• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of oxygen defective ZnO/ZnFe2O4 yolk-shell composite with photothermal effect for tetracycline degradation: Performance and mechanism insight

    2023-03-14 06:52:40KeZhangHongyangCaoAfzalDarDanqingLiLinaZhouChuanyiWang
    Chinese Chemical Letters 2023年1期

    Ke Zhang,Hongyang Cao,Afzal Dar,Danqing Li,Lina Zhou,Chuanyi Wang

    School of Environmental Science and Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China

    Keywords:Photocatalysis Photothermal Oxygen vacancy Yolk-shell Tetracycline

    ABSTRACT Oxygen vacancy induced photothermal effect is of great significant but lack of adequate attentions for environmental remediation.In this paper,green recyclable ZnO/ZnFe2O4 with oxygen vacancy was prepared by a solvothermal-calcination method.The UV-vis light capture ability of ZnO/ZnFe2O4 microspheres is improved with the multiple light reflections due to the yolk-shell structure,and the oxygen vacancy expands the absorption range of photocatalyst and enhances photothermal conversion.The optimized photocatalyst can heat the solution from room temperature to 70 °C within 60 min of visible light illumination,and the light to heat conversion efficiency is achieved by 61.3%.Compared with the degradation efficiency at 20 °C,photothermal catalysis achieves a stable degradation in 80 min,and the degradation efficiency is increased by 41.5%.This can be attributed to the fact that light induced thermal energy accelerates the migration of electrons and holes,and promotes the diffusion of free radicals by heating active centers in situ.The active species contributing to the degradation,in order of importance,are the superoxide radical,hydroxyl radical,hole and electron.The light-to-thermal assisted photocatalysis with ZnO/ZnFe2O4 provides a new sight for the pollution control in the future practical applications.

    As an effective antibiotic,tetracycline (TC) has been widely used in recent decades,which can interfere with cells and hinder their normal function [1,2].Due to its stability in aqueous solution,TC is difficult to be eliminated by conventional treatment or biodegradation process,thus giving rise to significant potential hazards to human health and ecological balance.In recent years,many technologies,such as photocatalysis,adsorption and Fenton oxidation,have been used to treat TC pollution [3–8].However,the adsorption method cannot degrade the TC,and the adsorbent often requires expensive and toxic solvents for regeneration,the regenerated liquid waste also requires additional treatment and disposal.Fenton technique requires oxidation reagent,and the deposition of large amounts of ferric ion sludge increase cost dramatically [9].UV radiations and ultrasonic treatment have limited penetration power in the aqueous solution,and they are harmful to eyes and skin[10].Among many technologies,photocatalysis has attracted much attention to purify industrial and culture wastewater because of its low cost and high efficiency [11,12].Metal oxides such as ZnO and ZnFe2O4have been widely used in photocatalysis due to their fast hole transport,underwater stability and high light absorption coefficient [13–16].Therefore,we constructed ZnO/ZnFe2O4nanocomposite with yolk-shell structure,which can not only provide large surface area,but also enhance the light absorbance as much as possibleviamultiple reflections inner the microsphere [17,18].

    Surface reactive oxygen species (ROS) exhibit strong activity in the photodegradation of TC [19,20].However,due to the high recombination of charge carrier,the existence of charge and energy transfer process,and the insufficient of dissolved oxygen in water after reaction,the ROS production is usually inefficient.If additional energy is supplemented,the reaction process will be continued and accelerate.Controlling the activation of oxygen is of great significance to achieve efficient and stable ROS generation.Direct conversion of solar energy into heat to drive oxygen activation is a new and effective way to utilize solar energy.However,most semiconductors only absorb ultraviolet light or part of visible light,how to effectively extend the light absorption range to convert long wavelength light into heat energy and improve the photocatalytic performance of the system is a challenging task.

    Fig.1.(A,B) SEM images of ZOv/ZFOv 500.(C–E) TEM images of ZOv/ZFOv 500.(F)HRTEM image of an individual microsphere and (G–J) the corresponding elemental mapping images.

    Construction of oxygen vacancies is an effective way to enhance light adsorption and improve the separation efficiency of photogenerated carriers [21–24].Currently,the wide usage of oxygen vacancy in photocatalysis is about the photoelectrons capture and light absorption extension.In fact,the oxygen vacancy induced photothermal effect may also be an important factor influencing photocatalytic process.In photocatalytic process,semiconductors with oxygen vacancies continuously generate heat energy,which affects the transport of photogenerated carriers and significantly improves the photocatalytic performance [25–27].Additionally,evaporation of water by the photothermal effect can concentrate pollutant and achieve high removal efficiency [28].But rare attention was devoted to the photothermal effect of oxygen vacancy during photodegradation process.

    In this paper,ZnO/ZnFe2O4with oxygen vacancy (ZOv/ZFOv)was synthesized by a solvothermal-calcination method.Detailed characterizations confirmed the yolk-shell ZOv/ZFOvnanoparticles possess superior multi-reflection absorption capability.By optimizing the oxygen vacancy concentration to tune the optical absorption,ZOv/ZFOvfeatures outstanding TC degradation performance through photocatalysis coupled with photothermal effect.The influence of photothermal effect,possible mechanism and pathway of TC degradation on ZOv/ZFOvwere fully explored.

    Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the as-prepared ZOv/ZFOv500 were recorded to characterize its morphologies.As shown in Figs.1A and B,the sample exhibits sphere-like morphology with diameter of about 1 μm,consisting of small nanoparticles.Figs.1C–E show that ZOv/ZFOv500 possesses a special yolk shell structure,and the average shell thickness as estimated from the histograms is 0.191±0.020 μm (Fig.S3 in Supporting information).This special structure makes the microspheres inside have enough light scattering and multiple reflections to improve the light absorption and photothermal conversion.Fig.1F displays the typical high resolution TEM image,and the spacing of lattice fringes isca.0.298 nm,corresponding to the (220) crystal plane of ZnFe2O4.Elemental mappings (Figs.1G–J) exhibit the distribution of Zn,Fe,and O elements in ZOv/ZFOv500,demonstrating the nanocomposite with yolk-shell structure has been successfully prepared.

    X-ray photoelectron spectroscopy (XPS) spectra was performed on ZOv/ZFOv500 to explore the surface chemical composition and chemical states.Survey spectrum in Fig.S6 (Supporting information) illustrates the prepared material contains O,Fe and Zn elements,further confirming the formation of ZOv/ZFOv500.The C 1s XPS spectrum could be deconvoluted into three peaks centered at 282.6,284.0 and 286.4 eV,corresponding to C-C,C-O and C=O,respectively (Fig.S7A in Supporting information).In Fig.S7B (Supporting information),there are two binding energy peaks centered at 735.0 and 708.5 eV,corresponding to Fe 2p1/2and Fe 2p3/2,respectively.XPS spectrum of Fe 2p3/2could be fitted into 708.2 and 710.2 eV,belonging to tetrahedral and octahedral Fe3+.Besides,the peak at 724 eV is consistent with the Fe 2p1/2photoelectron response of Fe3+.As shown in Fig.S7C (Supporting information),the high-resolution XPS spectra of Zn exhibits the binding energies of 1019.3 eV (Zn 2p3/2) and 1042.4 eV (Zn 2p1/2),indicating the presence of Zn2+in ZOv/ZFOv.According to the O 1s XPS spectrum (Fig.S7D in Supporting information),the three fitted binding energy peaks located at 531.0,527.7 and 529.6 eV correspond to the adsorbed water,surface lattice oxygen of ZFOvand ZOv,respectively[29].

    Photothermal catalytic TC degradation was performed by using the as-prepared catalysts under visible light and near infrared (NIR) light.As shown in Fig.2A,under visible light irradiation,ZOv/ZFOvexhibited superior degradation efficiency,and the best degradation performance occurred in ZOv/ZFOv500.However,excessive defects will become new electron-hole recombination centers thus reducing the photocatalytic performance.As a result,ZOv/ZFOv600 exhibits worse activity than that of ZOv/ZFOv500.Fig.2B shows the degradation rate constant of all the samples.The photodegradation rate constant of TC by ZOv/ZFOv500(0.01650 min-1) is 1.5 times and 14.1 times higher than that of ZOv(0.01118 min-1) and ZFOv(0.001170 min-1),indicating the superior performance of the nanocomposites.Temperature can increase the production rate of ROS and affect the catalytic activity.For comparison,as shown in Fig.S9 (Supporting information),TC cannot be degraded by visible light irradiation alone,and temperature has negligible impact on TC degradation.The performance of some photocatalysts for pharmaceutical personal care products’degradation is listed in Table S2 (Supporting information) [30–37].To explore the temperature changes of the solution under light irradiation,temperature monitoring was carried out in TC degradation process with all the as-prepared samples.As shown in Fig.2C,compared with ZO/ZFO,ZOv/ZFOvexhibits better photo-thermal conversion capacity,and the best sample reaches equilibrium within 60 min,the light-to-heat conversion efficiency achieved 61.3%,suggesting that oxygen vacancy can more efficiently convert light energy into heat energy [38].As shown in Figs.2D–F,the catalysts under NIR irradiation exhibits a considerably worse photocatalytic performance andΔTthan the visible light irradiation,indicating the photocatalysis and photothermal conversion mainly rely on visible light.

    The photothermal effect plays an important role in enhancing the photocatalytic degradation performance,and the diffuse reflection spectra (DRS) results indicate that ZOv/ZFOv500 has excellent absorption capability from visible light to NIR.Therefore,we explored the temperature changes of ZO/ZFO 500 and ZOv/ZFOv500 in visible and NIR by infrared thermal imager.As shown in Fig.S10A (Supporting information),at the initial time,the temperature of ZO/ZFO 500 is consistent with the room temperature.After turning on the lamp,the infrared image color of ZO/ZFO 500 became bright with the increase of time.After 16 min of illumination,the temperature rose to 73 °C,and then remained basically unchanged.Under the same irradiation condition,it can be seen from Fig.S10B (Supporting information) that the temperature of the ZOv/ZFOv500 nanocomposite increased to 72.1 °C within two minutes,and then continued to rise to 90.1 °C.As shown in Fig.S11 (Supporting information),ZO/ZFO 500 heats up slowly under NIR and the temperature is not high.The heating rate of ZOv/ZFOv500 under NIR is slightly faster than that of ZO/ZFO 500,and the result is consistent with those measured in solution.These experiments demonstrate that oxygen vacancy induced photothermal effect is mainly dependent on visible light rather than NIR.

    Fig.2.Degradation performance (A),photodegradation rate constants (B) and ΔT (C) of ZOv/ZFOv nanocomposite under visible light irradiation (λ >420 nm,0.29 W/cm2)in water bath.Degradation performance (D),photodegradation rate constants (E) and ΔT (F) of ZOv/ZFOv nanocomposite under NIR irradiation (λ >765 nm,0.07 W/cm2).

    Fig.3.Photodegradation performance (A) and degradation rate constants (B) of ZOv/ZFOv 500 at different temperature.(C) Impact of TC concentration.(D) The cycling experiment for the degradation of TC by ZOv/ZFOv 500.(E) TOC removal by all the as-prepared samples.(F) TC degradation and COD removal in real wastewater.

    As shown in Fig.3A,temperature changes have significant impact on TC degradation.The TC degradation efficiency of ZOv/ZFOv500 at 10 °C,20 °C,30 °C,40 °C and 70 °C are 27.7%,59.9%,76.0%,78.7% and 81.5%,respectively,demonstrating that the higher temperature,the higher degradation efficiency.Combined with Fig.2C,it can be analyzed that oxygen vacancy can improve the photothermal conversion efficiency,which is conducive to the photocatalytic degradation of TC.Fig.3B shows the degradation rate constants of ZOv/ZFOv500 at different temperature,The rate of TC degradation reactions follows the Arrhenius law (Fig.S12 in Supporting information).As shown in Fig.3C,photodegradation effi-ciency increases with the increase of TC concentration,and the degradation efficiency exhibits little change when the concentration reaches 111 mg/L.This result indicates that the catalyst also has a good removal effect on high concentration TC.As shown in Fig.3D,the photocatalytic activity of ZOv/ZFOv500 remains 86.2% after 5 cycles,and XRD patterns demonstrate that the catalyst structure did not change after the test (Fig.S13 in Supporting information),suggesting ZOv/ZFOv500 has good stability.To further explore the mineralization ability of all samples towards TC,the total organic carbon (TOC) concentration was evaluated after photodegradation experiments.Fig.3E shows that the TOC removal efficiency of ZOv/ZFOv500 is 62.7%.In order to explore the degradation performance of ZOv/ZFOv500 in the real waste water environment,the water sample from sewage treatment plant of Shaanxi University of Science and Technology was selected to carry out photocatalytic experiments.As shown in Fig.3F,after 11 h of visible light irradiation,the TC and chemical oxygen demand (COD)removal reachesca.92.6% and 53.2%,indicating that ZOv/ZFOv500 possesses great potential in practical application.

    Fig.4.(A) EPR plots of ZOv/ZFOv 500.(B) DMPO spin-trapping EPR spectra for ·O2-.(C) DMPO spin-trapping EPR spectra for ·OH.(D) Active species quenching experiments over ZOv/ZFOv 500.(E) Hydrogen peroxide trapping experiments of ZOv/ZFOv 500.(F) Schematic of the possible carrier’s separation process on the interface of ZOv/ZFOv 500 under visible light irradiation.

    Electron paramagnetic resonance (EPR) was performed to verify the oxygen vacancy in ZOv/ZFOv500.As shown in Fig.4A,ZOv/ZFOv500 displayed a symmetrical signal atg=2.004,which can be attributed to the unpaired electrons on the oxygen vacancy sites,illustrating that ZOv/ZFOv500 was successfully synthesized.EPR was also carried out to confirm the existence of reactive oxygen species,which are produced under visible light in the process of photoreaction.As shown in Fig.4B,no signal can be observed for ZOv/ZFOv500 in darkness.After irradiation,the signal with four peaks corresponding to·O2-were appeared,and the intensity of this signal was enhanced with the extension of irradiation time.Similarly,the signal characteristics of the DMPO-·OH were also observed after irradiation (Fig.4C).

    In order to identify the main active species in degradation,active species trapping experiments were performed.Isopropyl alcohol (IPA),p-benzoquinone (PBQ),AgNO3and ammonium oxalate monohydrate (AO) were selected as the capture agent for·OH,·O2-,e-and h+,respectively (Fig.4D).The removal rate of TC reached 82.0% without any scavenger.After adding PBQ into the suspension,the TC degradation rate was dramatically decreased,indicating that·O2-plays a significant role in the degradation process.The presence of IPA modestly inhibited the degradation,and the photocatalytic activity was only slightly inhibited after addition of AO and AgNO3,respectively,demonstrating that e-and h+are inconsequential to TC degradation.

    Combining with the results of Mott-Schottky (Fig.S5 in Supporting information) and DRS experiments (Fig.S4 in Supporting information),the nanocomposite cannot produce·OH radicals through hole directly.In order to study whether the catalyst can produce·OH radicalsviaH2O2in the degradation process,the fluorescence intensity of H2O2and its evolution with time were explored.As shown in Fig.4E,the yield of H2O2was gradually increased with the increase of time,proving that·OH radicals were produced from H2O2.

    According to the above discussion,a probable photocatalytic degradation mechanism was proposed in Fig.4F.Because the conduction band (CB) of ZOv(-0.53 eV) is more negative than that of ZFOv(-0.37 eV),the excited electrons on ZOvcould be transferred to the CB of ZFOvby electron injection.The electrons in ZFOvcould react with surface adsorbed oxygen to form superoxide radicals,and parts of superoxide radicals further converted to hydrogen peroxide and thus generates hydroxyl radical to participate in degradation reaction.Because the valence band (VB) potential of ZFOvis more negative than the OH-/·OH potential,the positively charged holes in VB can only oxidize TC instead of oxidizing H2O or OH-to·OH.

    The degradation intermediate products were analyzed by high performance liquid chromatograph-mass spectrometer (HPLC-MS)to investigate the photocatalytic pathways.Based on the HPLCMS analysis,degradation and removal process can be divided into two main pathways (Fig.S14 in Supporting information).The first pathway is by the ring-opening reaction and the deprivation of methyl from the tertiary amine to generate the intermediate withm/zof 391.16 (A1),which is further fragmented to the product A2 (m/z=332.16)viathe deprivation of amino group.Afterwards,the intermediates with them/zvalues of 290.10 and 226.06 were degradedviathe oxidation,dehydroxylation reaction,deethylation reaction and deacetylation reaction.Meanwhile,tetracycline was fragmented to B1 (m/z=360.15) by removal of the amide group,hydroxyl group and methyl.The intermediates with them/zvalues of 316.16,272.16,261.17 and 245.18 are generated by the cleavage of specific functional groups and the ring-opening reactions.In the end,the intermediate products would be finally oxidized to CO2,H2O and small inorganic molecules.

    In conclusion,we successfully synthesized yolk-shell structure of ZOv/ZFOvby a solvothermal-calcination method.The ZOv/ZFOvcatalyst with suitable oxygen vacancy concentration can effectively degrade TC under visible light irradiation.The superior photocatalytic performance of the nanocomposite can be ascribed to the following advantages: (1) Photothermal effect accelerates the migration of ROS and speeds up the reaction rate; (2) Oxygen vacancy and heterostructure extend the light absorption and improve the charge carriers’separation; (3) Yolk-shell structure leads to the superior multi-reflection absorption capability.The present work not only gives insights into the TC photodegradation by using ZOv/ZFOv,but also offers a solution to the practical application of photocatalysts in wastewater treatment.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21976116,52161145409),Shaanxi Provincial Foreign Expert Project (No.2021JZY-004),SAFEA of China (Highend Foreign Expert Project),Alexander-von-Humboldt Foundation of Germany (Group-Linkage Program),and the scientific research startup fund of Shaanxi University of Science and Technology.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.031.

    欧美区成人在线视频| 特大巨黑吊av在线直播| 成年免费大片在线观看| 久久久久国产精品人妻一区二区| 亚洲精品一区蜜桃| 国产成人一区二区在线| 亚洲精品日韩在线中文字幕| 国产男女内射视频| 在现免费观看毛片| 乱码一卡2卡4卡精品| 亚洲在久久综合| 久久久久久九九精品二区国产| 国产精品av视频在线免费观看| 听说在线观看完整版免费高清| 亚洲国产精品成人久久小说| 亚洲人成网站在线播| 亚洲精华国产精华液的使用体验| 午夜福利在线观看免费完整高清在| 日本午夜av视频| 麻豆国产97在线/欧美| 久久午夜福利片| 国产69精品久久久久777片| 国产色婷婷99| 插逼视频在线观看| 99久久中文字幕三级久久日本| 18禁在线播放成人免费| 少妇人妻精品综合一区二区| 精品久久久久久久人妻蜜臀av| 欧美xxⅹ黑人| 日韩三级伦理在线观看| 男插女下体视频免费在线播放| 亚洲精品成人av观看孕妇| 人妻系列 视频| 伊人久久精品亚洲午夜| 国产精品一二三区在线看| 秋霞在线观看毛片| 国产久久久一区二区三区| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 久久影院123| 综合色丁香网| 99久久精品一区二区三区| 国产乱来视频区| 干丝袜人妻中文字幕| 香蕉精品网在线| 久热久热在线精品观看| 新久久久久国产一级毛片| 熟女av电影| 亚洲无线观看免费| 一个人看的www免费观看视频| 免费观看在线日韩| 免费看a级黄色片| 黄片wwwwww| a级毛片免费高清观看在线播放| 一二三四中文在线观看免费高清| 丝袜脚勾引网站| 国产久久久一区二区三区| 日本熟妇午夜| 国产精品福利在线免费观看| 日本猛色少妇xxxxx猛交久久| 美女内射精品一级片tv| 韩国高清视频一区二区三区| 国产成人a区在线观看| 少妇的逼水好多| 国产老妇女一区| 天天躁夜夜躁狠狠久久av| 日产精品乱码卡一卡2卡三| 少妇人妻 视频| 一级毛片电影观看| 亚洲aⅴ乱码一区二区在线播放| 在线免费十八禁| 国产精品蜜桃在线观看| 大又大粗又爽又黄少妇毛片口| 国产探花极品一区二区| 国产免费一级a男人的天堂| 久久精品久久久久久噜噜老黄| 大片电影免费在线观看免费| 69av精品久久久久久| 久久精品夜色国产| 丝袜喷水一区| 国产精品一区二区三区四区免费观看| 亚洲欧美一区二区三区黑人 | 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 麻豆乱淫一区二区| 搞女人的毛片| 亚洲av男天堂| 亚洲欧美一区二区三区国产| 亚洲国产精品999| 亚洲自拍偷在线| 久久99热这里只频精品6学生| 国产v大片淫在线免费观看| 人妻制服诱惑在线中文字幕| 免费不卡的大黄色大毛片视频在线观看| 男插女下体视频免费在线播放| 国产免费又黄又爽又色| 2021天堂中文幕一二区在线观| 校园人妻丝袜中文字幕| 真实男女啪啪啪动态图| 男女边摸边吃奶| 激情 狠狠 欧美| 女人被狂操c到高潮| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 国产精品嫩草影院av在线观看| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 联通29元200g的流量卡| 欧美日韩视频精品一区| 免费观看的影片在线观看| 美女被艹到高潮喷水动态| 蜜臀久久99精品久久宅男| 一级毛片久久久久久久久女| 国产日韩欧美亚洲二区| 亚洲精品视频女| 精品少妇久久久久久888优播| 在线亚洲精品国产二区图片欧美 | 乱系列少妇在线播放| 国产精品不卡视频一区二区| 草草在线视频免费看| 99久久精品国产国产毛片| 久久这里有精品视频免费| 国产黄频视频在线观看| 69av精品久久久久久| 国产大屁股一区二区在线视频| 亚洲av日韩在线播放| 97在线视频观看| 久久精品久久久久久久性| 亚洲最大成人中文| 搡女人真爽免费视频火全软件| 成人无遮挡网站| 精品久久久噜噜| 在线观看av片永久免费下载| 最近中文字幕高清免费大全6| 狂野欧美白嫩少妇大欣赏| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 观看美女的网站| 久久久久久久国产电影| av网站免费在线观看视频| 一级二级三级毛片免费看| 中文字幕制服av| 欧美日韩一区二区视频在线观看视频在线 | 亚洲婷婷狠狠爱综合网| 夜夜爽夜夜爽视频| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 五月玫瑰六月丁香| 色婷婷久久久亚洲欧美| 国产一区有黄有色的免费视频| 欧美人与善性xxx| 日韩一本色道免费dvd| 国产亚洲91精品色在线| 日韩免费高清中文字幕av| 别揉我奶头 嗯啊视频| 日韩国内少妇激情av| freevideosex欧美| 国产精品.久久久| 在线天堂最新版资源| 日韩不卡一区二区三区视频在线| 亚洲综合色惰| 在线观看国产h片| 六月丁香七月| 毛片一级片免费看久久久久| 亚洲国产精品国产精品| 亚洲精品视频女| 国产成人免费无遮挡视频| 真实男女啪啪啪动态图| 精品久久久久久久久亚洲| 久久久久九九精品影院| 国产精品99久久久久久久久| 亚洲内射少妇av| 亚洲精品456在线播放app| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 国产亚洲av嫩草精品影院| 国产成人午夜福利电影在线观看| 成人国产av品久久久| 成年女人看的毛片在线观看| 久久97久久精品| 免费黄频网站在线观看国产| 久久99精品国语久久久| 色婷婷久久久亚洲欧美| 一个人看视频在线观看www免费| 国产成人91sexporn| 精品人妻熟女av久视频| 久久久久久久久久人人人人人人| 国产综合精华液| 观看免费一级毛片| 精品久久久久久久久亚洲| 大香蕉97超碰在线| 亚洲性久久影院| 免费av毛片视频| 少妇 在线观看| av福利片在线观看| 狂野欧美激情性xxxx在线观看| 高清毛片免费看| 永久免费av网站大全| 午夜免费鲁丝| 日韩欧美一区视频在线观看 | 一区二区三区精品91| 97热精品久久久久久| 久久久精品免费免费高清| 99热国产这里只有精品6| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 综合色丁香网| 看黄色毛片网站| 亚洲国产精品专区欧美| 久久99热6这里只有精品| 精品国产露脸久久av麻豆| 久久影院123| 国产亚洲av片在线观看秒播厂| 国产精品国产三级专区第一集| 亚洲精品影视一区二区三区av| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 国产视频内射| 22中文网久久字幕| 99久久精品国产国产毛片| 欧美激情国产日韩精品一区| 欧美另类一区| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 国产成人免费观看mmmm| 性色av一级| 国产精品一区二区性色av| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 97人妻精品一区二区三区麻豆| 国产淫片久久久久久久久| 久久久久久久久久久免费av| 国产精品爽爽va在线观看网站| 日日啪夜夜爽| 美女主播在线视频| a级毛色黄片| 午夜福利在线观看免费完整高清在| 一区二区三区四区激情视频| 97超碰精品成人国产| www.色视频.com| 国产精品一二三区在线看| 国产成人精品久久久久久| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 国产精品秋霞免费鲁丝片| 青春草国产在线视频| 制服丝袜香蕉在线| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 一级a做视频免费观看| 久久久久久久大尺度免费视频| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久| 亚洲国产精品999| 亚洲av福利一区| 亚洲不卡免费看| 日产精品乱码卡一卡2卡三| 亚洲av免费高清在线观看| 成年版毛片免费区| 久久久精品欧美日韩精品| 亚洲国产精品国产精品| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说 | 国产老妇女一区| 色视频在线一区二区三区| av专区在线播放| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 香蕉精品网在线| 男人舔奶头视频| 国产亚洲精品久久久com| 日本熟妇午夜| 久久久久久久精品精品| 久久久久久久久久成人| 成人漫画全彩无遮挡| 黄色欧美视频在线观看| 亚洲自偷自拍三级| 免费黄频网站在线观看国产| 七月丁香在线播放| 新久久久久国产一级毛片| 欧美日韩精品成人综合77777| 韩国av在线不卡| 你懂的网址亚洲精品在线观看| 亚洲,一卡二卡三卡| 日韩在线高清观看一区二区三区| 男女国产视频网站| 亚洲在线观看片| 日韩不卡一区二区三区视频在线| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 下体分泌物呈黄色| 91久久精品电影网| 日本欧美国产在线视频| 插逼视频在线观看| 国产在视频线精品| 女人久久www免费人成看片| 在线观看国产h片| 国产欧美日韩精品一区二区| 亚洲内射少妇av| 久久久a久久爽久久v久久| 一区二区av电影网| 美女视频免费永久观看网站| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 2021少妇久久久久久久久久久| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 国产成人精品福利久久| 国产av国产精品国产| 国产精品.久久久| 午夜亚洲福利在线播放| 人人妻人人爽人人添夜夜欢视频 | 免费高清在线观看视频在线观看| 99热全是精品| 只有这里有精品99| 韩国高清视频一区二区三区| 中文欧美无线码| 韩国av在线不卡| 22中文网久久字幕| 久久精品夜色国产| freevideosex欧美| 成年免费大片在线观看| 中文欧美无线码| 国产精品国产三级国产专区5o| 中文字幕av成人在线电影| 亚洲综合精品二区| 天堂中文最新版在线下载 | www.av在线官网国产| 综合色丁香网| 免费看光身美女| 久久人人爽av亚洲精品天堂 | 黄片无遮挡物在线观看| 免费看日本二区| 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 国产熟女欧美一区二区| 日本欧美国产在线视频| 1000部很黄的大片| 精品人妻熟女av久视频| 亚洲精品日韩在线中文字幕| 国产精品国产三级国产专区5o| 午夜日本视频在线| 久久精品国产亚洲网站| 日本与韩国留学比较| 99热全是精品| 国产精品无大码| 超碰97精品在线观看| 街头女战士在线观看网站| 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 国产乱来视频区| 国产亚洲5aaaaa淫片| 亚洲精品成人av观看孕妇| 午夜日本视频在线| 成人鲁丝片一二三区免费| 蜜臀久久99精品久久宅男| 99热全是精品| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 欧美bdsm另类| 亚洲精品乱码久久久v下载方式| 久久久久精品久久久久真实原创| 内地一区二区视频在线| 久久久成人免费电影| av线在线观看网站| 亚洲av男天堂| 夜夜爽夜夜爽视频| av一本久久久久| 免费看不卡的av| 在线观看国产h片| 91狼人影院| 色视频在线一区二区三区| 国产成人freesex在线| 69人妻影院| 日韩,欧美,国产一区二区三区| 久久97久久精品| 国产精品.久久久| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 亚洲婷婷狠狠爱综合网| 精品熟女少妇av免费看| 国产淫片久久久久久久久| 男的添女的下面高潮视频| 亚洲人与动物交配视频| 亚洲自拍偷在线| 国产精品久久久久久久久免| 亚洲欧美成人综合另类久久久| 亚洲美女搞黄在线观看| 亚洲精品乱久久久久久| 大又大粗又爽又黄少妇毛片口| 有码 亚洲区| 国产精品国产av在线观看| 久久影院123| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 三级经典国产精品| 一区二区三区乱码不卡18| 人体艺术视频欧美日本| 亚洲国产色片| 亚洲av中文av极速乱| 国产亚洲一区二区精品| 美女主播在线视频| 亚洲天堂国产精品一区在线| 啦啦啦在线观看免费高清www| 久久精品熟女亚洲av麻豆精品| 一级毛片电影观看| 精品少妇黑人巨大在线播放| 91精品伊人久久大香线蕉| 波野结衣二区三区在线| 亚洲av免费高清在线观看| 久久热精品热| 欧美3d第一页| 日韩精品有码人妻一区| 观看免费一级毛片| 97在线视频观看| 亚洲国产精品999| 亚洲色图综合在线观看| 成人亚洲欧美一区二区av| 大香蕉97超碰在线| 国产黄色免费在线视频| 中文字幕亚洲精品专区| 亚洲av男天堂| a级一级毛片免费在线观看| 成人漫画全彩无遮挡| 久久久久国产网址| 日韩欧美精品免费久久| 1000部很黄的大片| 国产乱来视频区| 亚洲精品成人久久久久久| av线在线观看网站| 国产av不卡久久| 国产在线男女| 亚洲,一卡二卡三卡| 精品国产一区二区三区久久久樱花 | 少妇猛男粗大的猛烈进出视频 | 99热全是精品| 最新中文字幕久久久久| 免费黄频网站在线观看国产| 激情五月婷婷亚洲| 岛国毛片在线播放| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠久久av| 国产69精品久久久久777片| 男女下面进入的视频免费午夜| 国产亚洲av片在线观看秒播厂| 九色成人免费人妻av| 国产精品不卡视频一区二区| 久久6这里有精品| 国产有黄有色有爽视频| 少妇人妻精品综合一区二区| 黄片wwwwww| 老女人水多毛片| 精品久久久久久久久av| 伊人久久精品亚洲午夜| 男插女下体视频免费在线播放| 久久久色成人| 久久精品综合一区二区三区| 直男gayav资源| 男女下面进入的视频免费午夜| 婷婷色av中文字幕| 亚洲精品视频女| 国产老妇伦熟女老妇高清| av.在线天堂| 久久久久九九精品影院| 夫妻性生交免费视频一级片| 欧美激情在线99| 日韩国内少妇激情av| 免费大片18禁| 日韩在线高清观看一区二区三区| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 大片电影免费在线观看免费| 联通29元200g的流量卡| 高清av免费在线| 成年女人在线观看亚洲视频 | 女人被狂操c到高潮| 看非洲黑人一级黄片| 涩涩av久久男人的天堂| 噜噜噜噜噜久久久久久91| 三级经典国产精品| 国产精品99久久99久久久不卡 | 中文字幕久久专区| 国产精品女同一区二区软件| 精品国产露脸久久av麻豆| 午夜激情福利司机影院| 国产伦精品一区二区三区视频9| 日韩视频在线欧美| 青青草视频在线视频观看| 欧美日本视频| 日日摸夜夜添夜夜爱| 制服丝袜香蕉在线| 婷婷色av中文字幕| 国产成年人精品一区二区| 国产伦理片在线播放av一区| 精品久久久久久久末码| 22中文网久久字幕| 熟妇人妻不卡中文字幕| 麻豆国产97在线/欧美| 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| 国产精品成人在线| 蜜桃久久精品国产亚洲av| 2018国产大陆天天弄谢| 免费大片黄手机在线观看| 亚洲四区av| 只有这里有精品99| 老女人水多毛片| av在线天堂中文字幕| 精品国产一区二区三区久久久樱花 | 六月丁香七月| 亚洲精品视频女| 亚洲av在线观看美女高潮| 成人特级av手机在线观看| 三级经典国产精品| 热99国产精品久久久久久7| 免费高清在线观看视频在线观看| av黄色大香蕉| 在线观看国产h片| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的 | 亚洲精品,欧美精品| 老师上课跳d突然被开到最大视频| 搡老乐熟女国产| 人人妻人人澡人人爽人人夜夜| 国产人妻一区二区三区在| 精品久久久久久久久亚洲| 日韩电影二区| 亚洲欧美日韩卡通动漫| 欧美精品人与动牲交sv欧美| 亚洲不卡免费看| 男女国产视频网站| 精品国产一区二区三区久久久樱花 | 热99国产精品久久久久久7| 亚洲欧美日韩无卡精品| 欧美一级a爱片免费观看看| 免费观看性生交大片5| 国产高潮美女av| 熟妇人妻不卡中文字幕| 亚洲精品国产色婷婷电影| 最近中文字幕2019免费版| 久久99热6这里只有精品| 亚洲精品乱久久久久久| 天天一区二区日本电影三级| 国产老妇伦熟女老妇高清| 26uuu在线亚洲综合色| 精品视频人人做人人爽| 日日摸夜夜添夜夜爱| 日韩一本色道免费dvd| 伊人久久国产一区二区| 偷拍熟女少妇极品色| 国产免费福利视频在线观看| 国产欧美日韩一区二区三区在线 | 国产黄片美女视频| 久久人人爽人人片av| 中国三级夫妇交换| 天天一区二区日本电影三级| 国产 精品1| 免费av毛片视频| 欧美+日韩+精品| 久久久久网色| 草草在线视频免费看| 日韩成人伦理影院| 高清欧美精品videossex| av国产免费在线观看| 国产伦精品一区二区三区四那| 亚洲精品影视一区二区三区av| 日产精品乱码卡一卡2卡三| 久久久久久久亚洲中文字幕| 亚洲色图综合在线观看| 亚洲精品亚洲一区二区| 丝袜喷水一区| 日日摸夜夜添夜夜爱| 亚洲av国产av综合av卡| 中文在线观看免费www的网站| 日本av手机在线免费观看| 男的添女的下面高潮视频| 精品亚洲乱码少妇综合久久| 国产精品精品国产色婷婷| 寂寞人妻少妇视频99o| 中文字幕亚洲精品专区| 日韩强制内射视频| 天堂中文最新版在线下载 | 国产午夜精品久久久久久一区二区三区| 欧美一级a爱片免费观看看| 国产成人a∨麻豆精品| 国产精品偷伦视频观看了| 联通29元200g的流量卡| av国产久精品久网站免费入址| 精品人妻视频免费看| 久久久精品免费免费高清| 久久久久九九精品影院| 精品久久久久久久久亚洲| 免费看不卡的av| 国产精品嫩草影院av在线观看| 一区二区av电影网| 伦精品一区二区三区| 下体分泌物呈黄色| 99久久中文字幕三级久久日本| 久久鲁丝午夜福利片| 一级黄片播放器| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色一级大片看看| 免费黄色在线免费观看| 国产精品人妻久久久影院|