• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability

    2023-03-14 06:52:12XulinHuWimingZhoZhnZhngJinpingXiJinJinfiCoQingLiYjingYnChngongXiongKinnLi
    Chinese Chemical Letters 2023年1期

    Xulin Hu,Wiming Zho,Zhn Zhng,Jinping Xi,Jin H,Jinfi Co,Qing Li,Yjing Yn,Chngong Xiong,c,*,Kinn Li,*

    a Clinical Medical College & Affiliated Hospital of Chengdu University,Chengdu University,Chengdu 610081,China

    b Chengdu Institute of Organic Chemistry,Chinese Academy of Sciences,Chengdu 610041,China

    c University of Chinese Academy of Sciences,Beijing 100049,China

    d College of Medical,Henan University of Science and Technology,Luoyang 471023,China

    e School of Materials and Environmental Engineering,Chengdu Technological University,Chengdu 610031,China

    Keywords:Bone scaffolds Biodegradable polymers 3D printed Shape memory Tissue engineering

    ABSTRACT The biodegradable substitution materials for bone tissue engineering have been a research hotspot.As is known to all,the biodegradability,biocompatibility,mechanical properties and plasticity of the substitution materials are the important indicators for the application of implantation materials.In this article,we reported a novel binary substitution material by blending the poly(lactic-acid)-co-(trimethylenecarbonate) and poly(glycolic-acid)-co-(trimethylene-carbonate),which are both biodegradable polymers with the same segment of flexible trimethylene-carbonate in order to accelerate the degradation rate of poly(lactic-acid)-co-(trimethylene carbonate) substrate and improve its mechanical properties.Besides,we further fabricate the porous poly(lactic-acid)-co-(trimethylene-carbonate)/poly(glycolic-acid)-co-(trimethylene-carbonate) scaffolds with uniform microstructure by the 3D extrusion printing technology in a mild printing condition.The physicochemical properties of the poly(lactic-acid)-co-(trimethylenecarbonate)/poly(glycolic-acid)-co-(trimethylene-carbonate) and the 3D printing scaffolds were investigated by universal tensile dynamometer,fourier transform infrared reflection (FTIR),scanning electron microscope (SEM) and differential scanning calorimeter (DSC).Meanwhile,the degradability of the PLLATMC/GA-TMC was performed in vitro degradation assays.Compared with PLLA-TMC group,PLLA-TMC/GATMC groups maintained the decreasing Tg,higher degradation rate and initial mechanical performance.Furthermore,the PLLA-TMC/GA-TMC 3D printing scaffolds provided shape-memory ability at 37 °C.In summary,the PLLA-TMC/GA-TMC can be regarded as an alternative substitution material for bone tissue engineering.

    Bone defects beyond the self-healing size caused by trauma infection,osteomatosis and osteoporosis are major public safety problems that need to be solved urgently in clinical practice [1–4].Under the guidance of physicochemical properties of the bone and bone healing process,an ideal biodegradable substitution material should possess the similar mechanical properties with bone tissue and a degradation rate that matches the growth of bone tissue[5,6].Moreover,it should provide the similar structure and function with natural bone but with non-immunogenicity and nontoxic[6,7].Hence,the main challenge for designing an ideal biodegradable bone substitution material is to precise control of the degradation time,degradation behavior,mechanical properties and processability of the implantation materials.

    Amongthesebiodegradablesubstitutionmaterials,biodegradable polymers,such as polylactic acid,poly(glycolic acid),poly(caprolactone),poly(trimethylene carbonate) and poly(hydroxyalkanoate) (referred to as PLA,PGA,PCL,PTMC and PHA hereafter) have attracted a lot of focus due to their excellent processing properties,manageability,controllable degradation rate and good biocompatibility [8–10].

    Nevertheless,a single synthetic degradable polymer material used as bone repair scaffold is unable to meet all the application requirements as a faultless bone repairing biomaterial [11].For instance,though PLLA was commonplace in the field of implantable devices [12,13],it is remained an on-going challenge to accelerate its degradation rate and reduce its acidic degradation products,which is extremely important for applications in bone regeneration[14,15].

    In our previous work,we have applied poly(lactic acid-cotrimethylene carbonate) (PLLA-TMC) to the preparation of bone repair materials and scaffolds.We found that with the increase of trimethylene carbonate (referred to as TMC hereafter) content,the acid degradation products of the materials decreased and the surface corrosion degradation behavior became more obvious.At the same time,PLLA-TMC has long been used in the study of artificial blood vessels because of its excellent shape memory function under body temperature [16,17].Although PLLA-TMC has good shape memory function and unique surface corrosion degradation behavior,which is contributed to better carry out minimally invasive orthopedic implantation and maintain the dimensional stability of orthopedic implant instruments,the problems of long degradation time and low elastic modulus still need to be further solved [18–20].Poly(glycolic acid-co-trimethylene carbonate),a biodegradable material with rapid degradation rate and distinguished mechanical properties,which is widely used in absorbable surgical suture[21] and tissue engineering [22] may be an ideal strategy to deal with this problem.

    Aiming to achieve the therapy of bone defect,we designed an innovative biodegradable composite by blending the PGA-TMC into PLLA-TMC to accelerate the degradation rate and improve the mechanical properties.In this study,the PLLA-TMC/GA-TMC with different blending ratios were systematically investigated the physicochemical properties,in vitrodegradation behavior,biocompatibility and shape memory ability.To functionalize the PLLA-TMC/GATMC porous scaffold with the personalized customization of the external shape,internal macro-porous structure and surface microporous structure of the scaffold,we fabricate the scaffoldvia3D extrusion printing technology in a mild condition.The mechanical properties,surface and internal morphology and pore size of the scaffolds were thoroughly explored according to relative assays.To the best of our knowledge,this is the first example to prepare the porous scaffold based on PLLA-TMCvialow temperature 3D extrusion method for bone regeneration.

    Methods and the composite material group list (Fig.S1) can be found in Supporting information.Figs.1a and b showed the surface and cross section morphology of CP1,CP2,CP3 and CP4 splines.The results showed all the groups possessed the surface with winkles which was similar with PTMC.With the addition of GA-TMC content,the cross section of splines became smoother.In addition,phase interface of CP2-CP4 were not obvious,which resulted in the blending components contain the same proportion of TMC and have good compatibility.FTIR spectra of CP1,CP2,CP3 and CP4 were shown in Fig.1c.In the spectrum of all groups,it revealed characteristic absorption bands of its LLA-TMC structure,2908 cm-1(C-H stretching),1751 cm-1(C=O stretching),1267 cm-1(C-O stretching) and 1191 cm-1(C-O-C stretching).In addition,the characteristic peak of GA-TMC could be observed at 1455 cm-1,which assigned to be the CH2in GA-TMC.All of the groups were detected only aTg,which demonstrated that PLLA-TMC and PGA-TMC were amorphous polymers.Moreover,theTgof CP1 was 29.43°C.However,theTgof the other groups decreased slightly due to the incorporation of GA-TMC (Fig.1d).

    Fig.1.The physicochemical propeties of PLLA-TMC and PLLA-TMC/GA-TMC.(a) The surface morphology of CP1-CP4.(b) The surface and cross section morphology of CP1-CP4.(c) The FTIR spectra of CP1-CP4.(d) The DSC results of CP1-CP4.

    Generally speaking,under the condition of maintaining blood supply and stable fixation,the bone healing time is about 3 months.In this study,PBS hydrolysis degradation was performed(up to 10 weeks) to investigate thein vitrodegradation behavior of the PLLA-TMC/GA-TMC.The mass loss assay showed that the blend of GA-TMC significantly enhanced the degradation rate(Fig.2a).The mass loss ratio of CP1 was only 5.36%,while 31.82%for CP2 (at 10 weeks).After 10 weeks degradation,CP3 and CP4 splines showed the imilar degradation behavior with pure PTMC and exhibited a tendency to creep [23,24],while there was no curling before,and the dimensional stability was maintained.However,dimensional stability plays an important role in the process of bone repair,because the scaffold needs to bear a certain supporting role in the early stage of healing,especially before callus shaping stage (8–12 weeks) [25].This result also confirmed the rationality of our blend materials in the preparation of bone repair scaffolds.The water absorption of CP1 was the minimum (7.64%for 6 weeks),whereas 22.34% for CP2,25.09% for CP3,28.39% for CP4.The results of water absorption and mass loss assured that the GA-TMC promoted the degradation.With increasing content of GA-TMC,the initial tensile strength and break elongation of the composite groups increased significantly.Meanwhile,the results of SEM showed that the internal degradation of the spline increased with the increase of GA-TMC content,which was different from the surface corrosion degradation of pure PLLA-TMC (Fig.2b).In previous study,we found PLLA-TMC7030 is mainly degraded by surface dissolution within eight weeks of PBS degradation experiment,and showed a degradation behavior accompanied by internal collapse and surface dissolution eight weeks later [19].Therefore,this phenomenon also confirmed that the introduction of GA-TMC accelerated the degradation rate of the blending material.

    Fig.3a displayed the surface and section microphotograph of 3D scaffolds of CP4 detected by optical stereomicroscope.It clearly showed that CP4 scaffold possess 3D multilayered tubular architecture along with the uniform alignment and pore size.Average pore size of CP4 scaffold with internal connected macroporous structure was calculated about 403.12±10.68 μm (from 200 μm to 500 μm),that were beneficial to differentiation and growth of bone cell lines and soft tissues,and provided ostoconduction(Table 1) [26,27].In particular,the preparation of printing ink and its properties including flow and molding will significantly affect the application of biological extrusion 3D printing,a fast and effi-cient preparation technology.Therefore,we utilized DCM solvent to prepare printing ink,and use its rapid volatilization to assist scaffold forming.Meanwhile,due to the fast volatilization rate of DCM in the printing process,a large number of micropores with a pore size of about 5 μm were produced on the surface of the scaffold (Table 1).To add more,the rough surface of CP4 3D printed scaffolds with micro-holes structure were expressly discovered in Fig.3b which was resulted in the solvent volatilization during extrusion printing.It is evident that high surface area and rough surface of the implant scaffold availed the proliferation and adhesion of cells [28–30].Compared to microsphere scaffold (<40%) [31],total porosity for CP4 scaffold could obviously increase to 56% ±2.02%.However,the actual porosity was obviously lower than the theoretical value (70%) due to the extruded material will collapse slightly due to gravity during solvent volatilization,solidification and molding,resulting in over dense accumulation.

    Fig.2.The hydrolytic degradation of PLLA-TMC and PLLA-TMC/GA-TMC (a): weight loss (a1); pH value (a2); tensile strength (a3); water absorption (a4); break elongation(a5).(b) Cross section morphology.

    Fig.3.Optical microscope (a) and SEM (b) pictures of CP1 scaffolds; shape memory ability of CP1 (c) and CP4 (d) splines; (e) osteoblast fluorescence detection (7 days); (f)cytotoxicity of scaffolds (1 day and 4 days).

    Table 1 Physical property of indicated scaffolds.

    With the development of clinical technology and material science,doctors and scientists are constantly pursuing minimally invasive surgery and personalized customization of implants in order to obtain better curative effect and reduce surgical trauma.Shape memory polymers (SMPs) are driving interests in minimally invasive surgery and bone tissue engineering filed,especially under challenging spatial implantation.SMPs would deform into a temporary shape in implantation progress,and revert back original shape received the stimulus (for example temperature) [32].In this work,we tested the shape memory effect of CP1 and CP4 under 37°C (similar to human body temperature).It is distinctly showed that the temporary cylindrical shape of CP4 recovered rectangle permanent shape within 134 s (Fig.3d),while CP1 needed a relatively longer time to recover (323 s) (Fig.3c).Namely,the shape recover time that allows surgeons to complete implant,could be controlled by PLLA-TMC and PGA-TMC component ratio.Another key indicator for biodegradable scaffolds is biocompatibility.MC3T3-E1 cells adhered and proliferated well on CP1,CP2 and CP4 3D printed scaffolds and the number of cells increased gradually during culture period (Fig.3e).On the one hand,this result showed that the scaffold material has good biocompatibility; on the other hand,the microporous structure on the surface of the scaffold was also conducive to cell adhesion and proliferation.Cell viability results revealed CP1,CP2 and CP4 scaffolds possess good biocompatibility(Fig.3f).

    In summary,we designed a novel bone substitution material by blending PLLA-TMC with PGA-TMC.The results showed the tensile strength was significantly increased with the addition of GA-TMC.On the contrary,theTgand break elongation of the splines were slightly decreased with the increasing content of GA-TMC.More importantly,compared to the PLLA-TMC,the addition of GA-TMC distinctly promoted the hydrolytic degradation rate and shape recover time.We adopted a low temperature way to fabricate the porous scaffolds (CP1 and CP4)via3D printing machine with uniform internal connected porous structure,rough surface,suitable mechanical properties and high porosity.To sum up,the novel shape memory 3D printed PLLA-TMC/GA-TMC scaffold with improved biodegradability,mechanical properties is promising to be used in clinic to repair the bone defect in the future.However,due to the influence of gravity in the forming process,the porosity of this low-temperature printing method will be lower than the ideal value.In the subsequent research,we can further reduce the ice plate temperature in the printing process to freeze the solvent or print at room temperature to speed up the solvent volatilization speed,so that the actual porosity and structure are closer to the ideal state.Meanwhile,in the follow-up work,we can further examine the degradation and osteogenesis of the system scaffold in animal models.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful for the sub project of the national major project generation method and application verification of personalized rehabilitation prescription for patients with balance (No.2019YFB1311403).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.04.049.

    日韩 亚洲 欧美在线| 免费看a级黄色片| 伊人久久精品亚洲午夜| 尾随美女入室| 久久久久久久久中文| 亚洲无线观看免费| 国产一区二区三区av在线| 自拍偷自拍亚洲精品老妇| 91av网一区二区| 亚洲欧美日韩无卡精品| 久久99蜜桃精品久久| 夫妻性生交免费视频一级片| 午夜福利成人在线免费观看| 婷婷色av中文字幕| 嘟嘟电影网在线观看| 日本三级黄在线观看| 精品久久久久久成人av| 乱码一卡2卡4卡精品| 精品久久久噜噜| 亚洲丝袜综合中文字幕| 欧美变态另类bdsm刘玥| 成人午夜精彩视频在线观看| 18+在线观看网站| 伦理电影大哥的女人| 欧美区成人在线视频| 老司机影院毛片| 网址你懂的国产日韩在线| 国产精品无大码| 哪个播放器可以免费观看大片| 国产黄a三级三级三级人| 精品欧美国产一区二区三| 国产 一区 欧美 日韩| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 午夜精品在线福利| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 日本wwww免费看| 欧美zozozo另类| 老司机福利观看| 久久久久国产网址| 26uuu在线亚洲综合色| 嫩草影院新地址| 亚洲欧美一区二区三区国产| 中文资源天堂在线| 人人妻人人澡欧美一区二区| 国产黄色小视频在线观看| 99热这里只有是精品在线观看| 日韩欧美在线乱码| 2022亚洲国产成人精品| 搡老妇女老女人老熟妇| 免费看日本二区| 不卡视频在线观看欧美| 久久亚洲精品不卡| 午夜精品在线福利| 中文字幕久久专区| 欧美又色又爽又黄视频| 九九热线精品视视频播放| 能在线免费观看的黄片| 国产在线男女| 亚洲欧美日韩无卡精品| 一区二区三区免费毛片| 久久久精品大字幕| 国产精品一区二区性色av| 亚洲av男天堂| 精品一区二区三区视频在线| 看黄色毛片网站| 神马国产精品三级电影在线观看| 舔av片在线| 午夜激情福利司机影院| 亚洲最大成人中文| 国产精品一及| 人妻少妇偷人精品九色| 日韩在线高清观看一区二区三区| 男人舔女人下体高潮全视频| 男人和女人高潮做爰伦理| 大又大粗又爽又黄少妇毛片口| 成年女人看的毛片在线观看| 国产视频首页在线观看| 久久草成人影院| 精品酒店卫生间| 亚洲美女视频黄频| 老司机影院成人| 久久精品熟女亚洲av麻豆精品 | 人人妻人人看人人澡| 久久久亚洲精品成人影院| 一级毛片电影观看 | 成年女人看的毛片在线观看| 国产一区二区亚洲精品在线观看| 一级黄片播放器| 国产又色又爽无遮挡免| 少妇被粗大猛烈的视频| av卡一久久| 中文在线观看免费www的网站| 最近中文字幕2019免费版| 久久久久久久久大av| 99久久精品国产国产毛片| 啦啦啦韩国在线观看视频| 男的添女的下面高潮视频| 亚洲欧洲日产国产| 欧美3d第一页| 欧美不卡视频在线免费观看| 精品午夜福利在线看| 麻豆成人午夜福利视频| 波多野结衣巨乳人妻| 亚洲精品日韩在线中文字幕| 观看美女的网站| 国产精品久久久久久久久免| 高清午夜精品一区二区三区| 国产视频首页在线观看| 精品99又大又爽又粗少妇毛片| 国产精品1区2区在线观看.| 日韩欧美三级三区| 日韩一区二区三区影片| 国产高清不卡午夜福利| 久久精品综合一区二区三区| 午夜精品国产一区二区电影 | 丝袜喷水一区| 男女啪啪激烈高潮av片| 亚洲av一区综合| 久久久久久久国产电影| 国内少妇人妻偷人精品xxx网站| 中文字幕熟女人妻在线| 亚洲av电影不卡..在线观看| 亚洲国产高清在线一区二区三| 麻豆国产97在线/欧美| 狂野欧美白嫩少妇大欣赏| 久久久欧美国产精品| 久久国产乱子免费精品| 午夜精品在线福利| 欧美+日韩+精品| 少妇丰满av| 性色avwww在线观看| 99热精品在线国产| 少妇丰满av| 亚洲精品国产av成人精品| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 天美传媒精品一区二区| 亚洲图色成人| 国产免费福利视频在线观看| 一个人看视频在线观看www免费| 亚洲欧美精品专区久久| 一二三四中文在线观看免费高清| av黄色大香蕉| 人人妻人人澡欧美一区二区| 亚洲欧美清纯卡通| 欧美日韩国产亚洲二区| 亚洲av男天堂| 久久精品夜色国产| 国产精品一区二区三区四区免费观看| 国产精品一及| 欧美丝袜亚洲另类| 国产精品一区二区在线观看99 | 91aial.com中文字幕在线观看| 精品久久久久久久久亚洲| 成人三级黄色视频| 国产欧美另类精品又又久久亚洲欧美| av在线天堂中文字幕| 美女cb高潮喷水在线观看| 又爽又黄无遮挡网站| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 亚洲av中文av极速乱| 国产成人91sexporn| 免费大片18禁| 水蜜桃什么品种好| 真实男女啪啪啪动态图| 国产精品乱码一区二三区的特点| 日本免费在线观看一区| 成人三级黄色视频| a级毛片免费高清观看在线播放| 国产精华一区二区三区| 91精品国产九色| 欧美日本视频| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 亚洲欧美成人精品一区二区| www.色视频.com| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 国产成人91sexporn| av女优亚洲男人天堂| 国产精品不卡视频一区二区| 久久99热这里只有精品18| 日本欧美国产在线视频| 亚洲国产精品合色在线| 久久精品综合一区二区三区| 又爽又黄a免费视频| 国产高潮美女av| 日日干狠狠操夜夜爽| 十八禁国产超污无遮挡网站| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 欧美日韩一区二区视频在线观看视频在线 | 男人和女人高潮做爰伦理| 日韩在线高清观看一区二区三区| 五月玫瑰六月丁香| 极品教师在线视频| 国产高潮美女av| 最近中文字幕高清免费大全6| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 听说在线观看完整版免费高清| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站 | 日日干狠狠操夜夜爽| 日本一本二区三区精品| 日韩欧美精品v在线| 欧美成人一区二区免费高清观看| 久久亚洲国产成人精品v| 搡女人真爽免费视频火全软件| 久久久色成人| h日本视频在线播放| 麻豆国产97在线/欧美| 成人亚洲精品av一区二区| 边亲边吃奶的免费视频| 免费搜索国产男女视频| 91狼人影院| 国产精品久久久久久精品电影| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线 | 欧美不卡视频在线免费观看| 偷拍熟女少妇极品色| 国产 一区 欧美 日韩| 国产午夜精品久久久久久一区二区三区| 好男人视频免费观看在线| 久久精品熟女亚洲av麻豆精品 | 国产国拍精品亚洲av在线观看| 久热久热在线精品观看| 午夜福利高清视频| 六月丁香七月| 久久久久国产网址| 成人特级av手机在线观看| 又爽又黄a免费视频| 黄片无遮挡物在线观看| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 男女边吃奶边做爰视频| 亚洲国产精品久久男人天堂| 亚洲精品亚洲一区二区| 在现免费观看毛片| 插逼视频在线观看| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 最近视频中文字幕2019在线8| 别揉我奶头 嗯啊视频| 亚洲精品日韩在线中文字幕| 成人av在线播放网站| 女人久久www免费人成看片 | 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 亚洲人成网站高清观看| 亚洲av.av天堂| 亚洲欧美一区二区三区国产| 成人毛片60女人毛片免费| 99国产精品一区二区蜜桃av| 国产午夜精品一二区理论片| 国产成人精品婷婷| 99久久成人亚洲精品观看| 日本五十路高清| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花 | 亚洲一区高清亚洲精品| 亚洲激情五月婷婷啪啪| 嫩草影院入口| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 又黄又爽又刺激的免费视频.| 3wmmmm亚洲av在线观看| 嘟嘟电影网在线观看| 纵有疾风起免费观看全集完整版 | 国产精品嫩草影院av在线观看| 亚洲性久久影院| 国产男人的电影天堂91| 99热这里只有是精品50| 99久久精品热视频| 精品人妻熟女av久视频| 永久网站在线| 国产69精品久久久久777片| 国产成人freesex在线| 男女国产视频网站| 午夜视频国产福利| 亚洲国产欧美人成| 夜夜爽夜夜爽视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 五月玫瑰六月丁香| 久久久久久久久久久丰满| 国产精品福利在线免费观看| 青春草国产在线视频| 寂寞人妻少妇视频99o| 精品免费久久久久久久清纯| 日韩成人伦理影院| 长腿黑丝高跟| 中文在线观看免费www的网站| 深夜a级毛片| 久久人人爽人人片av| av在线蜜桃| 久久韩国三级中文字幕| 伦理电影大哥的女人| 免费观看人在逋| 免费av观看视频| 亚洲内射少妇av| 日本一本二区三区精品| 亚洲精品色激情综合| 日本黄色片子视频| 国产极品天堂在线| a级毛色黄片| 日韩av不卡免费在线播放| 99久国产av精品国产电影| 天天一区二区日本电影三级| 青青草视频在线视频观看| 精品久久久久久久人妻蜜臀av| 亚洲av福利一区| 亚洲国产精品久久男人天堂| 亚洲欧洲国产日韩| 特大巨黑吊av在线直播| 精品人妻视频免费看| 麻豆乱淫一区二区| 男人舔奶头视频| 国内精品宾馆在线| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 午夜免费男女啪啪视频观看| 精品久久国产蜜桃| 国产日韩欧美在线精品| 免费电影在线观看免费观看| 又爽又黄a免费视频| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 最近的中文字幕免费完整| 亚洲精品aⅴ在线观看| 久久久色成人| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 亚洲第一区二区三区不卡| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 一区二区三区免费毛片| 全区人妻精品视频| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看 | 久久精品人妻少妇| 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 国产精品一区www在线观看| 亚洲电影在线观看av| av国产久精品久网站免费入址| 天天一区二区日本电影三级| 色播亚洲综合网| 日韩国内少妇激情av| 天美传媒精品一区二区| 欧美+日韩+精品| 亚洲av一区综合| 搞女人的毛片| 国产黄片视频在线免费观看| 少妇熟女aⅴ在线视频| 狠狠狠狠99中文字幕| 久久久久久久久久成人| 欧美zozozo另类| 99久久九九国产精品国产免费| 69av精品久久久久久| 伊人久久精品亚洲午夜| 久久韩国三级中文字幕| 欧美不卡视频在线免费观看| 欧美成人一区二区免费高清观看| 小说图片视频综合网站| 日韩高清综合在线| 亚洲第一区二区三区不卡| 亚洲最大成人手机在线| 午夜福利高清视频| 国产精品国产三级国产专区5o | 别揉我奶头 嗯啊视频| 国产伦精品一区二区三区视频9| 亚洲精品乱码久久久v下载方式| 亚洲怡红院男人天堂| av线在线观看网站| 亚洲av免费在线观看| 国产亚洲av片在线观看秒播厂 | 深爱激情五月婷婷| 黄色配什么色好看| 亚洲高清免费不卡视频| 一级黄色大片毛片| 男插女下体视频免费在线播放| 成年版毛片免费区| 亚洲精品国产av成人精品| 国产一级毛片七仙女欲春2| 精品欧美国产一区二区三| 成人毛片60女人毛片免费| 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 女人被狂操c到高潮| 精华霜和精华液先用哪个| 又爽又黄无遮挡网站| 婷婷色综合大香蕉| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 大又大粗又爽又黄少妇毛片口| 国产黄a三级三级三级人| 精品久久久久久久人妻蜜臀av| 亚洲最大成人av| 国产精品人妻久久久久久| 偷拍熟女少妇极品色| 日本熟妇午夜| 能在线免费看毛片的网站| 成年女人看的毛片在线观看| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 国产中年淑女户外野战色| 村上凉子中文字幕在线| 女的被弄到高潮叫床怎么办| 最新中文字幕久久久久| 又爽又黄a免费视频| 五月玫瑰六月丁香| 欧美高清成人免费视频www| 亚洲av一区综合| 欧美不卡视频在线免费观看| 午夜福利视频1000在线观看| 高清午夜精品一区二区三区| 乱系列少妇在线播放| 久久99精品国语久久久| 国产亚洲一区二区精品| 国产一区二区在线观看日韩| 老女人水多毛片| 国产精品人妻久久久影院| 天堂av国产一区二区熟女人妻| 中文字幕熟女人妻在线| 国产精品一区二区三区四区免费观看| 日本一二三区视频观看| 亚洲精品亚洲一区二区| 欧美成人免费av一区二区三区| 免费播放大片免费观看视频在线观看 | 国产成人精品婷婷| 亚洲三级黄色毛片| 中文精品一卡2卡3卡4更新| 可以在线观看毛片的网站| 亚洲av电影在线观看一区二区三区 | a级毛色黄片| 婷婷色综合大香蕉| 观看免费一级毛片| 日本猛色少妇xxxxx猛交久久| 亚洲精品色激情综合| 亚洲三级黄色毛片| 久久综合国产亚洲精品| 国产精品一区二区三区四区免费观看| 国产精华一区二区三区| 波多野结衣高清无吗| 国产精品久久久久久久久免| 99久久中文字幕三级久久日本| 黄色欧美视频在线观看| 久久综合国产亚洲精品| 亚洲国产精品成人久久小说| 亚洲欧美精品专区久久| 尤物成人国产欧美一区二区三区| 国产精品三级大全| 国产精品99久久久久久久久| 丰满少妇做爰视频| 亚洲激情五月婷婷啪啪| 中文字幕免费在线视频6| 免费电影在线观看免费观看| 人人妻人人看人人澡| 91在线精品国自产拍蜜月| 人体艺术视频欧美日本| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| 国产又黄又爽又无遮挡在线| 麻豆国产97在线/欧美| 亚洲欧美成人精品一区二区| 亚洲五月天丁香| 午夜福利网站1000一区二区三区| 女人被狂操c到高潮| 亚洲伊人久久精品综合 | 亚洲av男天堂| 亚洲人成网站在线观看播放| 欧美zozozo另类| 国产极品精品免费视频能看的| 热99re8久久精品国产| 91av网一区二区| 天堂影院成人在线观看| 97在线视频观看| 成人高潮视频无遮挡免费网站| 国产在视频线精品| 日韩av在线免费看完整版不卡| 成人二区视频| 亚洲精品乱久久久久久| 亚洲无线观看免费| 最后的刺客免费高清国语| 亚洲精品亚洲一区二区| 欧美成人午夜免费资源| 天堂√8在线中文| 国产免费男女视频| 亚洲va在线va天堂va国产| 久久热精品热| 亚洲av电影不卡..在线观看| 亚洲熟妇中文字幕五十中出| 内射极品少妇av片p| 国产在视频线精品| 2021天堂中文幕一二区在线观| 国产乱人偷精品视频| 一边亲一边摸免费视频| 亚洲最大成人中文| 99在线视频只有这里精品首页| 自拍偷自拍亚洲精品老妇| 高清在线视频一区二区三区 | 午夜精品一区二区三区免费看| 欧美一区二区亚洲| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久久亚洲| 一级爰片在线观看| 一夜夜www| 亚洲中文字幕一区二区三区有码在线看| 桃色一区二区三区在线观看| 色吧在线观看| 国产伦在线观看视频一区| 插阴视频在线观看视频| 午夜福利在线在线| 午夜久久久久精精品| 国产高清国产精品国产三级 | 99热全是精品| 国产成人91sexporn| 日韩欧美在线乱码| 最后的刺客免费高清国语| 久久久午夜欧美精品| 亚洲精品乱码久久久v下载方式| 色哟哟·www| 亚洲色图av天堂| 亚洲欧美一区二区三区国产| 日本wwww免费看| 看黄色毛片网站| 欧美xxxx黑人xx丫x性爽| 国产乱人视频| 亚洲国产成人一精品久久久| 日本猛色少妇xxxxx猛交久久| 国产精品国产高清国产av| 能在线免费观看的黄片| 久久这里只有精品中国| 秋霞伦理黄片| 精品久久久久久久末码| 国产av在哪里看| 真实男女啪啪啪动态图| 日本av手机在线免费观看| 亚洲第一区二区三区不卡| 国产精品伦人一区二区| 久久久久久久久久黄片| 亚洲最大成人中文| 精品人妻熟女av久视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av男天堂| 亚洲,欧美,日韩| 一本久久精品| 美女大奶头视频| 中文字幕久久专区| 免费搜索国产男女视频| 婷婷色麻豆天堂久久 | 国产高清国产精品国产三级 | 国产亚洲一区二区精品| 五月玫瑰六月丁香| 国产精品国产高清国产av| 日韩 亚洲 欧美在线| www.色视频.com| 国产成人一区二区在线| 国产亚洲精品久久久com| av国产免费在线观看| 免费一级毛片在线播放高清视频| 18禁在线无遮挡免费观看视频| 汤姆久久久久久久影院中文字幕 | 中国美白少妇内射xxxbb| 亚洲综合精品二区| 97人妻精品一区二区三区麻豆| 天堂网av新在线| 亚洲国产精品成人综合色| 亚洲av中文av极速乱| 久久久a久久爽久久v久久| 狠狠狠狠99中文字幕| 日韩av不卡免费在线播放| videos熟女内射| 久久综合国产亚洲精品| 国产女主播在线喷水免费视频网站 | 欧美一级a爱片免费观看看| 一夜夜www| 国产乱人视频| 久久人妻av系列| av视频在线观看入口| 男的添女的下面高潮视频| av黄色大香蕉| 嫩草影院新地址| 久久精品人妻少妇| 男女那种视频在线观看| 欧美zozozo另类| 日产精品乱码卡一卡2卡三| 国产 一区 欧美 日韩| 一区二区三区四区激情视频| 又粗又爽又猛毛片免费看| 又黄又爽又刺激的免费视频.| 欧美zozozo另类| 亚洲精品乱码久久久久久按摩| 真实男女啪啪啪动态图| 69av精品久久久久久| 日产精品乱码卡一卡2卡三| 午夜精品一区二区三区免费看| 天天躁日日操中文字幕| 2021天堂中文幕一二区在线观| 国产淫语在线视频| 日韩欧美精品免费久久| 婷婷色综合大香蕉| 97超碰精品成人国产| 精品一区二区三区视频在线| 亚洲伊人久久精品综合 | 乱人视频在线观看|