• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen and nitrogen tailoring carbon fiber aerogel with platinum electrocatalysis interfaced lithium/sulfur (Li/S) batteries

    2023-03-14 06:52:04LeiJiXiWngYongfengJiXioxiQinYiSuiHuizhongYnZhiqingNiuJinghiLiuYuegngZhng
    Chinese Chemical Letters 2023年1期

    Lei Ji,Xi Wng,Yongfeng Ji,Xioxi Qin,Yi Sui,Huizhong Yn,Zhiqing Niu,Jinghi Liu,*,Yuegng Zhng

    a State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization,Baotou Research Institute of Rare Earths,Baotou 014030,China

    b Inner Mongolia Key Laboratory of Carbon Nanomaterials,Nano Innovation Institute (NII),College of Chemistry and Materials Science,Inner Mongolia MinZu University,Tongliao 028000,China

    c Department of Physics,Tsinghua University,Beijing 100084,China

    d Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),Renewable Energy Conversion and Storage Center,College of Chemistry,Nankai University,Tianjin 300071,China

    Keywords:Li/S conversion chemistry Ion channels Pt electrocatalysis interface 3D aerogel host (OCNF)Adsorption confinement

    ABSTRACT Sluggish kinetics of lithium/sulfur (Li/S) conversion chemistry and the ion channels formation in the cathode is still a bottleneck for developing future Li/S batteries with high-rate,long-cycling and high-energy.Here,a rational cathode structure design of an oxygen (O) and nitrogen (N) tailoring carbon fiber aerogel(OCNF) as a host material integrated with platinum (Pt) electrocatalysis interface is employed to regulate Li/S conversion chemistry and ion channel.The Pt nanoparticles were uniformly sprayed onto the S surface to construct the electrocatalysis interface (Pt/S/OCNF) for generating ion channels to promote the effective penetration of electrolyte into the cathode.This Pt/S/OCNF gives the cathode a high sulfur utilization of 77.5%,an excellent rate capacity of 813.2 mAh/g (2 C),and an outstanding long-cycling performance with a capacitance retention of 82.6% and a decay of 0.086% per cycle after 200 cycles at 0.5 C.Density functional theory (DFT) calculations reveal that the Pt electrocatalysis interface makes the cathode a high density of state (DOS) at Fermi level to facilitate the electrical conductivity,charge transfer kinetics and electrocatalysis to accelerate the lithium polysulfides (LiPSs) electrochemical conversion.Furthermore,the unique chemisorption structure and adsorption ability of Li2Sn (n=1,2,4,6,8) and S8 on OCNF are attributed to the bridging effects of interfacial Pt and the bonding of N-Li.The Pt electrocatalysis interface combined with the unique 3D hierarchical porous structure and abundant functional active sites at OCNF guarantee strong adsorption confinement,fast Li/S electrocatalytic conversion and unblocked ion channels for electrolyte permeation in cathode.

    Rational design of cathode structure is an effective means to realize efficient utilization of sulfur in lithium/sulfur (Li/S) batteries.It has been found that a large-scale dissolution and diffusion of polysulfides (LiPSs) in electrolyte correlated to slow electrochemical conversion kinetics directly causes serious shuttle effects [1,2].Moreover,the electronic insulation of S8and Li2S restricts the solid-solid conversion process between S8and Li2S[3–5].More importantly,the heterogeneous aggregation and growth of discharge products Li2S/Li2S2on the cathode surface hinders the contact between electrolyte and active sulfur and the further lithiation of sulfur,resulting in the occurrence of "dead sulfur" and the sharp decline of the specific capacity [6–10].

    Three-dimensional (3D) nanoscale carbon material has been reported as the preferred host material to solve the above problems.With its rich hierarchical porous structure and special carbon skeleton,it can realize the instantaneous penetration of electrolytes in the cathodes and accelerate the transfer of electrons and diffusion of ions,e.g.,porous films [11],foams[12–15],papers [16],aerogels [17–21],carbon nanofibers [22–27],biomass carbon material [28–31] and sponges [32–34].Specifically,3D nitrogen-rich mesoporous carbon framework [35],reduced graphite oxide (RGO) [36],porous graphene sponges (S-GS)[37],3D micron-porous graphene foam [38,39],carbon/CNF papers [40,41],3D porous S/graphene@g-C3N4hybrid sponge [42],3D N-enriched CNT-graphene hybrid microtubes [43],3D carbon nanofibers (CNFs) [44–47],carbon-cotton [48] and 3D porous graphitic carbon [49,50] have also been successfully utilized in cathode design.The hierarchical pore structure of these 3D solid carbons can provide sufficient space to absorb a large amount of sulfur to realize high sulfur loading.Moreover,the abundant ion channels and electronic skeletons on the 3D carbon structured cathode ensure the rapid electron/ion conduction pathway,providing convenient channels for active sulfur species transport and sulfur conversion reactions.

    Scheme 1.Conceptual illustration for preparation process of OCNF as a model of O and N tailoring carbon fiber aerogel (a) and Pt electrocatalysis (Pt/S/OCNF) interfaced Li/S conversion chemistry (b).

    Metal active site is an effective approach to restrain the shuttling and to facilitate efficient utilization of active sulfur,attributed to its excellent electrocatalysis to accelerate the direct bidirectional conversion of lithium polysulfides (LiPSs) [51–53],high electrical conductivity to promote electron transfer [54–61],and strong affinity for LiPSs to enhance the immobilization of sulfur [62–66].These metal atoms as active sites for electrocatalysis and chemisorption,activate the transformation and phase transition of S8,LiPSs and Li2S,promote significant changes in the bond lengths and angles of Li-S and S-S,and accelerate the chain breaking and bonding of Li-S and S-S to obtain fast redox kinetics and strong physico-chemical adsorption [67–70].For TiN-Ti4O7nanofiber membrane reactor [70],the excellent electrocatalysis and chemical confinement of the active Ti atomic site plays a crucial role in suppressing the LiPSs shuttling.Moreover,the cathode module design of the membrane reactor-mediated LiPSs chemical conversion enables the Li/S cell to display efficient sulfur utilization as well as excellent rate performances and long-cycling capability.

    Thus,benefiting from the inspiration of these research progress,a unique sulfur cathode integrating oxygen (O) and nitrogen (N)tailoring carbon fiber aerogel (OCNF),electroactive sulfur,and interfacial platinum nanoparticles (Pt/S/OCNF) is designed,aiming to construct ion channels and accelerate the kinetics of Li/S conversion chemistry.The achievement of high-performance Li/S batteries is attributed to three key advantages of this unique cathode structure.Firstly,the electrocatalytic interface composed of Pt nanoparticles accelerates the bi-directional solid-liquid conversion between S8,Li2S/Li2S2and Li2Sn(n=3–8).Secondly,the fast phase transformation and redox kinetics alleviates the blocks of “dead sulfur” to promote the formation of ion channels,the penetration of electrolyte and diffusion of ions.Lastly,strong LiPSs immobilization suppresses the shuttle effect.The DFT theoretical calculations elucidate that the stable chemisorption structure and large adsorption energy restricts the massive diffusion of soluble LiPSs in the electrolyte.Moreover,an increase in the density of states (DOS) at the Fermi level and decrease in the energy barrier facilitates the charge transfer and chemical conversion kinetics.With these advanced features,this Pt/S/OCNF gives the cathode a high sulfur utilization of 77.5%,an excellent rate capacity of 813.2 mAh/g at 2 C,and an outstanding long-cycling performance with the capacitance retention of 82.6% and a decay of 0.086% per cycle after 200 cycles at 0.5 C.

    Scheme 1 gives a conceptual illustration for preparing oxygen (O) and nitrogen (N) tailoring carbon fiber aerogel (OCNF)by one-step solid-state pyrolysis (OSSP) chemistry,where a cotton natural biomass fiber works as a building block for carbon fiber aerogel.The O and N tailoring is realized by spatially grafting the oxygenated carbon nitride (OCN) nanosheets on the carbon fiber during the OSSP process.Pyrolysis of urea and glucose produced OCN nanosheets in-situ growing on the cotton fibers,which were converted into O and N tailoring carbon fiber aerogel under the pyrolysis atmosphere.Ammonium chloride (NH4Cl) plays a role in regulating the pore structure and the alignment of OCN on carbon fiber.Then,four OCNF model materials,named OCNF,CCF-1000,CCF-1100 and CCF-1200 were obtained.The detailed preparation process of the materials is shown in the Experimental Section in Supporting information.

    The solid sulfur powders were directly deposited on the OCNF host by one-step thermal melt-diffusion method,where the obtained OCNF/S composite was used to fabricate the sulfur cathode.Subsequently,the Pt nanoparticles were uniformly coated onto the sulfur cathode by ion sputtering.Therefore,an electrocatalysis interface composed of Pt nanoparticles was formed on the surface of sulfur cathode (Pt/S/OCNF),which will realize the efficient conversion of active sulfur,the significant inhibition of LiPSs shuttling and excellent long-cycling stability.

    Fig.1.Morphology and structure of OCNF and Pt nanoparticle interfaced sulfur cathode (Pt/S/OCNF).(a) SEM and (b) TEM image for OCNF.(c) SEM image for sulfur cathode.(d) HRTEM image for Pt nanoparticles.(e) High-resolution Pt4f XPS spectrum.(f) Elementary mapping for merging Pt,N,O,S and C.Elementary mappings of (g) C,(h) N,(i)O,(j) S and (k) Pt.Scale bar: 1 μm.

    Representatively,the OCNF exhibits a 3D carbon fiber aerogel structure (Fig.S1c in Supporting information) similar to the raw cotton precursor (Fig.S1a in Supporting information).The scanning electron microscopy (SEM) images show that the OCNF exhibits a disordered interlaced network structure with a large amount of graphene-like OCN grafted on the smooth surface of carbon fiber(Fig.1a and Fig.S1f in Supporting information).Transmission electron microscopy (TEM) images along with STEM images clearly exhibit thein-situgrowth of OCN with a typical folded wrinkled 2D lamellar morphology (Fig.1b and Fig.S2a in Supporting information).The edges of these folds would form a considerable channel and pore structure,providing a high specific surface area.Therefore,from the N2adsorption/desorption curves (Fig.S4 in Supporting information) and pore volume analysis (Table S1 in Supporting information),the typical type I isothermal curves indicate the characteristic microporous/mesoporous structure for OCNF.Moreover,the thermal decomposition of the precursor ammonium chloride (NH4Cl) working as gaseous pore-making agent makes the OCNF with a large specific surface area of 1305.2 m2/g and pore volume of 0.71 cm3/g,especially with a large micropore volume of 0.47 cm3/g.Correspondingly,the high nitrogen (4.6%)and oxygen content (6.88%) calculated from XPS (Table S3 in Supporting information) also demonstrates the critical role of ammonium chloride.

    We then investigated the deposition and localization of platinum (Pt) nanoparticles obtained by ion sputtering,and the corresponding chemical local micro-environment and valence state (Fig.1).The diameter of Pt nanoparticle about 5–7 nm withd-spacing of 0.19 nm was detected by high-resolution TEM,consistent with the (200) plane lattice of high crystalline Pt (Fig.1d).As shown in Fig.1e,the chemical state of Pt nanoparticles was confirmed by XPS spectra.The high-resolution Pt4fXPS spectrum shows three chemical valence states,where the predominant bond energies of 72.6 eV and 75.9 eV are assigned to the Pt2+4f7/2and Pt2+4f5/2.The STEM image (Fig.1c) and elementary mappings(Fig.1f) clearly show the localization of Pt nanoparticles and the distribution of nitrogen (N),oxygen (O) and carbon (C) elements(Figs.1g-i).The uniform distribution of Pt with C,N and O elements was observed intuitively.Moreover,the Pt on the surface of sulfur (S) particles is obviously observable,demonstrating the directly intimate contact between S and Pt,and laying the foundation for the Li/S chemical conversion by Pt electrocatalysis(Figs.1j and k).

    Electrochemical performances of the as-designed 3D OCNF sulfur cathode (Fig.2) and Pt nanoparticle interfaced sulfur cathode(Pt/S/OCNF,denoted as OCNF-Pt),were comprehensively investigated to confirm the advantages of Pt-activated interfacial electrocatalysis in enhancing the Li/S chemical conversion kinetics.Firstly,cyclic voltammetry (CV) within the voltage range of 1.6–2.8 V at a scan rate of 0.1 mV/s was employed to explain the Li/S electrochemical transformation.Fig.2a shows the CV curves of OCNF-Pt and OCNF cathodes,presenting the typical oxidation and reduction peaks of Li/S cell.In the reduction process,the first reduction peak(C1 at 2.29 V,OCNF cathode) represents the initial transformation of solid cyclic S8into soluble long-chain Li2S8and Li2S6in the liquid electrolyte,and the long-chain Li2S6is further transformed into short-chain Li2S4,delivering 25% of total capacity (1675 mAh/g).Meanwhile,the second reduction peak (C2 at 1.97 V) indicated that soluble Li2S4was finally converted into solid Li2S2and Li2S,releasing a high theoretical specific capacity of 1275 mAh/g.Conversely,in the oxidation process,the first oxidation peak (A1) at 2.40 V means that solid Li2S2/Li2S are converted into soluble Li2S4,then into long-chain soluble Li2S6and Li2S8at another oxidation reaction (A2 at 2.45 V),and finally into solid cyclo-S8.This electrochemical process involves the breaking and bonding of long/short chain S-S bonds and the phase transformation between solid-state and liquid-state.

    From the oxidation–reduction curves of OCNF and OCNF-Pt cathodes,we found that the Pt nanoparticles with electrocatalysis significantly reduced the overpotential of sulfur chemical conversion with a sharp increase in the reduction current.OCNFPt exhibits a reduced overpotential of 49.5 mV (C2),12.5 mV (C1)and 39.5 mV (A1),compared to that for OCNF respectively.Meanwhile,the reduction current (C2) increases significantly in the process of transforming soluble Li2S4into solid Li2S2and Li2S,demonstrating outstanding chemical conversion kinetics.Noteworthy,mediated by Pt electrocatalysis interface,the oxidation current (A1) of the OCNF-Pt cathode increases significantly.And,the value of A1 higher than that of A2 indicates the conversion from Li2S to Li2S4with excellent electrocatalytic kinetics,which solves the aggregation of Li2S on the cathode surface to reduce the occurrence of "dead sulfur" and realize the efficient application of short-chain LiPSs.At the same time,after 20 stabilization cycles,the lowest oxidation and reduction overpotential shift (8.17 mV for C2,24.9 mV for A1) further indicates the importance of Pt interfacial catalysis.Furthermore,the catalytic conversion of Pt electrocatalysis interface for polysulfides redox reactions can be further investigated by the symmetrical cells assembled by OCNFPt and 0.1 mol/L Li2S6at the fixed voltage of -1~1 V (Fig.2b).The CV with OCNF-Pt cathode reveals a remarkable redox symmetry pair,which is located at 0.75 V and -0.75 V,demonstrating facile Li2S6conversion reaction in comparison to that of OCNF cathode.

    Fig.2.Electrochemical performances of OCNF and Pt nanoparticles interfaced Li/S cell.(a) CV curves,0.1 mV/s.(b) CV curves of symmetrical cells with OCNF or OCNF-Pt cathodes.(c) Rate capability.(d) Galvanostatic charge-discharge profiles.(e) Comparison of discharge plateaus specific capacitance at 0.1 C and 0.5 C.(f) Electrochemical impedance spectroscopy (EIS) and its equivalent circuit diagrams.(g) Cycling performances.

    The electrocatalysis at the Pt interface promotes the LiPSs chemical conversion,endowing the OCNF-Pt cathode with excellent rate performances at high current density.As displayed in Fig.2c,the OCNF-Pt cathode releases a high discharge capacity of 1298.2 mAh/g with an average coulombic efficiency (C.E.) of 99.1%at 0.1 C,exhibiting an effective utilization of 77.5%,which is 1.2 and 1.3 times higher than OCNF (C.E.97.9%) and CCF-1100 (C.E.97.6%),1.1 and 1.3 times higher than CCF-1200 (C.E.98.6%) and CCF-1000(C.E.96.5%) (Fig.S11b in Supporting information),respectively.As the rate current increase to 1 C,the capacity remains 874.3 mAh/g(C.E.99.7%).A capacity of 813.2 mAh/g still maintains at a high rate of 2 C (C.E.99.9%),1.36 times bigger than that of OCNF (C.E.97.9%) and 1.70 times CCF-1100 (C.E.97.4%).After 5 cycles at 2 C,the capacity recovers to 1171.8 mAh/g at 0.1 C,90.26% of the initial capacity.Accordingly,the galvanostatic charge/discharge curves at 0.1 C and 0.5 C were further investigated to elucidate the modulation of Pt electrocatalytic interface on the activation overpotential(ΔE) and discharge capacity at different stages (C1 and C2).As shown in Fig.2d,the OCNF-Pt cathode exhibits a relatively lower ΔEof 159 mV at 0.1 C and 237 mV at 0.5 C than that of OCNF with 196 mV at 0.1 C and 288 mV at 0.5 C.Correspondingly,the two typical discharge plateaus increase by 81.2 mAh/g and 160 mAh/g at 0.1 C,and by 17.7 mAh/g and 125.3 mAh/g at 0.5 C in contrast to that of OCNF (Fig.2e).And the C2/C1 ratio of OCNF-Pt cathode at 0.5 C is 2.4,which is larger than that of OCNF (2.1),demonstrating outstanding Li/S conversion kinetics and high sulfur utilization.Hence,the excellent Pt electrocatalytic interface makes Pt/S/OCNF a reducing electrochemical overpotential and improving coulombic efficiency and specific capacity,correlated to the fast Li/S chemical conversion kinetics.

    The electrochemical impedance (EIS) and its corresponding equivalent circuit diagrams were used to investigate the effects of Pt electrocatalysis interface on the charge transfer impedance and ion diffusion resistance.As shown in Fig.2f,the OCNF-Pt cathode exhibits a lower charge transfer impedanceRctof 9.7Ωand internal electrical resistanceR1of 3.6Ωthan those of OCNF (Rctof 19.8ΩandR1of 4.0Ω) at high frequency,demonstrating a faster charge transfer and sulfur conversion.The charge transfer impedanceRct’of 4.3Ωappears at the intermediate frequency,indicating a new interface,which is attributed to the redox reactions between Pt and LiPSs on the cathode surface.

    Additionally,the cycling performance was examined at 0.5 C to evaluate the improvement of chemical conversion kinetics and suppression of shuttle effect by Pt electrocatalysis interface.As shown in Fig.2g,OCNF-Pt cathode presents a high capacitance retention of 82.6%,decaying from the initial specific capacity of 1188.1 mAh/g to 982.3 mAh/g after 200 cycles at 0.5 C with an average coulomb efficiency of 99.4% and a decay of 0.086%per cycle,in comparison to the OCNF with capacitance retention of 76.1% and average coulomb efficiency of 97.5%,and CCF-1000 (79.3%,97.7%),CCF-1100 (64.6%,98.7%) and CCF-1200 (69.4%,96.4%) (Figs.S11d-f in Supporting information).The increase in discharge capacity,coulomb efficiency and capacitance retention confirms the contribution of Pt electrocatalysis interface to suppressing the LiPSs shuttling.The Pt electrocatalysis interface improves the electrochemical performances of the cathode in sulfur electrochemical conversion kinetics,ion diffusion and electron transfer kinetics.This results prove the key roles of Pt/S/OCNF in effectively suppressing the shuttle effect and "dead sulfur" to realize highefficiency sulfur utilization,and further verify the importance of this cathode design.

    We further investigated the mechanism of interfacial Pt nanoparticle in electrocatalytically mediating the Li/S conversion chemistry and in inhibiting LiPSs shuttling.Firstly,a visualized adsorption experiment and corresponding UV–vis absorption spectroscopy provide visual evidence to verify the adsorption of soluble LiPSs by OCNF.In the four groups of simulated electrolyte Li2S6solution (6.0 mL,10.0 mmol/L),15 mg of OCNFs and control(CCF-1000,CCF-1100 and CCF-1200) were added respectively.After 15 min,the solution with OCNF gradually became colorless and transparent,but the others showed a slight change (Fig.3a).The disappearance of corresponding wide absorption from 400 nm to 600 nm in the visible spectra further demonstrates the strong adsorption of OCNF towards soluble LiPSs (Fig.3b).The electronic structure calculations were applied to elaborate the excellent electrical conductivity of the Pt interface.The results indicate that the Pt electrocatalysis interface allows the OCNF-Pt cathode to exhibit larger total density of state (DOS) at Fermi level compared to the one of OCNF (Figs.3c and d),giving the OCNF-Pt with capability of high electrical conductivity and fast electron transfer.Then,density functional theory (DFT) calculations were used to understand the mechanism for the Li/S conversion chemistry and chemisorption for LiPSs.The optimized bond structure diagram of the OCNFPtcluster-PS chemisorption conformation demonstrates that the interfacial Pt nanoparticles bridge between Li2Sn(n=1,2,4,6,8 and S8) and OCNF to form a stable chemisorption structure (Fig.S12 in Supporting information).The pyridine nitrogen atom in OCNF as the active site binds to Li atom in Li2Sn(n=1,2,4,6,8,without S8) to form another adsorption structure of OCNF-PS(Fig.S13 in Supporting information).The adsorption energy data shows that OCNF-Ptclusterexhibits higher adsorption energy than OCNF during the first discharge plateau stage from solid-phase S8to liquid-phase Li2S6,which were -3.64 eV (S8),-4.11 eV (Li2S8)and -3.85 eV (Li2S6) respectively.And the increasing trend of adsorption energy is also reflected in the transformation process from soluble Li2S4to insoluble Li2S/Li2S2.During the charging transformation process from Li2S to Li2S4,the adsorption energy reveals an upward trend along with the propagation of S-S bond,by 0.45 eV increase from Li2S to Li2S2and 0.55 eV from Li2S2to Li2S4,respectively.These results indicate that the Pt electrocatalysis interface has a more favorable bonding interaction and chemical anchoring,which restrains the diffusion of soluble Li2S8,Li2S6and Li2S4in the electrolyte.On the other hand,the gradual accumulation of adsorption energy during the oxidation of short-chain Li2S to long-chain Li2S4promotes the solid-liquid conversion kinetics,enhancing the kinetics of insoluble Li2S being oxidized and reducing the aggregation of "dead sulfur" on the cathode surface.

    Fig.3.Mechanism understanding of OCNF and Pt nanoparticles interfaced Li/S conversion chemistry.(a) Optical photographs for adsorption of sulfur hosts towards Li2S6.(b) UV–vis spectra of Li2S6 solution after adsorption.Density of states (DOS)for (c) OCNF and (d) OCNF coupled Pt cluster.(e) Gibbs energy profiles of Li/S conversion chemistry.

    Besides,the S-reduction pathways of OCNF-Ptcluster(blue line)and OCNF (red line) cathodes were investigated to reveal the improvement of the Pt electrocatalytic interface in the thermodynamics and kinetics of LiPSs conversion.As shown in Fig.3e,during the reduction process from Li2S4to Li2S2,the maximum endothermic Gibbs free energy is 1.32 eV (OCNF) and 0.55 eV (OCNF-Ptcluster),respectively,indicating the rate-limiting step in the discharge process.In addition,the whole process of the second plateau discharge from Li2S4to Li2S2shows a significant endothermic,and the Gibbs free energy of the OCNF-Ptcluster(0.55 eV and 0.45 eV) is obviously lower than that of the OCNF (1.32 eV and 0.71 eV),indicating the low energy barrier to obtain fast redox and chemical conversion kinetics.Therefore,the reduction of S on an OCNF cathode with Pt electrocatalytic interface presents more thermodynamic advantages.

    Traditionally,the effective utilization of sulfur is attributed to direct contact of the electrolyte with sulfur.However,the diffi-culty in achieving complete contact between electrolyte and sulfur mainly includes the limited diffusion and penetration of electrolyte into the interior of the cathode,and the massive layer of insoluble Li2S on the cathode surface shielding the contact of electrolyte.Therefore,it is critical to understand the manner and capability of the electrolyte to diffuse and penetrate into the interior of the cathode.As shown in Fig.4a,3D AFM pattern of the OCNFPt cathode surface was realistically restored,exhibiting a bumpy and rugged shape similar to a ridge.The diffusion and penetration of the electrolyte on the cathode surface were observed visually by contact angle test.The first drop of electrolyte was observed to achieve rapid diffusion or penetration into the cathode (Fig.4b).However,the subsequent third drop gives the surface obvious saturation (Fig.S14 in Supporting information).A schematic diagram shows the mechanism of the OCNF-Pt cathode,where the Pt electrocatalytic interface achieves the rapid Li/S chemical conversion kinetics and fast transformation of solid-phase S8to soluble LiPSs to generate ionic channels,and the 3D OCNF inhibits the massive aggregation of insoluble Li2S on the cathode and accelerates the effective penetration of electrolyte into the cathode interior(Fig.4c).

    To further explore the permeability of the electrolyte into the interior of the OCNF-Pt cathode,XPS argon etching technique was used to analyze the changes of high-resolution C 1s and S 2p spectrum of OCNF-Pt cathode (after 200 cycles) at different etching times (depths).From the high-resolution C 1s spectrum,the peak area of C-F3(293.1 eV) originating from the electrolyte is gradually decreasing,with C-F3/C=C changing from the initial 32.1% to 3.1%after 12 min etching (Figs.4d-f and Fig.S21a in Supporting information).From the high-resolution S 2p spectrum,the peak area of the S-S bond originating from the S8molecule presents an increasing tendency,while the one of the sulfate produced by the redox process gives a weakening trend (Figs.4g-i).The ratio of SS/sulfate increases from 24.2% to 123.3% after 12 min etching (Fig.S21b in Supporting information).These results provide direct evidence for the diffusion and penetration resistance of electrolytes into the interior of the sulfur cathode,denoting the significance of ionic channels in sulfur cathode to promote the Li/S chemical conversion and to maintain the long-cycling capacity retention.It is noteworthy that no significant signal of Li2S/Li2S2was detected on the surface and inside of the OCNF-Pt cathode after charging.

    Fig.4.Mechanism of electrolyte diffusion and penetration on sulfur cathode.(a) 3D AFM simulation diagram of OCNF-Pt cathode surface.(b) Contact angle for electrolyte diffusion and penetration.(c) Schematic diagram of the mechanism of Pt nanoparticles interfaced sulfur cathode in the redox process.High resolution C 1s and S 2p spectra etched at various times: (d) C 1s and (g) S 2p without etching; (e) C 1s and (h) S 2p at 6 min (min); (f) C 1s and (i) S 2p at 12 min.

    In summary,we have developed a cathode structure design to regulate Li/S conversion chemistry and ion channel.The Pt electrocatalysis interface combined with the unique 3D hierarchical porous structure and abundant functional active sites at OCNF guarantees strong adsorption confinement,fast Li/S conversion and unblocked ion channels for electrolyte permeation in the cathode.The exploring of sulfur cathode with electrocatalysis interface and ion channel for feasible electrolyte diffusion and Li/S transformation kinetics provides an efficient pathway towards high-capacity,high-rate and long-cycling lifetime Li/S batteries.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We thank funding support from National Key R&D Program of China (No.2016YFB0100100),The National Natural Science Foundation of China (Nos.21961024,21961025,21433013,U1832218),Inner Mongolia Natural Science Foundation (No.2018JQ05).Supported by Incentive Funding from Nano Innovation Institute (NII)of Inner Mongolia University for Nationalities (IMUN).Inner Mongolia Autonomous Region Funding Project for Science & Technology Achievement Transformation (No.CGZH2018156).Inner Mongolia Autonomous Region Incentive Funding Guided Project for Science& Technology Innovation (2016).Inner Mongolia Autonomous Region Science & Technology Planning Project for Applied Technology Research and Development (No.2019GG261).Tongliao Funding Project for Application Technology Research & Development (2017).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.016.

    天天操日日干夜夜撸| 中文欧美无线码| 久久这里有精品视频免费| 午夜激情福利司机影院| 亚洲欧美清纯卡通| 亚洲国产精品一区三区| xxx大片免费视频| 日本av免费视频播放| 高清午夜精品一区二区三区| 熟女av电影| 黄色欧美视频在线观看| 三上悠亚av全集在线观看| 91久久精品国产一区二区成人| 国产高清国产精品国产三级| 成人国产麻豆网| 午夜日本视频在线| 成人毛片60女人毛片免费| 99精国产麻豆久久婷婷| 国产在线视频一区二区| 久久av网站| av专区在线播放| av黄色大香蕉| 亚洲国产成人一精品久久久| 特大巨黑吊av在线直播| 99久国产av精品国产电影| 丝袜美足系列| av国产精品久久久久影院| av又黄又爽大尺度在线免费看| 成人黄色视频免费在线看| 中文天堂在线官网| 少妇高潮的动态图| 黑人猛操日本美女一级片| 国产精品久久久久久久电影| 黄色一级大片看看| 91精品三级在线观看| 亚洲人成网站在线观看播放| av在线app专区| 少妇熟女欧美另类| 国产在视频线精品| 一级二级三级毛片免费看| 少妇人妻久久综合中文| 男女边摸边吃奶| 久久久亚洲精品成人影院| 成人亚洲欧美一区二区av| 国产精品人妻久久久久久| 亚洲第一av免费看| 国产精品蜜桃在线观看| 国产精品久久久久久精品古装| 亚洲精品成人av观看孕妇| a级毛片黄视频| 午夜91福利影院| 观看美女的网站| 亚洲情色 制服丝袜| 啦啦啦在线观看免费高清www| www.色视频.com| 中文欧美无线码| 国产午夜精品久久久久久一区二区三区| 国产女主播在线喷水免费视频网站| 人人妻人人澡人人爽人人夜夜| 五月开心婷婷网| 国产精品99久久久久久久久| 亚洲丝袜综合中文字幕| 精品亚洲成a人片在线观看| 晚上一个人看的免费电影| 一边摸一边做爽爽视频免费| 国产免费一区二区三区四区乱码| 高清av免费在线| 欧美人与性动交α欧美精品济南到 | 极品少妇高潮喷水抽搐| 黑人巨大精品欧美一区二区蜜桃 | 婷婷成人精品国产| 美女脱内裤让男人舔精品视频| 欧美老熟妇乱子伦牲交| 国产在视频线精品| 国产免费福利视频在线观看| 99re6热这里在线精品视频| 亚洲国产精品国产精品| 免费观看的影片在线观看| 18禁裸乳无遮挡动漫免费视频| 日韩中字成人| 中文欧美无线码| 欧美日韩成人在线一区二区| 日韩一本色道免费dvd| 美女大奶头黄色视频| 寂寞人妻少妇视频99o| 国产男女超爽视频在线观看| 国产精品人妻久久久久久| 国产不卡av网站在线观看| av专区在线播放| 亚洲欧美色中文字幕在线| 91成人精品电影| av在线老鸭窝| 国产精品国产三级国产专区5o| 日韩亚洲欧美综合| 日本欧美国产在线视频| 国产亚洲精品久久久com| 一区二区三区乱码不卡18| 午夜91福利影院| 毛片一级片免费看久久久久| 午夜福利视频精品| 精品少妇久久久久久888优播| 黑人欧美特级aaaaaa片| 在线观看国产h片| 国产成人免费观看mmmm| 婷婷色综合大香蕉| 91午夜精品亚洲一区二区三区| 久久人妻熟女aⅴ| 欧美xxⅹ黑人| 伊人亚洲综合成人网| 国产熟女欧美一区二区| 你懂的网址亚洲精品在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久国产精品大桥未久av| 波野结衣二区三区在线| 亚洲成色77777| 全区人妻精品视频| 插逼视频在线观看| 在线观看免费高清a一片| 欧美性感艳星| 亚洲情色 制服丝袜| 国产高清国产精品国产三级| 9色porny在线观看| 成人影院久久| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久精品电影小说| 国产精品熟女久久久久浪| 亚洲成人手机| 亚洲精品久久午夜乱码| 久久久亚洲精品成人影院| 国产成人精品无人区| 免费av不卡在线播放| 亚洲国产毛片av蜜桃av| 人妻系列 视频| 欧美日韩国产mv在线观看视频| 国模一区二区三区四区视频| 午夜91福利影院| 午夜老司机福利剧场| 嫩草影院入口| 美女内射精品一级片tv| videossex国产| 午夜激情福利司机影院| 亚洲国产欧美日韩在线播放| 亚洲图色成人| 久久久久久久久久久丰满| 日韩视频在线欧美| 国产精品国产av在线观看| 看免费成人av毛片| 欧美日韩一区二区视频在线观看视频在线| 日韩伦理黄色片| 制服人妻中文乱码| 99久国产av精品国产电影| 狂野欧美白嫩少妇大欣赏| 精品卡一卡二卡四卡免费| 99久国产av精品国产电影| 精品国产国语对白av| 亚洲精品日本国产第一区| 内地一区二区视频在线| 免费人成在线观看视频色| 国产一区二区三区综合在线观看 | 两个人免费观看高清视频| 久久久欧美国产精品| 久久av网站| 国产探花极品一区二区| 国产男女超爽视频在线观看| 日本免费在线观看一区| 日韩一本色道免费dvd| 日本午夜av视频| 成人国产av品久久久| 日本爱情动作片www.在线观看| 久久午夜综合久久蜜桃| 欧美少妇被猛烈插入视频| 国产综合精华液| 国精品久久久久久国模美| 亚洲综合精品二区| 亚洲欧美中文字幕日韩二区| 国产成人aa在线观看| 国产日韩欧美视频二区| 三上悠亚av全集在线观看| 国产成人精品一,二区| 人妻 亚洲 视频| 在线播放无遮挡| 女人久久www免费人成看片| 免费高清在线观看日韩| 亚洲人成77777在线视频| 国产有黄有色有爽视频| 边亲边吃奶的免费视频| 亚洲精品,欧美精品| 哪个播放器可以免费观看大片| 哪个播放器可以免费观看大片| 草草在线视频免费看| 日本wwww免费看| 国产伦精品一区二区三区视频9| 高清黄色对白视频在线免费看| 国产不卡av网站在线观看| 一个人免费看片子| 狂野欧美激情性bbbbbb| 国产成人av激情在线播放 | 国产女主播在线喷水免费视频网站| 久久婷婷青草| 简卡轻食公司| 卡戴珊不雅视频在线播放| 国产精品人妻久久久影院| 又大又黄又爽视频免费| 欧美精品人与动牲交sv欧美| 久久女婷五月综合色啪小说| 亚洲无线观看免费| 波野结衣二区三区在线| 亚洲精品国产色婷婷电影| 久久影院123| 热99国产精品久久久久久7| 国产一级毛片在线| 又黄又爽又刺激的免费视频.| 十八禁网站网址无遮挡| 美女大奶头黄色视频| 色婷婷av一区二区三区视频| 亚洲情色 制服丝袜| 亚洲欧美中文字幕日韩二区| 久久久久久人妻| 精品少妇黑人巨大在线播放| 成人毛片60女人毛片免费| 亚洲美女视频黄频| 久久久久人妻精品一区果冻| 我要看黄色一级片免费的| 欧美日韩亚洲高清精品| av视频免费观看在线观看| 亚洲经典国产精华液单| 欧美日韩成人在线一区二区| 国产成人精品婷婷| 亚洲高清免费不卡视频| 国产69精品久久久久777片| 又黄又爽又刺激的免费视频.| 五月开心婷婷网| 亚洲激情五月婷婷啪啪| 草草在线视频免费看| 欧美性感艳星| 亚洲四区av| 蜜桃久久精品国产亚洲av| 国产不卡av网站在线观看| 熟女电影av网| 最新中文字幕久久久久| 欧美性感艳星| 亚洲欧美中文字幕日韩二区| 高清在线视频一区二区三区| 欧美日本中文国产一区发布| 超色免费av| 久久ye,这里只有精品| 午夜激情av网站| 日本欧美视频一区| av.在线天堂| 亚洲av男天堂| 亚洲,一卡二卡三卡| 少妇熟女欧美另类| 亚洲人成网站在线观看播放| 国产成人精品无人区| 黑人高潮一二区| 热re99久久国产66热| 亚洲不卡免费看| 免费大片黄手机在线观看| 国产精品国产三级专区第一集| 国产亚洲欧美精品永久| 丝袜脚勾引网站| 大又大粗又爽又黄少妇毛片口| 最近中文字幕2019免费版| 色婷婷av一区二区三区视频| 一二三四中文在线观看免费高清| 免费黄色在线免费观看| 久久婷婷青草| 日韩av不卡免费在线播放| 久久久久久久久大av| 久久久久久久精品精品| 免费黄色在线免费观看| 精品久久久噜噜| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 精品久久久久久久久av| 日韩亚洲欧美综合| 国产一区有黄有色的免费视频| 女人久久www免费人成看片| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| 涩涩av久久男人的天堂| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 国产男人的电影天堂91| 我要看黄色一级片免费的| 精品亚洲成国产av| 欧美人与善性xxx| 日韩中字成人| 性色avwww在线观看| 最黄视频免费看| 你懂的网址亚洲精品在线观看| 极品人妻少妇av视频| 毛片一级片免费看久久久久| 亚洲成人一二三区av| 欧美+日韩+精品| 日本色播在线视频| 日本爱情动作片www.在线观看| 麻豆精品久久久久久蜜桃| 亚洲国产精品999| 最新的欧美精品一区二区| av天堂久久9| 老司机亚洲免费影院| 国产亚洲av片在线观看秒播厂| 久久久久久久久久久免费av| 精品国产乱码久久久久久小说| videossex国产| 亚洲不卡免费看| 成人亚洲欧美一区二区av| 国产伦精品一区二区三区视频9| 黑人欧美特级aaaaaa片| 国产精品蜜桃在线观看| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 黑人欧美特级aaaaaa片| 99热这里只有是精品在线观看| 亚洲精品美女久久av网站| 少妇人妻 视频| 亚洲av电影在线观看一区二区三区| 熟女人妻精品中文字幕| 在线观看免费视频网站a站| 国产精品 国内视频| 久久久久久久久大av| 久久午夜福利片| 日本欧美视频一区| 两个人的视频大全免费| 国产精品三级大全| 少妇 在线观看| 91精品三级在线观看| 日本色播在线视频| 最近中文字幕高清免费大全6| 热re99久久精品国产66热6| 人妻一区二区av| 黄片无遮挡物在线观看| 精品少妇久久久久久888优播| 超碰97精品在线观看| 国产一区二区三区综合在线观看 | 亚洲欧美一区二区三区黑人 | 日韩一区二区视频免费看| 天天躁夜夜躁狠狠久久av| 国产精品三级大全| 久久精品国产亚洲网站| 精品少妇黑人巨大在线播放| 亚洲国产av新网站| 人妻人人澡人人爽人人| 久久国产精品男人的天堂亚洲 | 亚洲人成77777在线视频| 亚洲国产av影院在线观看| 国内精品宾馆在线| 国产av一区二区精品久久| 国产黄频视频在线观看| 久久综合国产亚洲精品| 亚洲精品第二区| 亚洲国产精品999| 少妇被粗大猛烈的视频| 精品国产国语对白av| 日本欧美视频一区| 男女啪啪激烈高潮av片| 观看美女的网站| 亚洲av在线观看美女高潮| 永久免费av网站大全| 在线观看三级黄色| 国语对白做爰xxxⅹ性视频网站| 国产免费又黄又爽又色| 边亲边吃奶的免费视频| 国产高清国产精品国产三级| 999精品在线视频| 国产av精品麻豆| 精品久久国产蜜桃| 亚洲欧美日韩另类电影网站| 伊人久久精品亚洲午夜| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 国产成人午夜福利电影在线观看| 亚洲精品日韩av片在线观看| 黄色毛片三级朝国网站| 亚洲av在线观看美女高潮| 日本免费在线观看一区| 国国产精品蜜臀av免费| 久久久久网色| 日韩精品免费视频一区二区三区 | 嘟嘟电影网在线观看| 亚洲,欧美,日韩| 五月伊人婷婷丁香| av卡一久久| 青春草视频在线免费观看| 欧美精品一区二区大全| 久久ye,这里只有精品| 亚洲av不卡在线观看| 你懂的网址亚洲精品在线观看| 国产精品人妻久久久影院| 国产精品一二三区在线看| 国产精品一区二区三区四区免费观看| 一区二区av电影网| 美女国产高潮福利片在线看| 一个人看视频在线观看www免费| 如日韩欧美国产精品一区二区三区 | 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 2018国产大陆天天弄谢| 在线观看www视频免费| 中国美白少妇内射xxxbb| 视频区图区小说| 九色亚洲精品在线播放| 亚洲国产精品999| 最黄视频免费看| 亚洲国产最新在线播放| 亚洲三级黄色毛片| 欧美日韩视频精品一区| 久久午夜福利片| 91精品一卡2卡3卡4卡| 26uuu在线亚洲综合色| 久久国产亚洲av麻豆专区| 中文字幕久久专区| 国产精品一国产av| 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看 | 欧美日韩av久久| 一个人看视频在线观看www免费| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 黄色配什么色好看| 少妇的逼好多水| 亚洲精品中文字幕在线视频| 精品国产一区二区三区久久久樱花| av一本久久久久| 亚洲美女搞黄在线观看| 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 少妇的逼水好多| 国产 一区精品| 最近手机中文字幕大全| 精品人妻在线不人妻| 最黄视频免费看| 欧美精品亚洲一区二区| 欧美人与善性xxx| av福利片在线| 亚洲婷婷狠狠爱综合网| 一区二区日韩欧美中文字幕 | 麻豆乱淫一区二区| 夫妻性生交免费视频一级片| 亚洲精品国产色婷婷电影| av卡一久久| 国产精品久久久久久av不卡| 一区二区日韩欧美中文字幕 | 最近中文字幕2019免费版| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 王馨瑶露胸无遮挡在线观看| 一级毛片aaaaaa免费看小| 色吧在线观看| 欧美日韩亚洲高清精品| 久久热精品热| 啦啦啦视频在线资源免费观看| 亚洲丝袜综合中文字幕| 美女国产视频在线观看| 最近2019中文字幕mv第一页| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级| 在线观看一区二区三区激情| 日韩精品有码人妻一区| 最近的中文字幕免费完整| 中文字幕人妻丝袜制服| 国产av国产精品国产| 国产不卡av网站在线观看| 亚洲av福利一区| 九九爱精品视频在线观看| 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 久久鲁丝午夜福利片| 久久影院123| 亚洲三级黄色毛片| 亚洲国产av影院在线观看| 日韩亚洲欧美综合| 黑丝袜美女国产一区| 亚洲色图综合在线观看| 18+在线观看网站| 久久人人爽人人爽人人片va| 亚洲精品乱码久久久v下载方式| 一区二区三区精品91| 99久久精品国产国产毛片| 国产在线免费精品| av天堂久久9| 日韩精品免费视频一区二区三区 | 国产有黄有色有爽视频| 97在线视频观看| 欧美精品高潮呻吟av久久| av免费观看日本| 久久精品夜色国产| 我的老师免费观看完整版| 能在线免费看毛片的网站| 国产欧美亚洲国产| 桃花免费在线播放| 中文字幕免费在线视频6| 免费高清在线观看视频在线观看| 在现免费观看毛片| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 一个人看视频在线观看www免费| 青春草亚洲视频在线观看| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 欧美bdsm另类| 最近的中文字幕免费完整| 女性生殖器流出的白浆| 日韩三级伦理在线观看| 久久久久精品性色| 亚洲丝袜综合中文字幕| 满18在线观看网站| 啦啦啦在线观看免费高清www| 欧美日韩国产mv在线观看视频| 久久精品久久久久久久性| 日韩一区二区视频免费看| 成年人免费黄色播放视频| www.色视频.com| 国产亚洲精品久久久com| 色94色欧美一区二区| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 日本wwww免费看| 18禁观看日本| 美女主播在线视频| 国产亚洲一区二区精品| 亚洲av中文av极速乱| 人妻少妇偷人精品九色| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 国产69精品久久久久777片| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 高清黄色对白视频在线免费看| av电影中文网址| 性高湖久久久久久久久免费观看| 高清不卡的av网站| 久久久久国产网址| 黑人欧美特级aaaaaa片| 午夜免费男女啪啪视频观看| 高清av免费在线| 国产高清三级在线| 十分钟在线观看高清视频www| 国产在线一区二区三区精| www.色视频.com| 亚洲av在线观看美女高潮| 一区在线观看完整版| 婷婷色av中文字幕| 国产一区二区三区av在线| 美女视频免费永久观看网站| 日本色播在线视频| 国产69精品久久久久777片| 国产精品偷伦视频观看了| 妹子高潮喷水视频| 26uuu在线亚洲综合色| 乱人伦中国视频| 免费不卡的大黄色大毛片视频在线观看| 成年av动漫网址| 亚洲av.av天堂| tube8黄色片| 我的女老师完整版在线观看| 国产精品蜜桃在线观看| 国产精品无大码| 特大巨黑吊av在线直播| 欧美人与性动交α欧美精品济南到 | 亚洲人与动物交配视频| 日韩人妻高清精品专区| 五月天丁香电影| 欧美精品一区二区大全| a 毛片基地| 国产黄色免费在线视频| 99热这里只有是精品在线观看| 亚洲色图 男人天堂 中文字幕 | 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| 亚洲精品一区蜜桃| 亚洲色图 男人天堂 中文字幕 | 高清不卡的av网站| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 人体艺术视频欧美日本| 免费日韩欧美在线观看| 久久热精品热| 美女视频免费永久观看网站| 亚洲国产av新网站| 十八禁高潮呻吟视频| 国产精品人妻久久久影院| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频 | 亚洲av.av天堂| 日韩视频在线欧美| 国国产精品蜜臀av免费| 免费看不卡的av| 人人澡人人妻人| 大片免费播放器 马上看| 黄色配什么色好看| 国产成人a∨麻豆精品| 大陆偷拍与自拍| 国产老妇伦熟女老妇高清| 亚洲激情五月婷婷啪啪| 性色av一级| 久久久久精品久久久久真实原创| 亚洲图色成人| 日日撸夜夜添| 在线观看免费视频网站a站| 欧美少妇被猛烈插入视频| av视频免费观看在线观看| 制服人妻中文乱码| 欧美激情国产日韩精品一区| 亚洲色图综合在线观看| 国产高清不卡午夜福利|