• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemically exfoliated Ni-doped MoS2 nanosheets for highly efficient hydrogen evolution and Zn-H2O battery

    2023-03-14 06:52:06HoWeiJinchengSiLiinZengSiliuLyuZhiguoZhngYngeSuoYngHou
    Chinese Chemical Letters 2023年1期

    Ho Wei,Jincheng Si,Liin Zeng,Siliu Lyu,Zhiguo Zhng,Ynge Suo,*,Yng Hou,d,**

    a School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310027,China

    b Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    c Institute of Zhejiang University - Quzhou,Quzhou 324000,China

    d School of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000, China

    Keyword:Electrochemical exfoliation Ni doping MoS2 Hydrogen evolution reaction Zn-H2O battery

    ABSTRACT Thanks to tunable physical and chemical properties,two-dimensional (2D) materials have received intensive interest,endowing their excellent electrocatalytic performances for applications in energy conversion.However,their catalytic activities are largely determined by poor adsorption energy and limited active edge sites.Herein,a one-step electrochemical exfoliation strategy was developed to fabricate 2D Ni-doped MoS2 nanosheets (Ni-EX-MoS2) with a lateral size of ~500 nm and thickness of ~3.5 nm.Profiting from high electrical conductivity and abundant exposing active sites,Ni-EX-MoS2 catalyst displayed an admirable performance for electrochemical hydrogen evolution reaction (HER) with a low overpotential of 145 mV at 10 mA/cm2 as well as a small Tafel slope of 89 mV/dec in alkaline media,which are superior to those of the most reported MoS2-based electrocatalysts.The formed Ni species with tuning electronic structure played a crucial role as primary active center of Ni-EX-MoS2,as well as the forming stable 1T/2H phase MoS2 interface demonstrated a synergistic effect on electrocatalytic HER performance.Further,Ni-EX-MoS2 was employed as a cathode electrode for alkaline Zn-H2O battery,which displayed a high power density of 3.3 mW/cm2 with excellent stability.This work will provide a simple and effective guideline for design of electrochemically exfoliated transition metal-doped MoS2 nanosheets to inspire their practical applications in energy catalytic and storage.

    With ever-increasing global energy needs and the intensification of environmental pollution,new renewable energy conversion technologies have been inevitably attracting much attention[1–5].Electrochemical water splitting to generate green H2is a sustainable and environmentally friendly strategy.As one of two half-cell reactions of water splitting,hydrogen evolution reaction(HER) is a key step and has been extensively studied in the last decades [6–10].Noble metal catalysts,especially Pt-based materials,are still the most efficient electrocatalysts for HER [2,11].However,the high cost and scarcity of noble Pt catalyst greatly hinder their large-scale commercial applications.Thereupon,the development of low-cost and efficient catalysts for electrochemical water splitting is of great importance [12,13].

    Fig.1.Schematic diagram of the electrochemical exfoliation and synthetic procedure.

    Recently,transition metal dichalcogenides (TMDs) materials have been regarded as promising alternatives for Pt-based catalysts due to their abundant exposed edge sites and excellent electron mobility along the nanosheets [13,14].Among them,molybdenum sulfide (MoS2) is one of the most promising TMDs candidates for HER because of its favorable electronic structure,good corrosion resistance,and high stability [14,15].Nevertheless,local exposed active sites and inherent poor conductivity largely suppress the HER performance of bulk-phase MoS2[15–18].Therefore,several strategies have been proposed to improve their catalytic performances.For up-to-down strategy,exfoliating bulk MoS2into twodimensional (2D) layer-like MoS2nanosheets is an encouraging approach,which can obtain monolayer/few-layer MoS2with large surface area as well as rich exposed active sites [18–20].Unfortunately,due to the multistep synthesis reactions,the conventional exfoliation methods,such as mechanical exfoliation [21],liquid sonication exfoliation [22],and lithium-ion intercalation [23] are usually hard to control the number of layers and thickness of 2D nanosheets.Compared with these reported methods,electrochemical exfoliation route has attracted great interest owing to its simple procedure,high efficiency as well as good controllability,and it has been successfully applied to the exfoliation of most 2D materials,such as phosphorene,graphene,and WS2[24].Besides,transition metals doped TMDs materials can efficiently modulate hydrogen adsorption/desorption energy to enhance whole electrocatalytic activity [24–26].Especially,the doping of Ni atoms could optimize the electronic structure of MoS2,regulate the electron density of Mo atom [26],which would reduce the free energy of hydrogen adsorption and boost catalytic performance.Therefore,it is desirable to develop an effective method for rapid exfoliation production of TMDs andin situdoping of transition metal to improve their HER performance.In this work,a usual 2D Ni-doped MoS2(Ni-EX-MoS2) nanosheets was prepared through a one-step electrochemical exfoliation treatment of bulk MoS2in a mixture electrolyte ofN,N-dimethylformamide (DMF) and tetrabutylammonium bromide (TBAB).The obtained Ni-EX-MoS2catalyst with a thickness of ~3.5 nm and a lateral dimension of ~500 nm,exhibited an excellent HER activity,featured by a low overpotential of 145 mV at 10 mA/cm2and a small Tafel slope of 89 mV/dec in 1.0 mol/L KOH,which was ascribed to the formation of 2D 1T/2H-MoS2heterojunction and doping of Ni species during the exfoliation process.Intriguingly,the Ni-EX-MoS2could also be employed as a cathode electrode for alkaline Zn-H2O battery with a power density up to 3.3 mW/cm2and good stability of ~6.0 h.

    A schematic diagram of the synthetic route for Ni-EX-MoS2was presented in Fig.1.Bulk MoS2was firstly synthesized by a solid phase reaction in a sealed quartz tube by annealing a mixture of Mo and S powders.Then,as-prepared bulk MoS2was used as cathode and underwent an electrochemical exfoliation at 5.0 V for 10 min with TBA+(6 mg/mL) in NiCl26H2O (5 mg/mL)/DMF electrolyte to obtain Ni-EX-MoS2nanosheets.The cathodic bulk MoS2was polarized by the specific electric field and a negative charge was generated on the surface.The TBA+and Ni2+ions in the electrolyte could migrate to the bulk MoS2,and then the TBA+ions intercalates into the interlayer of bulk MoS2,which causes the expansion of MoS2interlayers.Meanwhile,the Ni2+ions was intercalated into MoS2interlayer,which was further trapped by the negatively charged exfoliated MoS2.A final product of Ni-EX-MoS2nanosheets was subsequently collected by ultrasonic shaking,centrifugation,and freeze-drying steps.The operation details refer to the section of experimental synthesis and the main products are synthesized under these conditions,except for special markings.

    Fig.2.SEM images of (a) bulk MoS2 and (b) Ni-EX-MoS2.(c) TEM image of Ni-EX-MoS2.(d) AFM image of Ni-EX-MoS2.(e) HAADF-STEM image of Ni-EX-MoS2.(f)EDX elemental mapping images of O,S,Ni and Mo in the corresponding region.

    As shown in Fig.S1 (Supporting information),X-ray diffraction(XRD) patterns of bulk MoS2and Ni-EX-MoS2showed the main peak located at 14.2°,which was attributed to the (002) crystal plane of MoS2crystal [27].After the electrochemical exfoliation,the peak intensity on the (002) plane of Ni-EX-MoS2was much weaker than that of bulk MoS2,which can be attributed to the thinner layered structure formed in the Ni-EX-MoS2[20,28].No signal peaks of Ni-related species were detected.The morphologies of bulk MoS2and Ni-EX-MoS2were explored by field emission scanning electron microscopy (FESEM) images.As shown in Figs.2a and b,few-layer Ni-EX-MoS2nanosheets was successfully synthesized by the electrochemical exfoliation from original multilayered stacked bulk MoS2.Transmission electron microscopy(TEM) (Fig.2c) and atomic force microscopy (AFM) images (Fig.2d)showed that the Ni-EX-MoS2nanosheets processed a lateral size of~500 nm and a thickness of ~3.5 nm,corresponding to five layers stacked together (single-layer thickness of 0.62 nm for MoS2)[29,30].Atomic-resolution high-angle annular dark-field scanning TEM (HAADF-STEM) image in Fig.2e revealed the flat surface of Ni-EX-MoS2without obvious particles formed.Moreover,energy dispersive X-ray spectroscopy (EDX) mapping images displayed the homogenous distribution of Ni,Mo and S elements throughout the whole Ni-EX-MoS2nanosheet structure (Fig.2f),respectively.The content of Ni species in the Ni-EX-MoS2catalyst was determined to be 4.8% by inductively coupled with plasma atomic emission spectroscopy (ICP-AES) analysis (Table S1 in Supporting information).

    Considering that the magnitude of voltage plays a key role in the electrochemical exfoliation process,the exfoliation quality and particle size of MoS2nanosheets were furtherly explored at other applied voltages (3.0 and 10 V).At a voltage of 3.0 V,the MoS2surface produced little negative electrical attraction to TBA+ions,which made it difficult to intercalate into the interlayer of bulk MoS2,thus leading to poor exfoliation.As a result,the large-sized multilayer MoS2sheets was obtained (Fig.S2a in Supporting information).In contrast,when the applied voltage was increased to 10 V,it resulted in a higher intercalation rate and the faster disruption of the van der Waals forces between bulk MoS2layers,thus leading to the smaller crystal sizes for few-layer MoS2nanosheets(Fig.S2b in Supporting information).Due to the moderate intercalation rate and amount of TBA+ions into the MoS2interlayer,the Ni-EX-MoS2with high quality was obtained at the voltage of 5.0 V.

    Fig.3.(a) HRTEM images Ni-EX-MoS2 nanosheets.Inset: red and yellow dots in the atomic arrangement of 1T and 2H phases represent for Mo and S atoms.(b) Corresponding SAED pattern.(c) Raman spectra of Ni-EX-MoS2 and bulk MoS2.High-resolution XPS spectra of (d) Mo 3d,(e) S 2p and (f) Ni 2p,respectively.

    Fig.3a showed the enlarged HRTEM image of Ni-EX-MoS2nanosheets.Unambiguously,it is observed the coexistence of 1T and 2H phases MoS2in the plane (marked with red and yellow circles).The interplanar spacings of 0.27 and 0.27 nm in the yellow region can be attributed to the (010) and (100) crystal faces of 2H phase MoS2,respectively [19].While the interplanar spacing of 0.27 nm in the red region could be assigned to the (101)crystal face of 1T phase MoS2[31],which indicates that the original 2H-phase MoS2was partially transformed into 1T-phase MoS2after electrochemical exfoliation [29,32].Obviously,it can be identified the doped Ni atoms (marked with orange circles) and continuous lattice streaks of the 1T-2H phase within the section.As displayed in Fig.3b,the diffraction rings in the selected area electron diffraction (SAED) for Ni-EX-MoS2can be indexed to the (100),(110) and (103) facets of MoS2.Raman spectra was used to characterize the bulk MoS2and Ni-EX-MoS2catalysts (Fig.3c),where the characteristic peaks located at 379.3 and 405.9 cm-1are attributed to the in-plane (E12g) and out-of-plane (A1g) modes of 2H phase MoS2[33,34].In addition,several additional peaks appeared at 147.6 and 226.1 cm-1,corresponding to J1and J2vibrational modes of S-Mo-S bonds in 1T-phase MoS2[19,35].These results demonstrated that the partial phase transformation occurred from the 2H-phase MoS2to 1T-phase MoS2after the electrochemical exfoliation.

    To further explore the electronic structures of Ni-EX-MoS2,the measurements of X-ray photoelectron spectroscopy (XPS) were conducted.The full-survey XPS spectrum presented Ni,Mo,and S elements in the Ni-EX-MoS2(Fig.S3 in Supporting information).In high-resolution Mo 3d XPS spectra (Fig.3d),bulk MoS2showed two peaks located at 232.4 and 229.3 eV,which corresponds to the characteristic Mo 3d5/2and Mo 3d3/2peaks of 2H phase MoS2,respectively [27,36].For the Ni-EX-MoS2,it showed three peaks centered at 235.1,232.1,and 228.9 eV corresponding to the characteristic peaks of Mo6+,Mo 3d5/2,and Mo 3d3/2,respectively[36,37].The decrease in the binding energy was probably due to the shift of Fermi energy level,as additional electrons populated the d orbitals caused by the partial phase transition,as verified by the coexistence of 1T and 2H phases MoS2heterojunction[38,39].In Fig.3e,the high-resolution S 2p XPS spectra of the Ni-EX-MoS2displayed two peaks located at 162.9 and 161.8 eV,which are assigned to the characteristic peaks of S 2p1/2and S 2p3/2,respectively.Compared with the S 2p1/2(163.3 eV) and S 2p3/2(162.2 eV) peaks of bulk MoS2with 2H phase,the corresponding peaks of Ni-EX-MoS2decreased a 0.4 eV in binding energy,further demonstrating the formation of 1T phase MoS2in the Ni-EX-MoS2[38,39].A new characteristic peak in the sulfur oxidation state was found in Fig.3e,which might be due to the oxidation of the Ni-EX-MoS2when exposed to air during the XPS test [20].The peaks located at 873.2 and 855.6 eV in Fig.3f can be assigned to Ni 2p1/2and Ni 2p3/2,respectively,in consistent well with the previous report [40].Based on HRTEM,Raman,and XPS results,one can conclude that the rapid electrochemical exfoliation enables synchronous exfoliation of bulk MoS2and incorporation of Ni species into Ni-EX-MoS2nanosheets.

    The electrocatalytic HER activities of the Ni-EX-MoS2were evaluated using a three-electrode cell in 1.0 mol/L KOH.All polarization curves were recorded with iR compensation.For comparison,the reference samples including bulk MoS2and EX-MoS2were also tested.As shown in Fig.4a,commercial Pt/C exhibited the highest HER activity.In addition,the Ni-EX-MoS2displayed the excellent HER performance with an overpotential as low as 145 mV at 10 mA/cm2,much lower than those of MoS2(>600 mV at 10 mA/cm2) and EX-MoS2(425 mV at 10 mA/cm2),respectively.Furthermore,the Tafel slope of Ni-EX-MoS2was measured to be 89 mV/dec,which was lower than those of EX-MoS2(96 mV/dec)and MoS2(121 mV/dec) (Fig.4b),demonstrating excellent HER kinetic property [41].

    To further clarify the intrinsic activity of Ni-EX-MoS2,the electrochemically active surface areas (ECSA) of the catalysts were estimated by the electrochemical double-layer capacitance (Cdl,Figs.S4a–c in Supporting information).The Ni-EX-MoS2showed the largestCdlvalue of 3.78 mF/cm2as compared to the EX-MoS2(2.21 mF/cm2) and bulk MoS2(1.11 mF/cm2),suggesting more exposed active sites in the Ni-EX-MoS2(Fig.S4d in Supporting information).In addition,the tests of electrochemical impedance spectroscopy (EIS) showed that the charge-transfer resistance (Rct)value of Ni-EX-MoS2was 101Ω,which was smaller than that of EX-MoS2(196Ω) and bulk MoS2(1022Ω),respectively,indicating that the Ni-EX-MoS2possessed a faster electron transfer capability(Fig.4c and Table S2 in Supporting information).Notably,the asprepared Ni-EX-MoS2exhibited an outstanding HER catalytic activity with low Tafel slope and small overpotential,which was superior to most of previously reported MoS2-based HER electrocatalysts under alkaline conditions (Fig.4d and Table S3 in Supporting information).

    Fig.S5a (Supporting information) showed a multicurrent step curve for the Ni-EX-MoS2with the current densities being cumulative from 5.0 mA/cm2to 25 mA/cm2.Likewise,the corresponding multipotential step curve of Ni-EX-MoS2was also displayed in Fig.S5b in Supporting information.All other steps showed the same trends,which presented the outstanding mass transport property and superior mechanical robustness of Ni-EX-MoS2[42].Further durability tests showed that Ni-EX-MoS2had excellent stability in alkaline media,with negligible potential drop after 8 h of continuous HER process (Fig.4e).This conclusion was further supported by inset of Fig.4e,no obvious change in the polarization curves of Ni-EX-MoS2before and after 1000 cycles was observed.

    Fig.4.(a) Polarization curves of bulk MoS2,EX-MoS2,Ni-EX-MoS2,and Pt/C after iR-correction and (b) Tafel plots of bulk MoS2,EX-MoS2,Ni-EX-MoS2 and Pt/C in 1 mol/L KOH solution.(c) Nyquist plots of bulk MoS2,EX-MoS2,Ni-EX-MoS2.Inset: An equivalent circuit for fitting impedance data.(d) Comparison of overpotentials at 10 mA/cm2 and Tafel slopes with recently reported MoS2-based electrocatalysts.(e) Chronopotentiometry curve of Ni-EX-MoS2 without iR-correction.Inset: photograph for electrochemical stability at 10 mA/cm2.Inset: polarization curves of Ni-EX-MoS2 for the first and 1000th CV cycles.

    Fig.5.(a) Schematic illustration of Zn-H2O battery.(b) Discharge polarization curves of EX-MoS2,Ni-EX-MoS2 and Pt/C.(c) Corresponding power density curves.(d)Chronopotentiometric responses of EX-MoS2,Ni-EX-MoS2,and Pt/C-based Zn-H2O battery at current densities ranging from 5 mA/cm2 to 20 mA/cm2 during discharging process.(e) Galvanostatic discharge curves at 10 mA/cm2.(f) Actual photograph of a blue light-emitting diode lit by three series-connected Ni-EX-MoS2-based Zn-H2O batteries.

    To clarify the HER mechanism of Ni-EX-MoS2,a series of experiments and analyses were carried out.Firstly,we used the thiocyanate ions (SCN-),which is considered as a toxic effect on Ni species,to reveal the real active site of Ni-EX-MoS2.It is evident that after the addition of SCN-ions,the current density of Ni-EXMoS2suddenly decreased and the potential dropped from 0.18 V to 0.35 V (Fig.S6 in Supporting information),demonstrating the effective blocking of active Ni sites.Besides,the high-resolution XPS spectra of Ni 2p,Mo 3d and S 2p on the Ni-EX-MoS2before and after HER tests were compared (Fig.S7 in Supporting information).In the high-resolution XPS spectrum of Ni 2p,the binding energy of Ni 2p was significantly increased after HER catalysis,indicating a higher valence state of Ni species in the Ni-EX-MoS2[43,44].Further,the Ni-EX-MoS2showed a positive shift of 0.5 eV of Ni 2p peak during the HER process,which can be attributed to the electrons transferred from the Ni center to the adjacent H2molecules[45,46].These results revealed that the Ni species in the Ni-EXMoS2was acted as the main active center for HER.The post-TEM and post-HRTEM characterizations demonstrated that the lamellar structures and lattice stripes were almost unchanged after the HER reaction (Figs.S8a–c in Supporting information).The presence of uniformly distributed Ni species (Fig.S8d in Supporting information) and the coexistence of 1T and 2H phases of MoS2(Fig.S8b)on the base of Ni-EX-MoS2demonstrated its strong durability.

    Moreover,in order to verify the general applicability of this electrochemical exfoliation strategy,the different kinds of TMDs materials induced by doping of other metals (Fe,Co,Ni and Mn)were also explored,and this synthetic strategy of the electrochemical exfoliation with simultaneous metal doping was experimentally demonstrated to enhance HER activity (Fig.S9 in Supporting information).Especially,the Co-EX-MoSe2and Co-EX-WSe2catalysts displayed a greater improvement in HER activity than those of the corresponding bulk phases.

    To further realize the efficient application of simultaneous H2and electricity production,the Ni-EX-MoS2based Zn-H2O fuel battery in 1.0 mol/L KOH was constructed (Fig.5a).When the battery started to discharge,an oxidation reaction occurred at anode Zn plate,while the HER happened at the cathode [47–50].The commercial Pt/C-based Zn-H2O battery displayed the best electrochemical performance.Fig.5b showed the discharge polarization curves of the Zn-H2O battery with different cathode materials.The Ni-EX-MoS2exhibited a higher current density than that of the control EX-MoS2during the discharge process.Moreover,the Ni-EX-MoS2-based Zn-H2O battery reached a high power density of 3.3 mW/cm2(Fig.5c),exceeding the EX-MoS2-based battery(1.5 mW/cm2).In Fig.5d,no significant loss of voltage at different current densities of 5,10,15 and 20 mA/cm2was observed for the Ni-EX-MoS2based Zn-H2O battery,indicating the excellent stability of Ni-EX-MoS2-based Zn-H2O battery.During the discharge process,the specific capacities of the Zn-H2O battery at 5 mA/cm2was calculated to be 826 mAh/g (Fig.S10 in Supporting information).In addition,the Ni-EX-MoS2-based Zn-H2O battery exceeded the chronopotentiometry curve for 6 h at 10 mA/cm2with insignificant voltage change,which indicates outstanding durability of this Zn-H2O battery (Fig.5e).Significantly,Fig.5f illustrated that three Zn-H2O batteries connected in series light up a blue light-emitting diode,which indicates that the proposed Zn-H2O battery shows a great perspective in terms of energy supply.

    In summary,a novel 2D Ni-EX-MoS2nanosheets catalyst,with a lateral size of ~500 nm and thickness of ~3.5 nm,was synthesizedviaa one-step electrochemical exfoliation strategy.During the synthesis processes,the simultaneous electrochemical exfoliation and the doping of Ni species were beneficial to the formation of a stable 1T/2H phase-MoS2heterojunction,which endowed the Ni-EXMoS2with the higher conductivity and more active sites,thus led to the excellent HER activity in base.In addition,the Ni-EX-MoS2acted as a cathode of the Zn-H2O battery displayed a high power density as well as good stability during the HER process.This work might provide new avenues for the development of other transition metal-doped 2D TMDs for various meaningful applications in electrochemistry,including N2reduction reactions,CO2reduction,and O2reduction reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is financially supported by the National Natural Science Foundation of China (Nos.21805244,51776188).We also greatly acknowledg the financial support from National Natural Science Foundation of China (Nos.21922811,21878270,21961160742),the Zhejiang Provincial Natural Science Foundation of China (No.LR19B060002),the Startup Foundation for Hundred-Talent Program of Zhejiang University,Jiangxi Province "Double Thousand Plan" Project (No.205201000020).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.037.

    人人妻人人澡欧美一区二区| 一个人免费在线观看的高清视频| 亚洲成人免费电影在线观看| 国产成+人综合+亚洲专区| 怎么达到女性高潮| xxxwww97欧美| 国产精品美女特级片免费视频播放器 | www.自偷自拍.com| 国产人伦9x9x在线观看| 叶爱在线成人免费视频播放| 成人av一区二区三区在线看| 亚洲中文日韩欧美视频| 精品久久久久久久久久久久久| 最新在线观看一区二区三区| 亚洲人与动物交配视频| www.www免费av| 最近视频中文字幕2019在线8| 婷婷六月久久综合丁香| 村上凉子中文字幕在线| 国产一区二区三区视频了| 三级男女做爰猛烈吃奶摸视频| 成人精品一区二区免费| 色综合欧美亚洲国产小说| 99久久国产精品久久久| 亚洲国产欧美一区二区综合| 亚洲性夜色夜夜综合| 99在线人妻在线中文字幕| 啦啦啦免费观看视频1| 此物有八面人人有两片| 欧美成人午夜精品| 亚洲自偷自拍图片 自拍| 看黄色毛片网站| 夜夜躁狠狠躁天天躁| 正在播放国产对白刺激| 精品午夜福利视频在线观看一区| 国产亚洲av嫩草精品影院| 51午夜福利影视在线观看| 国产一区二区激情短视频| 视频区欧美日本亚洲| 免费av毛片视频| 国产在线观看jvid| 黑人巨大精品欧美一区二区mp4| 成人三级做爰电影| 日韩av在线大香蕉| 中文字幕人妻丝袜一区二区| 国产一区二区在线观看日韩 | 亚洲乱码一区二区免费版| 日本黄色视频三级网站网址| 亚洲国产精品合色在线| 精品国内亚洲2022精品成人| 欧美色欧美亚洲另类二区| 老司机午夜十八禁免费视频| 在线观看免费日韩欧美大片| 国产真实乱freesex| 免费搜索国产男女视频| 我要搜黄色片| 亚洲精品美女久久av网站| 99热只有精品国产| www日本黄色视频网| 午夜福利高清视频| 国产亚洲精品av在线| 看黄色毛片网站| 精品高清国产在线一区| 亚洲中文日韩欧美视频| 99精品在免费线老司机午夜| 黑人欧美特级aaaaaa片| 欧美中文日本在线观看视频| 国产成人av教育| 欧美色视频一区免费| 母亲3免费完整高清在线观看| 亚洲七黄色美女视频| 免费看美女性在线毛片视频| 黄色视频不卡| 黄片小视频在线播放| 国产欧美日韩一区二区三| 1024香蕉在线观看| 美女免费视频网站| www.自偷自拍.com| 国产精品亚洲一级av第二区| 99热这里只有是精品50| 国产aⅴ精品一区二区三区波| 法律面前人人平等表现在哪些方面| 国产片内射在线| 欧美大码av| 国内久久婷婷六月综合欲色啪| 性欧美人与动物交配| 女警被强在线播放| 成人av在线播放网站| 国产精品美女特级片免费视频播放器 | 99久久99久久久精品蜜桃| 成人18禁高潮啪啪吃奶动态图| 99久久综合精品五月天人人| 免费av毛片视频| 老熟妇乱子伦视频在线观看| 欧美高清成人免费视频www| 在线国产一区二区在线| 中文字幕av在线有码专区| 可以在线观看毛片的网站| 国产精品电影一区二区三区| 亚洲精品国产一区二区精华液| 最新在线观看一区二区三区| 亚洲欧美日韩高清专用| 午夜免费激情av| 久久午夜亚洲精品久久| 日韩大码丰满熟妇| 啪啪无遮挡十八禁网站| 成人午夜高清在线视频| 国产精品av久久久久免费| 国产精品精品国产色婷婷| 嫩草影院精品99| 视频区欧美日本亚洲| 老汉色av国产亚洲站长工具| 亚洲精品美女久久久久99蜜臀| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久精品电影| 免费av毛片视频| 一区福利在线观看| 国产精品久久久久久精品电影| 亚洲av美国av| 亚洲,欧美精品.| 中文字幕人妻丝袜一区二区| 九九热线精品视视频播放| 亚洲九九香蕉| 我要搜黄色片| av视频在线观看入口| 中亚洲国语对白在线视频| 狠狠狠狠99中文字幕| 老鸭窝网址在线观看| 高清毛片免费观看视频网站| 亚洲欧美日韩高清专用| 亚洲欧美日韩高清专用| 最近在线观看免费完整版| 麻豆成人午夜福利视频| 18禁黄网站禁片午夜丰满| 精品日产1卡2卡| 亚洲国产中文字幕在线视频| 欧美成人免费av一区二区三区| 老司机福利观看| 日韩欧美国产在线观看| 91老司机精品| 日韩欧美在线乱码| 搡老熟女国产l中国老女人| 757午夜福利合集在线观看| 久久久久国产精品人妻aⅴ院| 亚洲午夜精品一区,二区,三区| 欧美不卡视频在线免费观看 | 亚洲狠狠婷婷综合久久图片| 免费高清视频大片| av有码第一页| 在线观看午夜福利视频| 黄片大片在线免费观看| 最近最新免费中文字幕在线| 久久亚洲真实| 18禁裸乳无遮挡免费网站照片| 后天国语完整版免费观看| 麻豆成人午夜福利视频| 国产成人aa在线观看| 日韩有码中文字幕| 99热6这里只有精品| 成年免费大片在线观看| 美女 人体艺术 gogo| 亚洲人成伊人成综合网2020| 久久香蕉激情| 麻豆国产av国片精品| 午夜老司机福利片| 久99久视频精品免费| 久久这里只有精品19| 久久久精品国产亚洲av高清涩受| 精品熟女少妇八av免费久了| 狂野欧美白嫩少妇大欣赏| 国产视频内射| 精品日产1卡2卡| 久久久精品大字幕| 中文字幕av在线有码专区| 国产精品98久久久久久宅男小说| 一级黄色大片毛片| 成人特级黄色片久久久久久久| 悠悠久久av| 日韩精品青青久久久久久| 国产一区二区在线观看日韩 | 国产精品九九99| 90打野战视频偷拍视频| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 欧美人与性动交α欧美精品济南到| 亚洲成a人片在线一区二区| 校园春色视频在线观看| 欧美一级a爱片免费观看看 | 国产欧美日韩一区二区三| 国产欧美日韩精品亚洲av| 最近视频中文字幕2019在线8| 青草久久国产| 日本一二三区视频观看| 久久性视频一级片| 99久久国产精品久久久| 可以免费在线观看a视频的电影网站| 亚洲国产精品久久男人天堂| 久久久久久久久中文| 757午夜福利合集在线观看| 日本成人三级电影网站| 欧美一区二区精品小视频在线| 久久久久亚洲av毛片大全| 男女午夜视频在线观看| 在线永久观看黄色视频| www.999成人在线观看| 精品国产乱码久久久久久男人| av超薄肉色丝袜交足视频| 亚洲五月婷婷丁香| aaaaa片日本免费| 欧美极品一区二区三区四区| 日本一本二区三区精品| 欧美 亚洲 国产 日韩一| 日本黄色视频三级网站网址| 婷婷精品国产亚洲av在线| 国产一区在线观看成人免费| 国产私拍福利视频在线观看| 一个人免费在线观看的高清视频| 欧美成人性av电影在线观看| 欧美色视频一区免费| 国产精品亚洲av一区麻豆| 免费一级毛片在线播放高清视频| 白带黄色成豆腐渣| 嫩草影视91久久| 丰满的人妻完整版| 九九热线精品视视频播放| 男女视频在线观看网站免费 | 老熟妇乱子伦视频在线观看| 在线观看www视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲18禁久久av| 国产成人精品无人区| 成人av在线播放网站| 99热这里只有精品一区 | 中亚洲国语对白在线视频| 可以在线观看的亚洲视频| 欧美日韩亚洲国产一区二区在线观看| 免费一级毛片在线播放高清视频| 国语自产精品视频在线第100页| 亚洲 欧美 日韩 在线 免费| 亚洲欧美日韩无卡精品| 免费高清视频大片| 一级片免费观看大全| 无人区码免费观看不卡| 校园春色视频在线观看| 国产亚洲精品av在线| 身体一侧抽搐| 少妇被粗大的猛进出69影院| 国产亚洲精品久久久久5区| 国产真实乱freesex| 国产成人啪精品午夜网站| 亚洲成av人片在线播放无| 亚洲电影在线观看av| 无遮挡黄片免费观看| 亚洲中文av在线| 操出白浆在线播放| 欧美一级毛片孕妇| 亚洲天堂国产精品一区在线| netflix在线观看网站| 一级黄色大片毛片| 久久久国产欧美日韩av| 日本精品一区二区三区蜜桃| 男女视频在线观看网站免费 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧洲精品一区二区精品久久久| 黄色毛片三级朝国网站| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 19禁男女啪啪无遮挡网站| 一边摸一边抽搐一进一小说| 久久久久性生活片| 日日夜夜操网爽| 天天一区二区日本电影三级| 男人舔女人的私密视频| 岛国视频午夜一区免费看| 亚洲精华国产精华精| 精品久久蜜臀av无| 成人精品一区二区免费| 妹子高潮喷水视频| 久久久久久久久久黄片| 日本免费a在线| 无人区码免费观看不卡| 人妻丰满熟妇av一区二区三区| 国产av麻豆久久久久久久| 狂野欧美激情性xxxx| 久久久国产精品麻豆| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 日本五十路高清| 国产高清激情床上av| 性色av乱码一区二区三区2| 在线看三级毛片| 亚洲av成人精品一区久久| 超碰成人久久| 久久人人精品亚洲av| 九九热线精品视视频播放| 1024手机看黄色片| 高清在线国产一区| 日韩国内少妇激情av| 亚洲真实伦在线观看| 免费高清视频大片| 18美女黄网站色大片免费观看| 别揉我奶头~嗯~啊~动态视频| 蜜桃久久精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 黄色女人牲交| 19禁男女啪啪无遮挡网站| 国产伦人伦偷精品视频| 国产精华一区二区三区| 最近在线观看免费完整版| 级片在线观看| 757午夜福利合集在线观看| 久久国产乱子伦精品免费另类| 黄色视频不卡| 欧美色视频一区免费| 亚洲欧洲精品一区二区精品久久久| 亚洲专区字幕在线| 又粗又爽又猛毛片免费看| 99精品欧美一区二区三区四区| 久久久久国内视频| 国产激情久久老熟女| www日本在线高清视频| 亚洲精品一区av在线观看| 国产精品自产拍在线观看55亚洲| 精品一区二区三区四区五区乱码| 亚洲av中文字字幕乱码综合| 国产99白浆流出| 中文字幕人妻丝袜一区二区| 男人的好看免费观看在线视频 | 女人高潮潮喷娇喘18禁视频| 欧美性猛交黑人性爽| 老司机午夜十八禁免费视频| 一本综合久久免费| 国产野战对白在线观看| videosex国产| 99热6这里只有精品| 精品高清国产在线一区| 亚洲成人久久性| 免费高清视频大片| 亚洲五月婷婷丁香| 久久人妻av系列| 动漫黄色视频在线观看| 亚洲av美国av| 成人手机av| 最新美女视频免费是黄的| 一级黄色大片毛片| 国产av一区二区精品久久| 老鸭窝网址在线观看| 亚洲天堂国产精品一区在线| 亚洲熟女毛片儿| 长腿黑丝高跟| 美女 人体艺术 gogo| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 成人18禁在线播放| 国产亚洲av高清不卡| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲av电影不卡..在线观看| 不卡av一区二区三区| 久久这里只有精品中国| 成人手机av| 成人精品一区二区免费| 国产成人系列免费观看| 桃红色精品国产亚洲av| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 日本 欧美在线| 国产1区2区3区精品| 丁香欧美五月| 久久精品成人免费网站| 丁香六月欧美| 搡老岳熟女国产| 一本久久中文字幕| 人人妻人人看人人澡| 他把我摸到了高潮在线观看| 国产亚洲av嫩草精品影院| 国产精品一区二区免费欧美| 日韩免费av在线播放| 岛国在线免费视频观看| 精品第一国产精品| 午夜视频精品福利| 国产黄色小视频在线观看| 亚洲人成网站高清观看| 日韩精品青青久久久久久| 欧美zozozo另类| 成人欧美大片| 一a级毛片在线观看| a在线观看视频网站| 精品国内亚洲2022精品成人| 久久人人精品亚洲av| 在线观看午夜福利视频| 国产激情偷乱视频一区二区| 巨乳人妻的诱惑在线观看| 嫁个100分男人电影在线观看| 国产激情欧美一区二区| 亚洲美女黄片视频| 十八禁人妻一区二区| 午夜日韩欧美国产| 婷婷六月久久综合丁香| 日韩高清综合在线| 精品久久久久久久久久免费视频| 久久久国产欧美日韩av| 在线观看美女被高潮喷水网站 | 色在线成人网| 俄罗斯特黄特色一大片| 美女扒开内裤让男人捅视频| 亚洲国产高清在线一区二区三| 2021天堂中文幕一二区在线观| 日韩欧美国产一区二区入口| 国产高清有码在线观看视频 | 免费高清视频大片| 久久久久久久午夜电影| 俺也久久电影网| 欧美3d第一页| 亚洲国产欧美网| 成人特级黄色片久久久久久久| 欧美日本视频| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品电影| 丝袜美腿诱惑在线| 别揉我奶头~嗯~啊~动态视频| 蜜桃久久精品国产亚洲av| 韩国av一区二区三区四区| 999久久久国产精品视频| 亚洲精品美女久久av网站| 丝袜人妻中文字幕| 午夜激情福利司机影院| 91在线观看av| 欧美成人午夜精品| 亚洲国产精品sss在线观看| 国产黄a三级三级三级人| 免费人成视频x8x8入口观看| 久久久精品国产亚洲av高清涩受| 一本精品99久久精品77| 十八禁人妻一区二区| 久久午夜亚洲精品久久| 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 日韩高清综合在线| 91老司机精品| 日韩成人在线观看一区二区三区| 淫秽高清视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲午夜精品一区,二区,三区| 亚洲激情在线av| 丝袜人妻中文字幕| 成人精品一区二区免费| 日韩欧美 国产精品| 亚洲国产欧美人成| 欧美性猛交╳xxx乱大交人| 久久这里只有精品19| 日韩大尺度精品在线看网址| 日本黄色视频三级网站网址| 18禁国产床啪视频网站| 最近最新免费中文字幕在线| 国产高清videossex| 国产精品99久久99久久久不卡| 国产不卡一卡二| 亚洲七黄色美女视频| 色av中文字幕| 国产av麻豆久久久久久久| 不卡一级毛片| 在线观看一区二区三区| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产单亲对白刺激| 日韩国内少妇激情av| 久久亚洲精品不卡| 久久人妻福利社区极品人妻图片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av激情在线播放| 国产精品国产高清国产av| av欧美777| 一进一出抽搐动态| 一区二区三区激情视频| 欧美午夜高清在线| 欧美3d第一页| 夜夜躁狠狠躁天天躁| av欧美777| 1024手机看黄色片| 国产精品99久久99久久久不卡| 欧美黑人精品巨大| 国产区一区二久久| 国产精品1区2区在线观看.| 一个人免费在线观看的高清视频| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 精品免费久久久久久久清纯| 日本三级黄在线观看| 村上凉子中文字幕在线| 母亲3免费完整高清在线观看| netflix在线观看网站| 国产av一区二区精品久久| 久久中文字幕一级| 亚洲在线自拍视频| 悠悠久久av| 90打野战视频偷拍视频| 亚洲人与动物交配视频| 国产亚洲精品综合一区在线观看 | 他把我摸到了高潮在线观看| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 91成年电影在线观看| 久久久久久亚洲精品国产蜜桃av| 999精品在线视频| 欧美日韩中文字幕国产精品一区二区三区| 女警被强在线播放| 变态另类成人亚洲欧美熟女| 久久这里只有精品中国| 97超级碰碰碰精品色视频在线观看| 成年版毛片免费区| 丝袜美腿诱惑在线| 老司机午夜福利在线观看视频| 欧美精品亚洲一区二区| www.999成人在线观看| 麻豆国产av国片精品| 国产探花在线观看一区二区| 午夜福利在线在线| 一级片免费观看大全| 两性午夜刺激爽爽歪歪视频在线观看 | 不卡av一区二区三区| 久久精品aⅴ一区二区三区四区| 久久草成人影院| 岛国在线观看网站| 国产亚洲精品久久久久5区| x7x7x7水蜜桃| 一区二区三区高清视频在线| 少妇裸体淫交视频免费看高清 | 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久午夜电影| 特大巨黑吊av在线直播| 白带黄色成豆腐渣| 国内毛片毛片毛片毛片毛片| 三级毛片av免费| 亚洲一区中文字幕在线| 日韩欧美在线乱码| avwww免费| 在线观看免费午夜福利视频| 日韩欧美在线二视频| 日韩欧美精品v在线| 麻豆av在线久日| 九色国产91popny在线| 国产三级中文精品| 久久久久久久午夜电影| 国产成人影院久久av| 天堂影院成人在线观看| 国产精品久久久久久久电影 | 国产又色又爽无遮挡免费看| 一个人免费在线观看电影 | 国产精品久久久人人做人人爽| 夜夜爽天天搞| 99热这里只有是精品50| 美女午夜性视频免费| 亚洲av美国av| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美精品综合一区二区三区| 久久精品影院6| 欧美3d第一页| 波多野结衣巨乳人妻| 亚洲精品美女久久av网站| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 欧美日韩亚洲综合一区二区三区_| 老司机福利观看| 男女午夜视频在线观看| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 男女床上黄色一级片免费看| 亚洲在线自拍视频| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 超碰成人久久| 88av欧美| 黄色a级毛片大全视频| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区三| 国产成人av教育| 国产伦一二天堂av在线观看| 免费在线观看完整版高清| 好男人在线观看高清免费视频| 999精品在线视频| cao死你这个sao货| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| 久久久久九九精品影院| 亚洲中文字幕一区二区三区有码在线看 | 91国产中文字幕| 成年版毛片免费区| 久久精品国产清高在天天线| 性欧美人与动物交配| 美女免费视频网站| 国产精品美女特级片免费视频播放器 | 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 午夜激情av网站| 欧美性猛交黑人性爽| 人人妻人人看人人澡| 99国产极品粉嫩在线观看| 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 久久中文字幕一级| 一区二区三区国产精品乱码| 在线永久观看黄色视频| 午夜精品在线福利| 国产乱人伦免费视频| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 精品乱码久久久久久99久播|