧美一级a爱片免费观看看| 亚洲在久久综合| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 国精品久久久久久国模美| a级毛色黄片| 亚洲人成网站在线观看播放| 成人毛片a级毛片在线播放| 亚洲精品乱久久久久久| 乱系列少妇在线播放| 国产探花在线观看一区二区| 人体艺术视频欧美日本| 一级毛片 在线播放| 97在线视频观看| 国产成人免费无遮挡视频| 一级二级三级毛片免费看| 校园人妻丝袜中文字幕| 97热精品久久久久久| 久久国内精品自在自线图片| 国产淫片久久久久久久久| 免费黄频网站在线观看国产| 免费观看av网站的网址| 久久久久久国产a免费观看| 一二三四中文在线观看免费高清| 久久久久九九精品影院| 免费黄色在线免费观看| 日韩一区二区三区影片| 久久精品久久久久久久性| 国产精品蜜桃在线观看| 久久精品国产亚洲av天美| 欧美一级a爱片免费观看看| 乱码一卡2卡4卡精品| 国产在视频线精品| 成人毛片a级毛片在线播放| 国产真实伦视频高清在线观看| 精品人妻偷拍中文字幕| 中文欧美无线码| 七月丁香在线播放| 丝袜美腿在线中文| 国产精品不卡视频一区二区| 久久精品国产鲁丝片午夜精品| 国产人妻一区二区三区在| 久久久久国产精品人妻一区二区| 亚洲精品日本国产第一区| 最近2019中文字幕mv第一页| 久久这里有精品视频免费| 天天一区二区日本电影三级| 下体分泌物呈黄色| 午夜免费鲁丝| 丝袜美腿在线中文| 日本一二三区视频观看| 久久午夜福利片| 国产精品嫩草影院av在线观看| 黄色怎么调成土黄色| 久久久精品94久久精品| 搡老乐熟女国产| 精品久久国产蜜桃| 色哟哟·www| 一级二级三级毛片免费看| 综合色丁香网| 性插视频无遮挡在线免费观看| 国产精品女同一区二区软件| 日本av手机在线免费观看| 免费大片18禁| 草草在线视频免费看| 日韩国内少妇激情av| av福利片在线观看| 九草在线视频观看| 伊人久久精品亚洲午夜| 成人亚洲欧美一区二区av| 久久久久久九九精品二区国产| 国产高潮美女av| 午夜日本视频在线| 99久久精品热视频| 日本色播在线视频| 亚洲av二区三区四区| 80岁老熟妇乱子伦牲交| 男人添女人高潮全过程视频| 国产一区有黄有色的免费视频| 直男gayav资源| 免费人成在线观看视频色| 国产亚洲av片在线观看秒播厂| 国语对白做爰xxxⅹ性视频网站| 爱豆传媒免费全集在线观看| 在线观看三级黄色| 大片电影免费在线观看免费| 色哟哟·www| 亚洲色图综合在线观看| 精品一区二区三区视频在线| 国产精品国产三级国产专区5o| 亚洲精品第二区| 婷婷色av中文字幕| 波野结衣二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲在久久综合| 高清欧美精品videossex| 亚洲精品国产av成人精品| 国产中年淑女户外野战色| 97在线人人人人妻| 国产精品一区二区在线观看99| 波野结衣二区三区在线| 国产有黄有色有爽视频| 久久久久久久久大av| 欧美成人a在线观看| 韩国高清视频一区二区三区| 大又大粗又爽又黄少妇毛片口| 赤兔流量卡办理| 国产精品久久久久久久电影| 一级毛片 在线播放| 97热精品久久久久久| 精品99又大又爽又粗少妇毛片| 青春草视频在线免费观看| 天堂中文最新版在线下载 | 国产成人91sexporn| 欧美激情在线99| 国产精品女同一区二区软件| 久久国内精品自在自线图片| 亚洲av在线观看美女高潮| 精品酒店卫生间| 又大又黄又爽视频免费| 99九九线精品视频在线观看视频| 精品久久久久久久久av| 一区二区三区免费毛片| 国产乱来视频区| 女的被弄到高潮叫床怎么办| 一级毛片aaaaaa免费看小| 三级经典国产精品| 日产精品乱码卡一卡2卡三| 精品久久国产蜜桃| 国产亚洲一区二区精品| 欧美xxⅹ黑人| 久久综合国产亚洲精品| 黄色欧美视频在线观看| 国产欧美日韩精品一区二区| 在线看a的网站| 亚洲最大成人av| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看| 亚洲精品一二三| 久久久久精品久久久久真实原创| 一本久久精品| 免费av观看视频| 黄片无遮挡物在线观看| 国产一区二区在线观看日韩| 欧美高清成人免费视频www| 国产一区有黄有色的免费视频| 亚洲av成人精品一区久久| 亚洲不卡免费看| 国产又色又爽无遮挡免| 三级男女做爰猛烈吃奶摸视频| 精品国产一区二区三区久久久樱花 | 亚洲欧美精品自产自拍| 高清视频免费观看一区二区| 国产老妇女一区| 在线观看一区二区三区| 免费观看性生交大片5| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 国产永久视频网站| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩在线高清观看一区二区三区| 蜜桃亚洲精品一区二区三区| 内地一区二区视频在线| 成人亚洲精品av一区二区| 内地一区二区视频在线| 一个人看视频在线观看www免费| 一个人看的www免费观看视频| 亚洲av欧美aⅴ国产| 大码成人一级视频| 久久97久久精品| 国产一区二区亚洲精品在线观看| 国产永久视频网站| 国产伦精品一区二区三区视频9| 久久久久久久精品精品| 韩国高清视频一区二区三区| 国产成人一区二区在线| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 最近中文字幕高清免费大全6| 亚洲精品国产av成人精品| 亚洲不卡免费看| 夫妻性生交免费视频一级片| 亚洲熟女精品中文字幕| 国产成人精品福利久久| 岛国毛片在线播放| 国产精品国产三级专区第一集| 亚洲欧美成人综合另类久久久| 最近中文字幕高清免费大全6| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看| 一区二区av电影网| 久久99热这里只频精品6学生| av国产久精品久网站免费入址| 青春草国产在线视频| 久久久欧美国产精品| 久久久亚洲精品成人影院| 欧美成人a在线观看| 免费看不卡的av| 色吧在线观看| 亚洲成人一二三区av| 插逼视频在线观看| 中文精品一卡2卡3卡4更新| 久久久久九九精品影院| 国产精品伦人一区二区| 日韩欧美精品免费久久| 久久精品国产a三级三级三级| 波多野结衣巨乳人妻| 可以在线观看毛片的网站| 中文天堂在线官网| 久久精品久久精品一区二区三区| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| 日韩成人av中文字幕在线观看| 蜜桃久久精品国产亚洲av| 免费观看在线日韩| 国产高清有码在线观看视频| 成人美女网站在线观看视频| 日韩中字成人| 少妇 在线观看| 国产有黄有色有爽视频| 大片免费播放器 马上看| 欧美日本视频| www.色视频.com| 久久久久性生活片| 人人妻人人澡人人爽人人夜夜| 丰满人妻一区二区三区视频av| 人妻少妇偷人精品九色| 三级经典国产精品| 超碰av人人做人人爽久久| 亚洲三级黄色毛片| 爱豆传媒免费全集在线观看| 久久久久精品性色| 免费人成在线观看视频色| 国产亚洲5aaaaa淫片| 高清欧美精品videossex| 免费大片黄手机在线观看| 91久久精品国产一区二区三区| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 另类亚洲欧美激情| 亚洲欧洲日产国产| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 久久久色成人| 少妇高潮的动态图| 超碰av人人做人人爽久久| av专区在线播放| 我的女老师完整版在线观看| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 国产成人aa在线观看| 成人亚洲精品一区在线观看 | 国产精品国产三级专区第一集| 亚洲精品乱久久久久久| 亚洲成人一二三区av| 日韩一本色道免费dvd| 丰满少妇做爰视频| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 国产高清三级在线| 又大又黄又爽视频免费| 少妇人妻精品综合一区二区| 制服丝袜香蕉在线| 亚洲va在线va天堂va国产| 国产精品.久久久| 免费大片18禁| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久| 成年人午夜在线观看视频| h日本视频在线播放| 国产一区二区亚洲精品在线观看| 又黄又爽又刺激的免费视频.| 午夜福利在线在线| 一区二区三区乱码不卡18| 黄色配什么色好看| 亚洲色图综合在线观看| 黄色一级大片看看| 欧美zozozo另类| 日韩电影二区| 久久人人爽人人爽人人片va| 国产成人精品一,二区| 亚洲美女视频黄频| 国产精品久久久久久精品古装| 国产免费福利视频在线观看| 男插女下体视频免费在线播放| 成人高潮视频无遮挡免费网站| 日韩av免费高清视频| 最近最新中文字幕大全电影3| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 人人妻人人爽人人添夜夜欢视频 | 精品熟女少妇av免费看| 日日摸夜夜添夜夜爱| 亚洲三级黄色毛片| 日韩伦理黄色片| 免费看a级黄色片| 成人免费观看视频高清| 国产成人精品婷婷| 国产中年淑女户外野战色| 精品久久久久久久人妻蜜臀av| 免费观看av网站的网址| av在线天堂中文字幕| 亚洲精品国产av蜜桃| 亚洲国产高清在线一区二区三| 我的女老师完整版在线观看| 狂野欧美激情性bbbbbb| 亚洲图色成人| 亚洲欧美精品专区久久| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| 欧美日韩视频精品一区| 国产黄色视频一区二区在线观看| 美女被艹到高潮喷水动态| 熟女电影av网| 亚洲av电影在线观看一区二区三区 | 午夜精品国产一区二区电影 | 国产精品成人在线| 精品久久久久久久末码| 国产日韩欧美在线精品| av网站免费在线观看视频| 一区二区三区免费毛片| av专区在线播放| 日日撸夜夜添| 欧美3d第一页| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 91久久精品国产一区二区成人| 国产淫语在线视频| 精品熟女少妇av免费看| 在线观看国产h片| 精品亚洲乱码少妇综合久久| 2021天堂中文幕一二区在线观| 成人漫画全彩无遮挡| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 国产av不卡久久| 少妇 在线观看| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 男女无遮挡免费网站观看| 美女国产视频在线观看| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 国产亚洲最大av| 亚洲av成人精品一区久久| 在线观看av片永久免费下载| 精品久久久精品久久久| 97超碰精品成人国产| 国产男人的电影天堂91| 国产精品蜜桃在线观看| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 国产av不卡久久| 天堂俺去俺来也www色官网| av在线蜜桃| 日本爱情动作片www.在线观看| 亚洲国产精品国产精品| 久久国产乱子免费精品| 国产美女午夜福利| 久久女婷五月综合色啪小说 | 久久99热6这里只有精品| av天堂中文字幕网| 我的女老师完整版在线观看| 天堂俺去俺来也www色官网| 国产熟女欧美一区二区| 啦啦啦中文免费视频观看日本| 欧美成人午夜免费资源| 男女啪啪激烈高潮av片| 国产免费一区二区三区四区乱码| av在线老鸭窝| 亚洲国产av新网站| 一级爰片在线观看| 有码 亚洲区| 小蜜桃在线观看免费完整版高清| 一级a做视频免费观看| 日韩欧美一区视频在线观看 | 国产黄色免费在线视频| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| 涩涩av久久男人的天堂| 精品久久久久久久久av| 高清视频免费观看一区二区| 国产免费视频播放在线视频| 精品国产露脸久久av麻豆| 久久久久九九精品影院| 久久久久久九九精品二区国产| 国产老妇伦熟女老妇高清| 久久热精品热| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄| 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| 2018国产大陆天天弄谢| 日韩电影二区| 一级毛片久久久久久久久女| h日本视频在线播放| 午夜福利视频精品| 亚洲欧美精品自产自拍| 99热全是精品| 日韩精品有码人妻一区| 亚洲av成人精品一区久久| 一本色道久久久久久精品综合| 亚洲人成网站高清观看| 水蜜桃什么品种好| 国产老妇女一区| 国产精品伦人一区二区| 日本wwww免费看| 日日啪夜夜爽| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品50| 精品久久国产蜜桃| 国产探花极品一区二区| 99久久精品一区二区三区| 精品国产三级普通话版| 欧美成人精品欧美一级黄| 精品一区二区免费观看| 成人综合一区亚洲| 青青草视频在线视频观看| 看十八女毛片水多多多| 老司机影院成人| 日韩一本色道免费dvd| 又爽又黄无遮挡网站| 国产精品成人在线| 亚洲国产精品国产精品| 国产成人精品婷婷| 另类亚洲欧美激情| 一二三四中文在线观看免费高清| 国产男女超爽视频在线观看| 亚洲欧美中文字幕日韩二区| 自拍偷自拍亚洲精品老妇| 中文字幕亚洲精品专区| 各种免费的搞黄视频| 欧美变态另类bdsm刘玥| 69av精品久久久久久| 色网站视频免费| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 国产乱来视频区| 日韩精品有码人妻一区| 免费少妇av软件| 精品久久国产蜜桃| 99re6热这里在线精品视频| 日韩亚洲欧美综合| 日本-黄色视频高清免费观看| 99久久精品国产国产毛片| 在线观看av片永久免费下载| 女的被弄到高潮叫床怎么办| 亚洲自偷自拍三级| 国产成人午夜福利电影在线观看| 亚洲av一区综合| 亚洲av二区三区四区| 国产淫片久久久久久久久| 91aial.com中文字幕在线观看| 国产精品久久久久久久久免| 我的女老师完整版在线观看| 人人妻人人看人人澡| 国产亚洲最大av| 看十八女毛片水多多多| 国产人妻一区二区三区在| 亚洲精品日韩av片在线观看| 国产大屁股一区二区在线视频| 大码成人一级视频| 尾随美女入室| 国产免费一区二区三区四区乱码| 人人妻人人澡人人爽人人夜夜| 99久久精品国产国产毛片| 日韩av在线免费看完整版不卡| 国产亚洲一区二区精品| 高清日韩中文字幕在线| 亚洲精华国产精华液的使用体验| 舔av片在线| 天天一区二区日本电影三级| 日韩欧美精品免费久久| 中文天堂在线官网| 亚洲av不卡在线观看| 亚洲av福利一区| 欧美激情国产日韩精品一区| 一区二区三区乱码不卡18| 婷婷色麻豆天堂久久| 熟妇人妻不卡中文字幕| 亚洲av免费在线观看| 久热这里只有精品99| 视频中文字幕在线观看| 成年女人看的毛片在线观看| 简卡轻食公司| 免费观看a级毛片全部| 亚洲av成人精品一区久久| 欧美另类一区| 女人久久www免费人成看片| av女优亚洲男人天堂| 哪个播放器可以免费观看大片| 欧美xxxx性猛交bbbb| av免费观看日本| 欧美一级a爱片免费观看看| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| 久久精品综合一区二区三区| 国产爽快片一区二区三区| 亚洲人成网站在线播| 22中文网久久字幕| 国产黄色视频一区二区在线观看| www.av在线官网国产| 久久精品久久精品一区二区三区| 我的老师免费观看完整版| 综合色av麻豆| 国产伦精品一区二区三区四那| 久久精品久久久久久噜噜老黄| 女人被狂操c到高潮| 国产亚洲5aaaaa淫片| 建设人人有责人人尽责人人享有的 | av国产久精品久网站免费入址| 日韩欧美 国产精品| 欧美丝袜亚洲另类| 日日撸夜夜添| 亚洲性久久影院| 毛片女人毛片| 午夜日本视频在线| 日本三级黄在线观看| 亚洲欧洲日产国产| 99久久九九国产精品国产免费| 亚洲欧美日韩卡通动漫| 免费观看av网站的网址| 成人鲁丝片一二三区免费| 搡女人真爽免费视频火全软件| 亚洲国产精品国产精品| 国产亚洲最大av| 夫妻性生交免费视频一级片| 麻豆乱淫一区二区| 亚洲av免费在线观看| 国产成人午夜福利电影在线观看| 久久人人爽av亚洲精品天堂 | 日韩制服骚丝袜av| 日韩在线高清观看一区二区三区| 毛片一级片免费看久久久久| 亚洲精品视频女| 国产 一区 欧美 日韩| 国产高清国产精品国产三级 | 国产精品秋霞免费鲁丝片| 91精品一卡2卡3卡4卡| 免费观看的影片在线观看| 国产亚洲5aaaaa淫片| 国产日韩欧美在线精品| 在线观看免费高清a一片| 午夜福利在线在线| 亚洲天堂国产精品一区在线| 99九九线精品视频在线观看视频| 国产熟女欧美一区二区| 国产v大片淫在线免费观看| 欧美精品国产亚洲| 一个人看的www免费观看视频| 亚洲人与动物交配视频| 亚洲怡红院男人天堂| 人人妻人人爽人人添夜夜欢视频 | 国产黄a三级三级三级人| 夫妻性生交免费视频一级片| 欧美丝袜亚洲另类| 高清av免费在线| 亚洲成人av在线免费| 欧美3d第一页| 少妇人妻久久综合中文| 国产色婷婷99| 久久影院123| 五月开心婷婷网| 日韩亚洲欧美综合| 少妇人妻 视频| 麻豆成人av视频| 国产成人aa在线观看| 国产伦精品一区二区三区视频9| 国产精品人妻久久久久久| 久久久色成人| 国产一区二区在线观看日韩| 免费av观看视频| 国产片特级美女逼逼视频| 国产精品久久久久久精品电影|