• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ electrochemical dehydrogenation of ultrathin Co(OH)2 nanosheets for enhanced hydrogen evolution

    2023-03-14 06:52:42QinZhouQihngBinLilingLioFngYuDongyngLiDongshengTngHiqingZhou
    Chinese Chemical Letters 2023年1期

    Qin Zhou,Qihng Bin,Liling Lio,Fng Yu,*,Dongyng Li,Dongsheng Tng,*,Hiqing Zhou,b,*

    a Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications,Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Key Laboratory for Matter Microstructure and Function of Hunan Province,Hunan Normal University,Changsha 410081,China

    b Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Hunan University,Changsha 410082,China

    Keywords:Hydrogen evolution reaction Transition metal hydroxide In-situ electrochemical dehydrogenation In-plane heterostructure Water splitting

    ABSTRACT Transition metal hydroxides/oxyhydroxides have recently emerged as highly active electrocatalysts for oxygen evolution reaction in alkaline water electrolysis,while have not yet been widely investigated for hydrogen evolution electrocatalysts owing to their unfavorable H*-adsorption,making it difficult to construct an overall-water-splitting cell for hydrogen production.In this work,we proposed a straightforward and effective approach to develop an efficient in-plane heterostructured CoOOH/Co(OH)2 catalyst via in-situ electrochemical dehydrogenation method,in which the dehydrogenated–CoOOH and Co(OH)2 at the surface synergistically boost the hydrogen evolution reaction (HER) kinetics in base as confirmed by high-resolution transmission electron microscope,synchrotron X-ray absorption spectroscopy,and electron energy loss spectroscopy.Due to the in-situ dehydrogenation of ultrathin Co(OH)2 nanosheets,the catalytic activity of the CoOOH/Co(OH)2 heterostructures is progressively improved,which exhibit outstanding hydrogen-evolving activity in base requiring a low overpotential of 132 mV to afford 10 mA/cm2 with very fast reaction kinetics after 60 h dehydrogenation.The gradually improved catalytic performance for the CoOOH/Co(OH)2 is probably due to the enhanced H*-adsorption induced by the synergistic effect of heterostructures and better conductivity of CoOOH relative to electrically insulating Co(OH)2.This work will open the opportunity for a new family of transition metal hydroxides/oxyhydroxides as active HER catalysts,and also highlight the importance of using in situ techniques to construct precious metal-free efficient catalysts for alkaline hydrogen evolution.

    Electrocatalytic water splitting driven by renewable energies(e.g.,solar,wind,geothermal energy) has widely regarded as a safe and environmentally friendly pathway for hydrogen production[1–6].At present,water splitting is more favored in alkaline electrolyte by most people due to its compatibility with inexpensive and earth-abundant electrocatalysts and cheap electrolyzer construction [7–11].However,most noble metal-free HER catalysts(e.g.,transition metal sulfides [12–15],selenides [16–20],phosphides [21–26]) performing superior activity in acidic solution,possess unsatisfied HER performance in alkaline electrolytes owing to their poor capability for H2O adsorption/dissociation.Based on this point,intensive efforts have been devoted to further improving the catalytic performance by hybridizing these materials with transition metal hydroxides (e.g.,Ni(OH)2,Co(OH)2,NiFe LDH)[27–29].Here,transition metal hydroxides are reported to serve as OH-(generated by H2O electrolysis) adsorption sites rather than H*-adsorption centers,which indicates that the catalysts promoter of transition metal hydroxides alone exhibit inferior activity for HER due to the vital role of hydrogen binding in this process.In this sense,it is very promising if we can find out some useful routes to activate the reaction kinetics of transition metal hydroxides.Actually,it is interesting to note that transition metal oxyhydroxides as the intermediates in the transformation process from hydroxides to oxides have been demonstrated to be electrocatalytically active for HER [30,31].For example,Pillaiet al.investigated the catalytic activity of CoOOH towards HER by calculating the adsorption energy of hydrogen atom,and the results suggest that CoOOH is a promising candidate for HER [31].Therefore,as a missing piece in alkaline HER,heterostructures by integrating transition metal oxyhydroxides with hydroxides is highly expected to exhibit outstanding hydrogen-evolving activity considering better conductivity of CoOOH relative to Co(OH)2.

    Recently,in-situelectrochemical activation has drawn considerable attention as a new pretreating strategy for tuning electrocatalytic activity owing to its simplicity,variable control and flexibility[32–36].More importantly,the electrochemical activation strategy exerted on the as-obtained precursors wouldin situcreate abundant active species at the surface,always keeping a strong binding force between the active species and conductive supports,which would further facilitate the electron transfer from the electrode to the catalyst surface and ensure structural stability during the durability tests [36,37].In addition,the local electronic structure and morphology of catalysts can be effectively modulatedvia in-situelectrochemical tuning technique [38,39].For example,Huet al.reported anin-situelectrochemical activation method to pretreat Nibased ligand 1,4-benzenedithiol (Ni-BDT) nanosheets,which can be transformed into ultrathin metallic Ni (Ni0) nanosheets with trace sulfide (Sadsδ-) adsorbed on the surface under a cathodic potential[37].Benefiting from the Ni0-Sadsδ- interface,the water dissociation process has been greatly promoted,thereby significantly enhancing HER activity in an alkaline electrolyte.Besides thein-situelectrochemical reduction,thein-situelectrochemical etching also can be utilized to regulate the activity of catalysts.For instance,Hu’s group adopted a galvanostatical etching method to activate the OER performance of perovskite CoSn(OH)6nanocubesviadissolving Sn hydroxides,creating O-vacancies and generating porous structures [38].

    Inspired by the aforementionedin-situstrategies,we devoted to constructing porous cobalt-based in-plane oxyhydroxide/hydroxide(CoOOH/Co(OH)2) heterostructures with outstanding HER activity from electrochemically inert Co(OH)2viaanin-situelectrochemical dehydrogenation/activation method.The electrochemically dehydrogenated hybrid catalyst shows a superior catalytic activity toward HER with a low overpotential of 132 mV to reach 10 mA/cm2,which is greatly decreased in comparison with that of pristine Co(OH)2(464 mV).This unusual self-optimizing performance can be derived from the generation of CoOOH/Co(OH)2heterostructures,in which Co(OH)2acts as water adsorption/dissociation promoter and CoOOH serves as H*-adsorption site as well as the improved electrical conductivity and charge transfer of the asobtained catalysts.

    In order to fabricate an in-plane heterostructure between conductive CoOOH and Co(OH)2,we employed a novel strategy calledin-situelectrochemical activation to dehydrogenate ultrathin Co(OH)2nanosheets under a constant current density of-10 mA/cm2in 1.0 mol/L KOH electrolyte.The activation process was performed using a three-electrode electrochemical cell Fig.1a illustrates the evolution of morphology and component of Co(OH)2nanosheets as efficient HER catalysts in thein-situelectrochemical dehydrogenation process Fig.1b shows the X-Ray diffraction(XRD) patterns of pristine Co(OH)2and Co(OH)2afterin-situelectrochemical dehydrogenation (under reduction current density of 10 mA/cm2) for 60 h (denoted as: Co(OH)2-60).Although tiny peaks shift induced by interlayer ions (NO3-and CO32-) can be observed,the diffraction peaks of pristine Co(OH)2located at around 18.1°,33.0°,and 59.4° can be indexed to (001),(100) and (003) planes of hexagonal Co(OH)2(PDF #45–0031).After electrochemical dehydrogenation,the peaks also can be well maintained for Co(OH)2-1 and Co(OH)2-5 samples (Fig.S1 in Supporting information),while two new prominent diffraction peaks at around 19.8° and 38.7° can be observed for Co(OH)2-60,which indicates that CoOOH would be gradually generated with the prolonged activation time Fig.1c gives the typical TEM image of pristine Co(OH)2,and it clearly shows a thin,smooth and flexible sheet-like morphology.The selected area electron diffraction (SAED) pattern shows well-defined diffractions rings,indicating the polycrystalline nature of Co(OH)2(Fig.1d).The two rings can be ascribed to (101) and (110) lattice planes of the hexagonal Co(OH)2(space group P-3m1).As can be observed from high-resolution TEM (HRTEM) image (Fig.1e),the lattice fringes are randomly oriented,and a lattice spacing of 0.24 nm can be attributed to (101) plane of Co(OH)2,which is in good agreement with the SAED result.

    Fig.1.(a) Schematic illustration of the in-situ electrochemical dehydrogenation/activation process.(b) A typical XRD pattern of pristine Co(OH)2,activated Co(OH)2,and carbon paper.(c) TEM image,(d) SAED pattern,(e) HRTEM image of pristine Co(OH)2.(f) TEM image,(g,h) HR-TEM images selected in areas I and II,(i)STEM elemental mapping of Co(OH)2–60.

    Thein-situelectrochemical dehydrogenation of Co(OH)2nanosheets was conducted at an cathodic current density of 10 mA/cm2,and they possess different morphologies with the prolonged of time.At the early stage,the ultrathin sheets morphology gradually transforms into hexagonal nanodiscs (Fig.S2 in Supporting information).With the increase of time,the nanosheets disappear and the solid structures became core-shell nanodiscs with a rough surface (Fig.S3 in Supporting information).At last,the solid core began to disappear,showing a nanoplate or nanoring-like structure.Typically,Co(OH)2-60 presents a nanoplate morphology with some pores in the centers and thicker rings around the out border (Fig.1f).The inset of Fig.1f is the SAED pattern of Co(OH)2-60,in which the marked yellow rings can be ascribed to the (100) and (200) planes of Co(OH)2,while the red rings can be assigned to the (100) and (102) planes of CoOOH,corroborating thein situformation of an in-plane heterostructure between CoOOH and Co(OH)2.To further verify the composition and crystal structure of the Co(OH)2-60,HRTEM images in the interior and exterior areas are selected and marked by yellow and purple squares (Fig.1f,I and II).In the area I,the lattice fringes with a distance of 0.24 nm can be clearly observed,which is corresponding to (101) plane of Co(OH)2(Fig.1g).In area II,it not only shows the (001) plane of Co(OH)2,but also displays the (100) and (102) planes of CoOOH with D-spacings of 0.25 nm and 0.21 nm (Fig.1h),which is consistent with the SAED and XRD patterns.In addition,the STEM elemental mappings reveal the uniform distribution of Co and O in the as-prepared Co(OH)2-60(Fig.1i).All of these above observations confirm the uniform formation of CoOOH during the dehydrogenation process.

    Fig.2.(a) iR-Corrected polarization curves in 1.0 mol/L KOH solution of various electrocatalysts as indicated (scan rate: 5 mV/s).(b) Tafel plots derived from the polarization curves in (a).(c) Chronopotentiometry curve of Co(OH)2 at a constant current density of -50 mA/cm2.(d) Nyquist plot measured at potential of -0.2 V vs.RHE.

    To verify the effects of heterostructures on the catalytic activity of CoOOH/Co(OH)2,electrochemical measurements of pristine Co(OH)2and dehydrogenated Co(OH)2afterin-situactivation were conducted using a standard three-electrode system in 1.0 mol/L KOH.The pristine Co(OH)2shows inferior HER performance with an overpotential of 464 mV at a current density of 10 mA/cm2,indicating that it is a truly poor candidate for HER catalysts (Fig.2a).However,constant cathodic current density (10 mA/cm2) exerted on the as-prepared catalyst results in an activation and dehydrogenation process,which is evidenced by the dramatic decrease of overpotentials and gradual improvement of the catalytic activities.Specifically,the as-prepared Co(OH)2-1 and Co(OH)2-5 require overpotentials of 224 mV and 183 mV to reach a current density of 10 mA/cm2,respectively.In particular,Co(OH)2-60 displays very superior electrocatalytic activity with an overpotential of only 132 mV at 10 mA/cm2.A similar electrochemical performance improvement can be observed under continuous cyclic voltammetry between potentials of 0 and -0.3 V vs.RHE at a scan rate of 20 mV/s.After 1000 CV cycles,a low overpotential of only 256 mV is required for activated Co(OH)2,which is 210 mV lower than that of pristine Co(OH)2(Fig.S4 in Supporting information).The CoOOH/Co(OH)2heterostructures werein-situgenerated during the process of continuous cyclic voltammetry measurement,as shown in (Fig.S5 Supporting information),in which two obvious diffraction peaks are detected belonging to CoOOH,suggesting the repeatable and credible dehydrogenation of Co(OH)2to CoOOH at the surface for efficient HER catalysis.To exclude that the enhanced performance of the heterostructured catalyst is only originated from the increasement of CoOOH,electrochemical measurement has been conducted on pure CoOOH.As exhibited in (Fig.S6a Supporting information),the pure CoOOH requires overpotential of 453 mV to reach a current density of 10 mA/cm2,which is much higher than those of activated catalysts (Co(OH)2-1,Co(OH)2-5,and Co(OH)2-60).Moreover,the pure CoOOH shows sluggish catalytic kinetics as evidenced by the large Tafel slope of 159 mV/dec (Fig.S6b in Supporting information).This result reveals that pure CoOOH shows inferior HER performance and also demonstrates that the superior alkaline HER activity for the CoOOH/Co(OH)2can be ascribed to the synergistic effect between the two components rather than the increase of CoOOH.The accelerated electrocatalytic kinetics of Co(OH)2during the activation process is also evidenced by the distinct reduced Tafel slope,as exhibited in Fig.2b.The Tafel slope of Co(OH)2-60 is 95 mV/dec,which is much lower than that of pristine Co(OH)2(289 mV/dec).Although transition metal (oxy)hydroxides alone have been regarded as unqualified candidates for HER,our optimized Co(OH)2-based catalyst afterin-situelectrochemical activation forming heterostructured CoOOH/Co(OH)2exhibits superb catalytic activity,which outperforms most of the reported transition metal (oxy)hydroxides-based electrocatalysts tested under similar conditions (Table S1 in Supporting information),such as Ni(OH)2/MoS2[40],Ni(OH)2/NiCo2O4[41],CeO2/Co(OH)2[42] and Co(OH)2@P-NiCo-LDH [43],and is even comparable to those of cobalt-based catalysts with much higher conductivity including phosphides (CoP@FeCoP and CoP@NC/graphene) [44,45],selenides(p-CoSe2/CC and (Ni,Co)0.85Se) [46,47],nitrides (NiCo2N/NF and Co3N) [48,49],and sulfides (Co9S8and CoSx/Ni3S2@NF) [50,51].Thein-situactivation process can also be observed in the chronopotentiometry test conducted at a larger current density of -50 mA/cm2(Fig.2c),showing that the potential increases rapidly in the initial 5 h,and then increases gradually until the 60 h,which is consistent with the variation of the polarization curves in Fig.2a.In addition,electrochemical impedance spectroscopy (EIS) was employed to explore the charge-transfer kinetics during the activation process.As presented in Fig.2d,charge-transfer resistance of Co(OH)2is continuously reduced from 56Ωto 9Ωwith the increase of activation time,suggesting thatin-situelectrochemical activation could efficiently improve the conductivity of the heterostructure,and accelerate the charge transfer kinetics between the electrolyte and catalysts.

    In order to gain an in-depth understanding of the mechanism behind this electrochemical dehydrogenation/activation process,we conducted a series of measurements including synchrotron X-ray absorption spectroscopy (XAS) and electron energy loss spectroscopy (EELS).The soft XAS can provide the useful information of electronic structure of Co in our as-prepared catalysts,as shown in Fig.3a.Apparently,the L3peaks located at 776.8,778.1,778.6,and 779.5 eV can be assigned to Co2+in pristine Co(OH)2[52].While a peak located at 780.1 eV appears with the increase of activation time,which can be ascribed to Co3+[52,53].It is clearly seen that the intensity of this peak increases with the prolonged activation time,suggesting the rising ratio of Co3+.In addition,X-ray absorption near-edge structure (XANES) spectra at the Co K-edge also demonstrate the existence of Co3+.As shown in Fig.3b,the absorption edge is shifted to higher energy from the pristine Co(OH)2to Co(OH)2-60,along with a broadening of the white line peak,revealing a distinct increase of the Co oxidation state.Although the XAS results suggest the presence of Co3+,it cannot probe the dynamic electronic structure of the catalyst during the electrocatalytic reaction.Therefore,in-situRaman spectroscopy was conducted to directly monitor the structural transformation of Co(OH)2under the electrochemical activation conditions.Fig.3c shows Raman spectra of pristine Co(OH)2and Co(OH)2at selected activation time operated at cathodic current density of 10 mA/cm2immersed in 1.0 mol/L KOH.Apparently,the bands located at 455 and 515 cm-1can be assigned to the Co–O symmetric stretching mode (Ag) and O–Co–O bending mode derived from the Co(OH)2nanosheets [54].After 1 h activation,the bands of Co(OH)2are retained and no band-shift or new bands can be observed.When the electrochemical activation time increases to 5 h,one new prominent band appears at around 688 cm-1besides the band of Co(OH)2,which is ascribed to CoOOH [55,56].With prolonged activation time,the bands of Co(OH)2gradually disappear.When the activation time increases to 60 h,bands of Co(OH)2disappear and bands appearing at 497 cm-1belongs to the CoOOH[54],indicating thein-situformation of CoOOH under cathodic current operation,which is consistence with theex-situXAS result.To precisely investigate the distribution of CoOOH on the nanoplates,EELS mappings of pristine Co(OH)2and Co(OH)2-60 were acquired from the edge to the interior of the nanoplates,as shown in Figs.3d-g.Unlike the pristine Co(OH)2that no obvious shift of L3and L2peaks can be detected,L3and L2peaks of Co(OH)2-60 gradually shift to higher energy losses from the border to the inner of the nanoplates,indicating that the percentage of the Co3+(CoOOH) increases gradually from the exterior to the interior of the Co(OH)2-60 nanoplates,which is consistent with the HRTEM observations.

    Fig.3.(a) Co L-edge XAS and (b) Co K-edge XANES spectra of the pristine Co(OH)2 and Co(OH)2 after electrochemical activation.(c) in-situ Raman spectrum of Co(OH)2 under different activation stages.(d) Dark-field STEM image and (e) corresponding EELS mapping of Co(OH)2-60.(f) Dark-field STEM image and (g) corresponding EELS mapping of pristine Co(OH)2.

    Based on the above characterizations,the evolution of morphology with electrochemical activation time for Co(OH)2can be assigned to the combination of recrystallization and inside-out Ostwald ripening mechanism.Firstly,the pristine Co(OH)2featuring ultrathin nanosheets morphology would gradually convert to nanoplates-like Co(OH)2viathe recrystallization in an alkaline electrolyte [57].As time goes on,the particles on the edges are easy to grow into large ones,because the recrystallization preferentially occurs at the solid-liquid interface,while the inner crystallites tend to dissolve owing to the loose packing [58].Therefore,the core-shell like morphology would gradually form on the nanosheet owing to the growth of exterior part and consumption of the inner substances.With prolonged time,the solid core gradually evacuates and generates some pores in the center.As the HER reaction proceeding,the surface of Co(OH)2would lose some H atoms and electrons and transform into CoOOH owing to the existence of dissolved oxygen in the electrolyte and strong concentration of OH-near the catalysts [59].However,the edges of the nanoplates are difficult to lose electron under reductive current because the edges are always the active sites for HER.Therefore,the center of the nanoplates tend to lose electrons,thereby generating CoOOH/Co(OH)2heterostructures.Consequently,the XAS and EELS results indicate that the as-prepared Co(OH)2nanosheets experience distinct electronic structure reconstruction under realistic catalytic conditions forming heterostructured CoOOH/Co(OH)2,which is responsible for thein-situelectrochemical activation of Co(OH)2for HER.

    As has been reported,the adsorption/dissociation of H2O,which is regarded as a rate-limiting step in alkaline hydrogen evolution,prefers to proceed on the surfaces of transition metal hydroxides.Besides,CoOOH could serve as a more favorable site for hydrogen adsorption based on a small adsorption barrier of-0.45 eV [31].Therefore,the superior alkaline HER activity for the CoOOH/Co(OH)2is derived from the interface engineering.As shown in Fig.4,the Co(OH)2acts as a promoter for water adsorption and dissociation,while the produced hydrogen intermediates absorb on adjacent CoOOH and subsequently combine to give hydrogen gas.In this way,the CoOOH/Co(OH)2heterostructures effectively reduce the energy barrier of the water dissociation and accelerates the alkaline HER process accordingly.

    In this work,CoOOH/Co(OH)2heterostructures have been designed and fabricated as an efficient alkaline HER electrocatalystvia in-situelectrochemical dehydrogenation strategy.The resultant CoOOH/Co(OH)2heterostructures exhibit significantly enhanced HER performance with a small overpotential of 132 mV to afford 10 mA/cm2,which is 332 mV lower than that of pristine Co(OH)2.The excellent activity is probably attributed to the synergetic cooperation between Co(OH)2and CoOOH,in which Co(OH)2acts as H2O adsorption/dissociation promoter,and CoOOH serves as H*acceptor.We believe that our findings would provide novel insight into engineering heterostructured catalysts with outstanding HER performance in alkaline media.

    Fig.4.Illustration of the HER mechanism on CoOOH/Co(OH)2 heterostructures in alkaline solution.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This project is mainly funded by National Science Foundation of China (Nos.12074116 and 52172197),the Youth 1000 Talent Program of China,Undergraduate Scientific Research Innovation Project of China (No.202110542037),Science and Technology Innovation Platform (No.2019RS1032),Major Program of Natural Science Foundation of Hunan Province of Hunan Province,and Hunan Normal University (Nos.2021133,21CSZ004 and 21CSZ029).H.Zhou also acknowledges the support from Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy (No.2020CB1007).Q.Zhou acknowledges the support from Science and Technology Innovation Program of Hunan Province(No.2021RC2075).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.02.053.

    最后的刺客免费高清国语| 欧美成人精品欧美一级黄| 蜜桃亚洲精品一区二区三区| 中国美白少妇内射xxxbb| 国产av码专区亚洲av| 国产精品福利在线免费观看| 美女xxoo啪啪120秒动态图| 丝袜脚勾引网站| 在线观看一区二区三区激情| 欧美区成人在线视频| 久久国产乱子免费精品| 黄色怎么调成土黄色| 男人爽女人下面视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 九草在线视频观看| 免费播放大片免费观看视频在线观看| 91精品伊人久久大香线蕉| 热re99久久精品国产66热6| 少妇的逼水好多| 成人毛片60女人毛片免费| 中国三级夫妇交换| 亚洲精品日本国产第一区| 国产日韩欧美亚洲二区| 久久久久久久久久人人人人人人| 3wmmmm亚洲av在线观看| 大片免费播放器 马上看| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 街头女战士在线观看网站| 91久久精品国产一区二区三区| 亚洲最大成人手机在线| 男女无遮挡免费网站观看| 亚洲欧美精品自产自拍| 精品久久国产蜜桃| 少妇熟女欧美另类| 久久精品国产亚洲av涩爱| 免费看a级黄色片| 亚洲精品国产成人久久av| 国产黄色视频一区二区在线观看| 久热这里只有精品99| 国产女主播在线喷水免费视频网站| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 国产一区有黄有色的免费视频| 99视频精品全部免费 在线| 国产精品av视频在线免费观看| 久久97久久精品| 亚洲精品中文字幕在线视频 | 亚洲欧美中文字幕日韩二区| 看黄色毛片网站| 国产爱豆传媒在线观看| 深爱激情五月婷婷| 在线亚洲精品国产二区图片欧美 | 国产爽快片一区二区三区| 亚洲性久久影院| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看| 91狼人影院| 午夜福利在线在线| 久久人人爽av亚洲精品天堂 | 国产伦在线观看视频一区| 免费看a级黄色片| 一级毛片久久久久久久久女| 欧美极品一区二区三区四区| 精品国产一区二区三区久久久樱花 | 午夜免费观看性视频| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 久久久精品免费免费高清| 午夜福利高清视频| 欧美一区二区亚洲| 成年av动漫网址| 久久久久久久久久久免费av| 久久久成人免费电影| 国产成人a∨麻豆精品| 直男gayav资源| 国产老妇女一区| 18禁裸乳无遮挡动漫免费视频 | 2021天堂中文幕一二区在线观| 嫩草影院精品99| 99热这里只有是精品在线观看| 在线播放无遮挡| 老司机影院毛片| 亚洲成色77777| av天堂中文字幕网| 在线观看国产h片| 亚洲欧美中文字幕日韩二区| 国产一区有黄有色的免费视频| av天堂中文字幕网| 99热国产这里只有精品6| 激情五月婷婷亚洲| 插阴视频在线观看视频| 啦啦啦啦在线视频资源| 成人欧美大片| 国产精品一区二区性色av| 我的女老师完整版在线观看| 色视频在线一区二区三区| 97热精品久久久久久| 晚上一个人看的免费电影| 日韩在线高清观看一区二区三区| 久久热精品热| 亚洲自偷自拍三级| 免费观看的影片在线观看| 晚上一个人看的免费电影| 少妇的逼水好多| 亚洲精品aⅴ在线观看| 97人妻精品一区二区三区麻豆| 国产男女内射视频| 一区二区三区免费毛片| 午夜精品国产一区二区电影 | 亚洲性久久影院| 一级毛片黄色毛片免费观看视频| 久久久亚洲精品成人影院| 少妇丰满av| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 熟女电影av网| 激情 狠狠 欧美| 性色av一级| 黄色配什么色好看| 亚洲自偷自拍三级| 男人狂女人下面高潮的视频| 免费观看av网站的网址| 国产视频首页在线观看| 九九爱精品视频在线观看| 全区人妻精品视频| 一级a做视频免费观看| 人妻系列 视频| 看免费成人av毛片| 国产精品人妻久久久影院| 国产 精品1| 欧美+日韩+精品| 亚洲天堂av无毛| 国模一区二区三区四区视频| 中文资源天堂在线| 免费电影在线观看免费观看| 麻豆乱淫一区二区| 久久久久久久久久人人人人人人| 国产高清国产精品国产三级 | 精品酒店卫生间| 亚洲美女视频黄频| 99热全是精品| 网址你懂的国产日韩在线| 色吧在线观看| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 亚州av有码| 一级黄片播放器| 欧美激情久久久久久爽电影| 中国三级夫妇交换| 蜜桃亚洲精品一区二区三区| 亚洲av欧美aⅴ国产| 国产精品女同一区二区软件| 中文在线观看免费www的网站| 国产高潮美女av| 午夜免费鲁丝| 夜夜爽夜夜爽视频| 日本午夜av视频| 最近手机中文字幕大全| 欧美+日韩+精品| 亚洲av男天堂| 欧美xxxx性猛交bbbb| 十八禁网站网址无遮挡 | 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 国产淫语在线视频| 一区二区av电影网| 在线 av 中文字幕| 人妻一区二区av| 免费av毛片视频| 国产人妻一区二区三区在| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 黄色视频在线播放观看不卡| 国产高清不卡午夜福利| 偷拍熟女少妇极品色| 亚洲图色成人| 91aial.com中文字幕在线观看| 亚洲高清免费不卡视频| 亚洲aⅴ乱码一区二区在线播放| 性色av一级| 亚洲色图av天堂| 七月丁香在线播放| 蜜桃亚洲精品一区二区三区| 男女啪啪激烈高潮av片| 禁无遮挡网站| 久久久久国产网址| a级毛片免费高清观看在线播放| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| 国产欧美亚洲国产| 丰满乱子伦码专区| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| 日韩亚洲欧美综合| 日韩在线高清观看一区二区三区| 大码成人一级视频| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 成人无遮挡网站| 小蜜桃在线观看免费完整版高清| 爱豆传媒免费全集在线观看| 蜜桃久久精品国产亚洲av| 亚洲av欧美aⅴ国产| 久久6这里有精品| 成人欧美大片| 九九久久精品国产亚洲av麻豆| 欧美xxxx性猛交bbbb| h日本视频在线播放| 午夜激情久久久久久久| 亚洲av不卡在线观看| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 美女内射精品一级片tv| 少妇的逼水好多| 午夜福利高清视频| 嫩草影院入口| 人妻一区二区av| 大码成人一级视频| 中文字幕亚洲精品专区| 亚洲真实伦在线观看| 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 日韩大片免费观看网站| 婷婷色av中文字幕| 亚洲精品乱码久久久久久按摩| 一区二区三区免费毛片| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 久久久a久久爽久久v久久| 国产 一区精品| 在线免费十八禁| 大香蕉久久网| 久久久久久久精品精品| 国产伦精品一区二区三区四那| 精品久久久久久电影网| 18禁动态无遮挡网站| 欧美精品人与动牲交sv欧美| 高清欧美精品videossex| 免费看光身美女| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 国产精品一区www在线观看| 女人久久www免费人成看片| 国产视频首页在线观看| 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 亚洲国产精品国产精品| 少妇丰满av| 一级黄片播放器| 亚洲电影在线观看av| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| 草草在线视频免费看| 亚洲精品成人av观看孕妇| 国产熟女欧美一区二区| 91精品伊人久久大香线蕉| 国产伦理片在线播放av一区| 综合色av麻豆| 久热这里只有精品99| 国产精品一及| 尤物成人国产欧美一区二区三区| 国产一区二区三区av在线| 国产精品一区www在线观看| 精品国产一区二区三区久久久樱花 | 色吧在线观看| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 黄色视频在线播放观看不卡| 永久免费av网站大全| 性插视频无遮挡在线免费观看| 亚洲精品一二三| av又黄又爽大尺度在线免费看| 中文字幕亚洲精品专区| 免费观看a级毛片全部| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 国内精品宾馆在线| 日本免费在线观看一区| 69av精品久久久久久| 91狼人影院| 久久久久久国产a免费观看| av黄色大香蕉| 草草在线视频免费看| 国产一级毛片在线| 国产黄频视频在线观看| 国产精品一二三区在线看| 男的添女的下面高潮视频| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 能在线免费看毛片的网站| 国产成人精品福利久久| 精品少妇久久久久久888优播| 国产在线男女| 久久久久久国产a免费观看| 一级爰片在线观看| 国产精品一及| 国产亚洲av片在线观看秒播厂| 婷婷色综合大香蕉| 男人狂女人下面高潮的视频| 精品人妻视频免费看| 亚洲人与动物交配视频| av网站免费在线观看视频| 97热精品久久久久久| 黄色一级大片看看| 丝袜美腿在线中文| 三级国产精品片| 久热这里只有精品99| 国产精品麻豆人妻色哟哟久久| 国产毛片在线视频| 日韩欧美精品v在线| 午夜免费鲁丝| 国产片特级美女逼逼视频| 欧美潮喷喷水| 亚洲精品日韩在线中文字幕| 久久6这里有精品| 国产免费又黄又爽又色| 久久久午夜欧美精品| 毛片一级片免费看久久久久| 成人欧美大片| 3wmmmm亚洲av在线观看| 久久久色成人| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 欧美xxxx性猛交bbbb| 大香蕉久久网| 国产av不卡久久| 男人狂女人下面高潮的视频| 欧美激情久久久久久爽电影| 国产精品人妻久久久影院| 美女高潮的动态| 午夜福利网站1000一区二区三区| 久久久久九九精品影院| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 男的添女的下面高潮视频| 老司机影院成人| 日本黄大片高清| 神马国产精品三级电影在线观看| 亚洲欧美日韩另类电影网站 | 国产精品.久久久| 国产黄片视频在线免费观看| 大香蕉久久网| 18禁在线无遮挡免费观看视频| 久久久久久久久久久免费av| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 国产免费一区二区三区四区乱码| 国产毛片a区久久久久| 国产黄片视频在线免费观看| 伦理电影大哥的女人| 日本爱情动作片www.在线观看| 97超碰精品成人国产| 综合色av麻豆| 高清视频免费观看一区二区| 日韩成人av中文字幕在线观看| 99re6热这里在线精品视频| 偷拍熟女少妇极品色| 久久亚洲国产成人精品v| 在线观看国产h片| 国产精品不卡视频一区二区| 校园人妻丝袜中文字幕| 成年版毛片免费区| 亚洲国产最新在线播放| 成年女人看的毛片在线观看| 国产人妻一区二区三区在| 久久热精品热| 成年免费大片在线观看| eeuss影院久久| 亚洲国产成人一精品久久久| 亚洲怡红院男人天堂| 蜜桃久久精品国产亚洲av| 一区二区av电影网| 国产高清三级在线| 精品久久国产蜜桃| 尾随美女入室| 亚洲色图综合在线观看| 国产精品一区二区在线观看99| 在线观看免费高清a一片| 亚洲成色77777| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 国产片特级美女逼逼视频| 91久久精品电影网| 国产中年淑女户外野战色| 久久热精品热| 成人鲁丝片一二三区免费| 深夜a级毛片| 国产精品伦人一区二区| 五月伊人婷婷丁香| 欧美高清性xxxxhd video| 久久久成人免费电影| 老女人水多毛片| 亚洲精品乱久久久久久| 日韩欧美一区视频在线观看 | 国产精品人妻久久久影院| 国产免费又黄又爽又色| 99热网站在线观看| 久久久久精品性色| 99视频精品全部免费 在线| 国产精品爽爽va在线观看网站| 欧美高清性xxxxhd video| 亚洲精品aⅴ在线观看| 亚洲aⅴ乱码一区二区在线播放| 夜夜爽夜夜爽视频| 日本午夜av视频| 久久精品夜色国产| 日本免费在线观看一区| 久久久久久久精品精品| 人妻 亚洲 视频| 国产精品久久久久久精品电影| 女人被狂操c到高潮| 91久久精品电影网| 日本一二三区视频观看| 一个人看视频在线观看www免费| 精品午夜福利在线看| 中文字幕制服av| 日产精品乱码卡一卡2卡三| av女优亚洲男人天堂| 插逼视频在线观看| 欧美激情在线99| 欧美高清成人免费视频www| 777米奇影视久久| 国产日韩欧美亚洲二区| 少妇丰满av| 国产精品伦人一区二区| 日韩精品有码人妻一区| 99热这里只有是精品50| 国产精品爽爽va在线观看网站| 内射极品少妇av片p| 91精品伊人久久大香线蕉| 夜夜看夜夜爽夜夜摸| 国产人妻一区二区三区在| 欧美亚洲 丝袜 人妻 在线| 欧美 日韩 精品 国产| 精品一区二区免费观看| 成人欧美大片| 久久久久久久精品精品| 插逼视频在线观看| 简卡轻食公司| 97人妻精品一区二区三区麻豆| 亚洲不卡免费看| 一级毛片 在线播放| 成年女人在线观看亚洲视频 | 伦理电影大哥的女人| 日本一二三区视频观看| 婷婷色麻豆天堂久久| 超碰97精品在线观看| 日韩不卡一区二区三区视频在线| 亚洲天堂国产精品一区在线| 亚洲内射少妇av| 91狼人影院| 欧美成人a在线观看| 亚洲欧美精品自产自拍| 青春草国产在线视频| 日韩伦理黄色片| 国产一区有黄有色的免费视频| 欧美少妇被猛烈插入视频| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| 男的添女的下面高潮视频| 干丝袜人妻中文字幕| 九九久久精品国产亚洲av麻豆| 精品一区二区三卡| 久久人人爽av亚洲精品天堂 | 久久久久精品久久久久真实原创| 免费少妇av软件| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 成人特级av手机在线观看| 日韩欧美一区视频在线观看 | 丰满乱子伦码专区| 大香蕉久久网| 国产片特级美女逼逼视频| 国产精品成人在线| 国产在线一区二区三区精| 又粗又硬又长又爽又黄的视频| 日日摸夜夜添夜夜添av毛片| 王馨瑶露胸无遮挡在线观看| 国产永久视频网站| 91精品国产九色| 亚洲一级一片aⅴ在线观看| 午夜免费男女啪啪视频观看| 国产高清有码在线观看视频| 肉色欧美久久久久久久蜜桃 | 亚洲精品成人久久久久久| 日日啪夜夜爽| 男女国产视频网站| 国产精品一区二区三区四区免费观看| 国产亚洲av嫩草精品影院| 午夜福利在线在线| 高清在线视频一区二区三区| 亚洲精品国产成人久久av| 99久久九九国产精品国产免费| 男人和女人高潮做爰伦理| 午夜福利在线在线| 高清在线视频一区二区三区| 国产精品爽爽va在线观看网站| 成年版毛片免费区| 国产精品一区www在线观看| 精华霜和精华液先用哪个| 99热这里只有是精品50| 少妇裸体淫交视频免费看高清| 国产av码专区亚洲av| 亚洲欧美一区二区三区国产| 99热国产这里只有精品6| 午夜精品一区二区三区免费看| 一级毛片久久久久久久久女| 夜夜看夜夜爽夜夜摸| 99热这里只有是精品在线观看| www.色视频.com| 人人妻人人看人人澡| 欧美成人a在线观看| 国内少妇人妻偷人精品xxx网站| 欧美 日韩 精品 国产| 777米奇影视久久| 91狼人影院| 国产在视频线精品| 日本与韩国留学比较| 国产亚洲av片在线观看秒播厂| 青春草亚洲视频在线观看| 人人妻人人澡人人爽人人夜夜| 国产精品99久久99久久久不卡 | 另类亚洲欧美激情| 香蕉精品网在线| 黑人高潮一二区| 高清视频免费观看一区二区| 2021少妇久久久久久久久久久| 亚洲成人精品中文字幕电影| 国产成人精品一,二区| 天美传媒精品一区二区| 免费观看av网站的网址| 一级av片app| 精品午夜福利在线看| 免费看光身美女| 成年人午夜在线观看视频| 街头女战士在线观看网站| 涩涩av久久男人的天堂| 久久人人爽av亚洲精品天堂 | 大片电影免费在线观看免费| 亚洲最大成人中文| 好男人在线观看高清免费视频| 日本与韩国留学比较| av在线老鸭窝| 69人妻影院| 纵有疾风起免费观看全集完整版| 中文字幕免费在线视频6| 高清av免费在线| 五月开心婷婷网| 国产片特级美女逼逼视频| 精品国产乱码久久久久久小说| 日韩一区二区视频免费看| 欧美成人a在线观看| freevideosex欧美| 丝袜喷水一区| 日本av手机在线免费观看| 成人毛片60女人毛片免费| 成人亚洲精品av一区二区| 欧美国产精品一级二级三级 | 欧美人与善性xxx| 久久久色成人| 免费播放大片免费观看视频在线观看| 少妇的逼水好多| 亚洲va在线va天堂va国产| 91aial.com中文字幕在线观看| 黄色欧美视频在线观看| 国产免费视频播放在线视频| freevideosex欧美| 亚洲人成网站高清观看| 嫩草影院新地址| 国内精品美女久久久久久| 中文字幕制服av| 丰满乱子伦码专区| 高清午夜精品一区二区三区| 欧美丝袜亚洲另类| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 美女cb高潮喷水在线观看| 自拍偷自拍亚洲精品老妇| tube8黄色片| 偷拍熟女少妇极品色| 国产熟女欧美一区二区| 最近的中文字幕免费完整| 亚洲精品视频女| 久久精品久久久久久久性| 亚洲av国产av综合av卡| 久热久热在线精品观看| 一边亲一边摸免费视频| 伦理电影大哥的女人| 日韩一区二区三区影片| 精品午夜福利在线看| 三级经典国产精品| 日本黄色片子视频| 一边亲一边摸免费视频| 色网站视频免费| 久热久热在线精品观看| 丰满乱子伦码专区| 免费观看在线日韩| 成年av动漫网址| 18禁在线播放成人免费| 边亲边吃奶的免费视频| av黄色大香蕉| av在线播放精品| 亚洲一区二区三区欧美精品 | 舔av片在线| 我的老师免费观看完整版| 嘟嘟电影网在线观看| 七月丁香在线播放| 国产又色又爽无遮挡免| 91精品伊人久久大香线蕉| 纵有疾风起免费观看全集完整版|