• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetism engineering of nanographene: An enrichment strategy by co-depositing diverse precursors on Au(111)

    2023-03-14 06:52:10HuiZhngJinhenLuYongZhngLeiGoXinJingZhoYunZhiTnJinmingCi
    Chinese Chemical Letters 2023年1期

    Hui Zhng,Jinhen Lu,Yong Zhng,Lei Go,Xin-Jing Zho,Yun-Zhi Tn,Jinming Ci,*

    a Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China

    b Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China

    c State Key Laboratory for Physical Chemistry of Solid Surfaces,Collaborative Innovation Center of Chemistry for Energy Materials,and Department of Chemistry,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China

    Keywords:Nanographene Magnetism enrichment Co-deposition Scanning tunneling microscope

    ABSTRACT The magnetism of nanographene is dominated by the structure of its carbon skeleton.However,the magnetism engineering of nanographene is hindered due to finite precursors.Here,we demonstrate an ingenious synthetic strategy to engineer the magnetism of nanographene through hetero-coupling two precursors on Au(111) surface.Bond-resolved scanning tunneling microscopy and spectroscopy results show that two homo-coupled products host a closed-shell structure,while the products with five membered ring defects perform as an open-shell one with the total spin number of 1/2,confirmed by spin-polarized density functional theory calculations.While two hetero precursors on Au(111) substrate,the heterocoupled products both perform as the magnetic structure with total spin quantum numbers of 1/2 and 1,resulting from carbon skeleton transformations.Our work provides an effective way to engineer the magnetism of nanographene by enriching the magnetic products simultaneous,which could be extended into other controllable magnetic nanographene instruction.

    The magnetism of carbon nanomaterials,such as nanographene(NG),has attracted extensive attention due to its high magnitudes of spin-wave stiffness [1],weak spin-orbit coupling [2],hyperfine couplings [3] and large spin coherence lifetimes [4],which hold promise for spintronics [5,6].The open-shell [7,8] structures of magnetic NGs with high reactivity results from the presence of unpair electrons (radicals),which make it challenging in solutionbased synthesis and magnetic ground state measurement [9,10].However,as an alternative method,on-surface synthesis under ultra-high vacuum has emerged as a powerful flexible synthetic toolkit in recent years [11].Current research focus of carbon magnetism inducing involve four aspects: NG or graphene nanoribbons (GNR) with spin-polarized zigzag edges states [12–15],sublattice imbalance as guided by Lieb’s theorem for bipartite lattices or defects induced systems [16–20],NGs with non-Kekulé structure formed by the topological frustrated [21] or size-induced Coulomb repulsion between valence electrons [22–26],and non-benzenoid rings imbedded NG [27,28].

    The total spin quantum number (S) of NGs might be engineered in four ways.Firstly,artificially precursors transformed into open-shell structure by directly cyclodehydrogenation [16,17,19,21–24,29–33] to induce the magnetism.Secondly,the radical positions of NGs could be passivated by H atoms released from cyclodehydrogenation,which will modulateSfrom 0 to 1/2 [21] and 1 to 1/2[19].In this situation,theScould be recovered by applying bias to remove the redundant H atoms.Thirdly,quenching the spin by creating single C–metal bond,for example,bounding the radical positions to the elbow area of Au(111) surface [21] by applying positive voltage pulse [34].Lastly,the spin on/off could be switched due to the charge transfer by changing adsorption positions [35–37].Recently,an ingenious co-deposition method had been employed to induce magnetism in boron atoms doped graphene nanoribbon[38].

    Fig.1.Synthetic routes toward NGs 1a,1b,2a and 2b.Route 1: precursor 1 undergoes homo-coupling into the defect-free NG 1a and defective 1b.Route 2: precursors 1 and 2 hetero-coupling into the defect-free NG 2a and defective 2b.

    Here,we induce the co-deposition method into the engineering of nanographene and synthesize plenty products with different magnetic ground states by homo-coupling and hetero-coupling between precursors.We demonstrate this engineering strategy by co-depositing two precursors (precursor 1,9–bromo-10-(2,6-dimethylphenyl)anthracene,BDMPA [23]; precursor 2,10–bromo-9,9′-bianthracene,BBA [39]) on Au(111) substrate.As illustrated in route 1 of Fig.1,surface-catalyzed Ullmann homo-coupling and afterwards cyclodehydrogenation reactions (300°C,6°C/min) of precursor 1 lead to the formation of NG 1a (defect-free).Simultaneously,a NG 1b endowed with a pentagonal terminus resulting from losing a methyl group in the precursor 1 could also be formed during the annealing process.According to chemical structures and Lieb’s theorem [20],the total spin of 1a is 0.The pentagonal ring in NG 1b renders a non-Kekulé system with an unpaired electron,that means aS=1/2 grounds state of NG 1b.NG 1a can be described as either an open-shell non-Kekulé structure with 5 Clar sextets or a closed-shell Kekulé structure with 4 Clar sextets,respectively.This competition from the aromaticity of 5 Clar sextets is higher than 4 Clar sextets one,while the open-shell structure is more reactive than the closed-shell one.In addition,DFT calculation show that the real structure of NG 1a is still ambiguous(Table S1 in Supporting information) as the energies of open-shell and closed-shell structures are almost the same.When missing a methyl group in the precursor 1,a pentagonal topological defect in NG 1b raises a result of sublattice-imbalance,which manifests as a Kondo resonance.In another way,route 2,surface-catalyzed Ullmann hetero-coupling of the precursor 1 and the precursor 2 and afterwards cyclodehydrogenation cyclization reactions (300°C,6°C/min) lead to formations of NG 2a and NG 2b.NG 2a,a defectfree structure,possesses a triplet ground state (S=1).NG 2b,similar with NG 1b,formed by missing a methyl group,has a doublet ground state (S=1/2).

    After depositing the precursor 1 on Au(111) surface and subsequent cyclodehydrogenation,the NGs 1a and 1b were obtained(Fig.2).Figs.2a and b show the STM images of NGs 1a and 1b,respectively.The NG 1a can be clearly recognized from the STM imageviathe two-lobe-like feature at both triangular termini (Fig.2a),while the NG 1b possesses such feature only at one of the triangular ends (Fig.2b).The structures are verified by our BR-STM images and corresponding chemical structure displayed in Figs.2c and d.The additional states are visible near non-defect area in Fig.2d.To elucidate the experimental electronic properties,we employed STS characterizations of the NG 1a (Fig.2e) and 1b (Fig.2f).For the NG 1a,the STS depicts several electronic resonances labeled as HOMO-1 (–1.35 V),LUMO+1 (+2.0 V) and a pair of electronic resonances marked as frontier molecular orbitals.The absence of any spin enhanced state near Fermi level from BR-STM as well as the inelastic spin excitation signal in a higher energy resolution dI/dVspectroscopy (Fig.S1 in Supporting information) alone with calculated energy (Table S1) which may illustrate a closedshell structure of NG 1a.The precise energy positions of LUMO and HOMO are identified to be–0.3 V and +0.21 V,respectively,which reveals a frontier gap of 0.51 eV for NG 1a.The closed-shell nature of NG 1a by the frontier maps (Fig.S1b in Supporting information) with different shapes and symmetries.The spatial maps of electronic state distribution of HOMO-1 (Fig.2g),and LUMO+1(Fig.2h) reveal similar results as reported before [18].For NG 1b,the STS mainly shows two obvious electronic resonances in Fig.S2b (Supporting information),and labeled as HOMO-1 (–1.1 V) and LUMO+1 (+1.6 V) in Fig.2f.Figs.2i and j show the spatial maps of electronic states distribution of HOMO-1 and LUMO+1 and the additional maps are displayed in Fig.S3 (Supporting information).The dI/dVspectra in Fig.2f depict the zero-energy states (ZESs)near the defect free terminus (the purple and green lines in Fig.2f) which correspond to the additional states in BR-STM (Fig.2d).To amplify on the ZESs of NG 1b,we performed low-energy range dI/dVspectra in Fig.S4 (Supporting information).The ZES appears when the tip position is close to defect free area and the resonance fits well with the Frota function [40].These results indicate that the ZES in NG 1b is attributed to the Kondo resonances[16–19,30,41].

    Fig.2.STM images and electronic structures of NGs 1a and 1b.(a,b) STM images of NG 1a (c) and 1b (d) on Au(111) (V=-500 mV, I=200 pA,3×3 nm2).(c,d) BRSTM images (left panel) and Laplace filtered images (right panel) of NGs 1a and 1b(V=2 mV,2×2 nm2).dI/dV spectroscopy on NG 1a (e) and 1b (f) (V=-2 V, I=350 pA, Vrms=15 mV).(g,h) Experimental dI/dV maps of HOMO-1 and LUMO+1 for NG 1a (I=350 pA, Vrms=15 mV,3×3 nm2).(i,j) Experimental dI/dV maps of HOMO-1 and LUMO+1 for NG 1b (I=350 pA, Vrms=15 mV,3×3 nm2).

    To engineer the NG magnetism,we co-deposited the precursor 1 and the precursor 2 onto the Au(111) substrate.After annealing process,two new products (NGs 2a and 2b) were observed,as shown in Fig.3a.NGs 2a and 2b are marked by solid white rectangles (Fig.3a).The difference between NGs 2a and 2b can be distinguished from zoom-in highly-resolved STM images (Figs.3b and c).Two-lobe like local density state distribution shown in Fig.3b corresponds to the triangular end of NG 2a,while the pentagonal defect terminus of NG 2b shows a faint feature (Fig.3c).To gain bond-resolved images of NGs 2a and 2b,we performed high resolution STM characterizations by attaching a CO molecule at the apex of tip.Figs.3d and e depict bond-resolved STM (BR-STM)images of NGs 2a and 2b,respectively,unambiguously confirming the defect-free feature of NG 2a and the pentagonal defect feature of NG 2b.Both BR-STM images show the feature with additional states,indicating the Kondo resonance enhanced state distributions[18,19].Moreover,the BR-STM image for NG 2a shows the feature with additional state around whole structure,while only the bottom part of BR-STM image for NG 2b shows the feature with additional state.The difference means that the Kondo resonance distributions of NG 2a and NG 2b [35,42–44].dI/dVspectra of NGs 2a and 2b shown in Figs.3f and g shed light on the ZESs existence as well as energy positions of HOMO-1 and LUMO+1.The distributions of ZESs for NGs 2a and 2b fit well with the electronic-state enhanced area of BR-STM images in Figs.3d and e.dI/dVmaps at–1.3 V,and +1.7 V for NG 2a (Figs.3h and i) and–1.0 V,and +1.4 V for NG 2b (Figs.3j and k) reveal spatial distributions of electronic states.

    Fig.3.STM images and electronic structures of NGs 2a and 2b.(a) Large-scale STM image of NGs 2a and 2b on Au(111) (V=-1 V, I=30 pA.40×40 nm2).Highresolution STM images of NGs 2a (b) and 2b (c) (V=2 mV, I=200 pA.3×3 nm2).BR-STM images (left panel) with CO functionalized tip for NG 2a (d) and 2b (e)and corresponding Laplace-filtered images (V=2 mV,2.5×2.5 nm2).dI/dV spectra of NGs 2a (f) and 2b (g) (V=–2.0 V, I=350 pA).(h,i) Experimental dI/dV maps of HOMO-1 and LUMO+1 of NG 2a (I=350 pA, Vrms=15 mV).(j,k) Experimental dI/dV maps of HOMO-1 and LUMO+1 of NG 2b (I=350 pA,3×3 nm2).

    To further investigate the electronic structures and magnetic properties of NGs 2a and 2b,we performed SP-DFT calculations.Compared with antiferromagnetic (AFM),the NG 2a is further verified to be ferromagnetic (FM) as preferable energy (Table S2 in Supporting information).Figs.4a and b present the SP-DFT calculated energy spectra of NGs 2a and 2b,which show single electron occupied frontier orbitals SOMOs and SUMOs of the nondegenerated energy levelψ2andψ3of NG 2a and the energy levelψ2of NG 2b respectively,triggering spin polarizations.According to the calculated energy level,magnetic ground states of NGs 2a and 2b areS=1 andS=1/2 respectively.The calculated spin-polarized wave functions of the SOMOs of NGs 2a and 2b are displayed in Figs.4c and d,respectively.ψ2↑andψ3↑of the NG 2a exhibit dominant localization at the top and the bottom terminus with slight overlap.ψ2↑of the NG 2b only exhibit dominant localization at the bottom area.The spin density distribution of the triplet ground state of NG 2a shown in Fig.4e is around the whole CBatoms,while the doublet ground state of NG 2b in Fig.4f is around at the bottom CBatoms of the NG 2b.Furthermore,the calculated spin density distributions fit well with the experimental BR-STM results (Figs.3d and e).Low-energy interval dI/dVspectra at the marked positions (Figs.4g and h) reveal the existence of Kondo resonances.The distributions of Kondo resonance fit well with the calculate spin density state distributed area.The Kondo peak positions are slight away from Fermi level and the shapes are slightly asymmetric,which can be attributed to the charge transfer and the hybridization with the substrate [35,36,45].As shown in Fig.4g,compared with the terminal ends,the Kondo peak acquired in middle positions of NG 2a are positively shifted (Table S3 in Supporting information),which may indicate a stronger charge transfer area at the middle part of NG 2a.

    Fig.4.SP-DFT calculated magnetic properties of NGs 2a and 2b.(a,b) SP-DFT calculated energy spectra of NGs 2a and 2b.DFT calculated spin-polarized wave functions of the SOMO of NG 2a (c) and 2b (d).SP-DFT simulated spin density distributions of NG 2a (e) and 2b (f).gray and black balls represent carbon atoms from two different sublattice.The spin density marked by cyan and yellow represent two different spin directions.Experimental low-energy ranges dI/dV spectra of the Kondo resonances detected in 2a (g) and 2b (h),with fitting using the Frota function [40].

    There are two obvious additional details,when taking a deeper analysis of the Kondo resonance by comparing NGs 2a and 2b.Firstly,the Kondo resonance acquired at both ends of NG 2a and around NG 2b shows obvious Kondo state difference,where NG 2a possesses smaller resonance amplitude and linewidth corresponding to the underscreen effect ofS=1 system [19,46] and NG 2b shows a complete wash out of the magnetic moment ofS=1/2.Secondly,the spatial variation of the Kondo peak when STS is measured at different lateral positions on the NG 2a which is different from a shorter NG 3 (Fig.S6 in Supporting information).Combining these Kondo resonance differences and calculated wave function results,we concluded two opening explanations for the NG 2a.As the longer distance of two spins compared with NG 3,they have negligible direct coupling leading theS=1/2 Kondo feature[19,21] in the middle area and indirect spin coupling or exchanging at both ends of NG 2a leading the under screened Kondo feature.Another possibility is that Kondo peak differences are result from relative position differences corresponding to the spin center and underneath gold substrate [47].

    We demonstrate an efficient synthetic strategy to engineer and enrich the magnetic NG products by co-depositing diverse precursors on the Au(111) substrate.Two homo-coupled products (NG 1a and NG 1b) acquired by Ullmann coupling and cyclodehydrogenation reactions of precursor 1 and two hetero-coupled products (NG 2a and NG 2b) co-deposited by precursor 1 and precursor 2 have been successfully fabricated.Defective NG 1b hosts spins ofS=1/2 resulting from a sublattice imbalanced carbon skeleton.The magnetism for defect-free NG 2a and defective NG 2b host spins ofS=1/2 andS=1,respectively.Our work successfully realizes the magnetism engineering and enrichment by inducing another precursor and offers a valid opportunity via the co-deposition to extend the magnetism engineering of NG on metal substrate.

    Declaration of competing interest

    The authors declare no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.61901200),the National Recruitment Program for Young Professionals (No.132310976002),the Yunnan Fundamental Research Projects (Nos.2019FD041,202101AV070008,202101AW070010 and 202101AU070043),the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB30000000),and the Dongguan Innovation Research Team Program.The numerical calculations in this paper have been done on Hefei advanced computing center.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.04.048.

    少妇裸体淫交视频免费看高清 | 韩国精品一区二区三区| 18禁观看日本| 亚洲成人免费电影在线观看 | 国产成人91sexporn| 50天的宝宝边吃奶边哭怎么回事| 欧美成人午夜精品| 黄片小视频在线播放| 亚洲国产精品999| 一二三四在线观看免费中文在| 久久久久久久久免费视频了| 国产免费视频播放在线视频| 亚洲精品日韩在线中文字幕| 久久免费观看电影| 七月丁香在线播放| 真人做人爱边吃奶动态| 国产深夜福利视频在线观看| 国产免费现黄频在线看| 色婷婷av一区二区三区视频| 婷婷色综合www| 国产在线一区二区三区精| 日本黄色日本黄色录像| 人人妻人人澡人人爽人人夜夜| 精品少妇一区二区三区视频日本电影| 亚洲av成人不卡在线观看播放网 | 视频在线观看一区二区三区| 久久ye,这里只有精品| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 国产av精品麻豆| 亚洲欧美成人综合另类久久久| 国产男女内射视频| 欧美精品亚洲一区二区| 久久精品熟女亚洲av麻豆精品| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看 | 久久精品亚洲熟妇少妇任你| 天天影视国产精品| 永久免费av网站大全| 少妇的丰满在线观看| 一本久久精品| 亚洲欧美色中文字幕在线| 一级毛片黄色毛片免费观看视频| 成人三级做爰电影| 97精品久久久久久久久久精品| 国产主播在线观看一区二区 | 激情视频va一区二区三区| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 欧美精品av麻豆av| 国产日韩欧美视频二区| 99国产精品免费福利视频| 国产色视频综合| 成人影院久久| 晚上一个人看的免费电影| 十八禁网站网址无遮挡| 99精品久久久久人妻精品| av在线播放精品| 中文字幕制服av| 精品少妇黑人巨大在线播放| 久久久精品国产亚洲av高清涩受| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 伊人亚洲综合成人网| 亚洲精品国产一区二区精华液| a级毛片黄视频| avwww免费| 电影成人av| 国产片内射在线| 日韩一区二区三区影片| 宅男免费午夜| 在线观看免费午夜福利视频| 一本久久精品| 热99久久久久精品小说推荐| 精品国产乱码久久久久久小说| xxxhd国产人妻xxx| 91成人精品电影| 一级毛片黄色毛片免费观看视频| 中文精品一卡2卡3卡4更新| 欧美精品啪啪一区二区三区 | 亚洲成av片中文字幕在线观看| 日本av免费视频播放| 国产成人av激情在线播放| 黄色 视频免费看| 国产在线免费精品| 狂野欧美激情性xxxx| 在现免费观看毛片| 99re6热这里在线精品视频| 免费观看a级毛片全部| 欧美日韩视频高清一区二区三区二| 婷婷色av中文字幕| 国产亚洲欧美在线一区二区| 日韩中文字幕视频在线看片| 在线 av 中文字幕| 国产精品二区激情视频| 一级毛片 在线播放| 又黄又粗又硬又大视频| 人妻 亚洲 视频| 又大又爽又粗| 看免费av毛片| 欧美av亚洲av综合av国产av| 婷婷色麻豆天堂久久| 欧美久久黑人一区二区| 中文字幕制服av| 久久国产精品大桥未久av| 国产精品亚洲av一区麻豆| av不卡在线播放| 久久狼人影院| 久久99精品国语久久久| 欧美日韩国产mv在线观看视频| 无遮挡黄片免费观看| 欧美在线一区亚洲| 亚洲,一卡二卡三卡| 自线自在国产av| 久久人妻福利社区极品人妻图片 | 精品人妻熟女毛片av久久网站| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 欧美在线黄色| 日韩av在线免费看完整版不卡| 久久综合国产亚洲精品| 十八禁高潮呻吟视频| 黄频高清免费视频| 美女扒开内裤让男人捅视频| 亚洲国产欧美日韩在线播放| 国产熟女欧美一区二区| 色综合欧美亚洲国产小说| 97精品久久久久久久久久精品| 亚洲,欧美,日韩| 黄色片一级片一级黄色片| 女人爽到高潮嗷嗷叫在线视频| 免费少妇av软件| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 国产在线一区二区三区精| 大话2 男鬼变身卡| 亚洲欧美日韩高清在线视频 | 啦啦啦啦在线视频资源| 99国产综合亚洲精品| 亚洲人成电影免费在线| 婷婷丁香在线五月| 亚洲情色 制服丝袜| 人妻人人澡人人爽人人| 国产精品麻豆人妻色哟哟久久| 国产成人精品无人区| 国产精品一区二区在线不卡| 亚洲图色成人| 中国美女看黄片| 人人妻人人添人人爽欧美一区卜| 一个人免费看片子| 国产黄频视频在线观看| 一本久久精品| 中文字幕人妻丝袜一区二区| 一本色道久久久久久精品综合| 丝袜脚勾引网站| 深夜精品福利| 午夜福利影视在线免费观看| 精品一区二区三卡| 制服诱惑二区| 老司机深夜福利视频在线观看 | 久久精品成人免费网站| 丝袜美足系列| 热99久久久久精品小说推荐| 女人精品久久久久毛片| 国产亚洲一区二区精品| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 欧美精品一区二区大全| 色播在线永久视频| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 不卡av一区二区三区| 免费看不卡的av| 国产成人av教育| 国产老妇伦熟女老妇高清| 午夜福利,免费看| 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 欧美黄色片欧美黄色片| 国产一区亚洲一区在线观看| 亚洲国产成人一精品久久久| 久久免费观看电影| 国产在视频线精品| 日韩,欧美,国产一区二区三区| 中文字幕色久视频| 午夜视频精品福利| 久久免费观看电影| 好男人视频免费观看在线| 一区福利在线观看| 国产成人91sexporn| 一级黄色大片毛片| 你懂的网址亚洲精品在线观看| 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 欧美在线一区亚洲| 欧美乱码精品一区二区三区| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 国产爽快片一区二区三区| 国产成人精品久久二区二区91| xxxhd国产人妻xxx| 国产又色又爽无遮挡免| 成年女人毛片免费观看观看9 | 国产成人精品无人区| 免费在线观看日本一区| 午夜福利乱码中文字幕| 午夜老司机福利片| 亚洲精品中文字幕在线视频| 国产精品 国内视频| 亚洲中文日韩欧美视频| 深夜精品福利| 欧美另类一区| 午夜影院在线不卡| 久久久精品国产亚洲av高清涩受| 啦啦啦啦在线视频资源| 男女边摸边吃奶| 好男人视频免费观看在线| 免费看不卡的av| 女人精品久久久久毛片| 成年av动漫网址| 老鸭窝网址在线观看| 日日摸夜夜添夜夜爱| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 亚洲中文字幕日韩| 伊人亚洲综合成人网| 精品少妇内射三级| 亚洲,欧美,日韩| 777米奇影视久久| 一边摸一边做爽爽视频免费| 亚洲视频免费观看视频| 久久免费观看电影| 午夜免费鲁丝| 国产成人欧美| 啦啦啦 在线观看视频| 日韩一本色道免费dvd| 十分钟在线观看高清视频www| 狂野欧美激情性xxxx| 看免费av毛片| 色婷婷久久久亚洲欧美| 欧美97在线视频| 精品国产乱码久久久久久男人| 各种免费的搞黄视频| 超碰97精品在线观看| 欧美xxⅹ黑人| 天天躁日日躁夜夜躁夜夜| 欧美激情 高清一区二区三区| 一本色道久久久久久精品综合| 婷婷成人精品国产| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 90打野战视频偷拍视频| 久久精品久久精品一区二区三区| 1024香蕉在线观看| 777米奇影视久久| 伊人久久大香线蕉亚洲五| 国产黄色免费在线视频| 亚洲欧美中文字幕日韩二区| 国产伦人伦偷精品视频| 99九九在线精品视频| 91精品三级在线观看| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 国产精品偷伦视频观看了| 超碰成人久久| 99国产综合亚洲精品| av国产精品久久久久影院| 久久久精品免费免费高清| 国产97色在线日韩免费| 91字幕亚洲| 91国产中文字幕| 成年人午夜在线观看视频| 国产成人精品在线电影| 国精品久久久久久国模美| 亚洲视频免费观看视频| 欧美少妇被猛烈插入视频| 精品亚洲成国产av| 亚洲国产av新网站| 在线亚洲精品国产二区图片欧美| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 国产福利在线免费观看视频| 日本欧美国产在线视频| 亚洲av电影在线进入| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 视频区图区小说| 建设人人有责人人尽责人人享有的| 51午夜福利影视在线观看| 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 最新在线观看一区二区三区 | 久久中文字幕一级| 国产成人啪精品午夜网站| 中文字幕精品免费在线观看视频| 91成人精品电影| 国产伦人伦偷精品视频| 国产精品亚洲av一区麻豆| 777久久人妻少妇嫩草av网站| 99国产精品免费福利视频| 亚洲国产av影院在线观看| 免费日韩欧美在线观看| 亚洲成人国产一区在线观看 | 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 国产亚洲欧美精品永久| 日韩中文字幕欧美一区二区 | 国产精品久久久人人做人人爽| 91国产中文字幕| 午夜91福利影院| 亚洲国产看品久久| 婷婷丁香在线五月| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 亚洲av在线观看美女高潮| 别揉我奶头~嗯~啊~动态视频 | www.999成人在线观看| 男女高潮啪啪啪动态图| 赤兔流量卡办理| 婷婷丁香在线五月| 日韩电影二区| 国产精品 欧美亚洲| 亚洲国产看品久久| 国产男女内射视频| 久久狼人影院| 多毛熟女@视频| 国产精品香港三级国产av潘金莲 | 亚洲男人天堂网一区| 久久久久精品国产欧美久久久 | 亚洲国产日韩一区二区| 高清不卡的av网站| www.av在线官网国产| 91老司机精品| 日本黄色日本黄色录像| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 9色porny在线观看| 亚洲,欧美,日韩| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 黄色a级毛片大全视频| a级片在线免费高清观看视频| 国产精品三级大全| 另类亚洲欧美激情| 久久影院123| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 两个人免费观看高清视频| 大片电影免费在线观看免费| 午夜免费观看性视频| 高清av免费在线| 精品一区二区三卡| svipshipincom国产片| 国产精品香港三级国产av潘金莲 | 精品人妻熟女毛片av久久网站| 久久热在线av| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 亚洲成av片中文字幕在线观看| 青青草视频在线视频观看| 人人妻人人爽人人添夜夜欢视频| 黄色a级毛片大全视频| 高清视频免费观看一区二区| av在线播放精品| 啦啦啦 在线观看视频| 亚洲,一卡二卡三卡| 国产在线免费精品| 日日摸夜夜添夜夜爱| av有码第一页| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 久久久久久免费高清国产稀缺| 亚洲五月婷婷丁香| 丝袜在线中文字幕| 亚洲av成人精品一二三区| 99久久人妻综合| 日本wwww免费看| 97在线人人人人妻| 色综合欧美亚洲国产小说| 男人添女人高潮全过程视频| 激情五月婷婷亚洲| a级片在线免费高清观看视频| 国产日韩一区二区三区精品不卡| 欧美黑人欧美精品刺激| 国产免费视频播放在线视频| 最近中文字幕2019免费版| 咕卡用的链子| 高清黄色对白视频在线免费看| 亚洲一区中文字幕在线| 亚洲精品久久久久久婷婷小说| 丰满饥渴人妻一区二区三| 欧美精品一区二区免费开放| 国产高清视频在线播放一区 | 欧美日韩国产mv在线观看视频| 叶爱在线成人免费视频播放| a级毛片黄视频| a级毛片在线看网站| 一级黄片播放器| 18在线观看网站| 国产无遮挡羞羞视频在线观看| 欧美人与性动交α欧美精品济南到| 久久久久久久国产电影| 最新在线观看一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 亚洲国产av新网站| 午夜影院在线不卡| www.熟女人妻精品国产| 亚洲精品一二三| 日本av手机在线免费观看| 大香蕉久久网| 午夜福利影视在线免费观看| 欧美精品人与动牲交sv欧美| 久久久久久免费高清国产稀缺| 欧美日韩一级在线毛片| 男女午夜视频在线观看| 熟女少妇亚洲综合色aaa.| 男女无遮挡免费网站观看| 亚洲精品国产色婷婷电影| 欧美人与善性xxx| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 亚洲精品日本国产第一区| 一级,二级,三级黄色视频| 建设人人有责人人尽责人人享有的| 日本色播在线视频| 新久久久久国产一级毛片| 婷婷丁香在线五月| 欧美激情 高清一区二区三区| 久久99热这里只频精品6学生| 成人亚洲精品一区在线观看| 2021少妇久久久久久久久久久| 永久免费av网站大全| 一边摸一边做爽爽视频免费| 亚洲一区二区三区欧美精品| 91九色精品人成在线观看| 国产在线视频一区二区| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 亚洲图色成人| 成人亚洲欧美一区二区av| 国产成人av激情在线播放| 国产精品国产av在线观看| 午夜激情久久久久久久| 精品亚洲成a人片在线观看| 又大又黄又爽视频免费| 婷婷色av中文字幕| 这个男人来自地球电影免费观看| 下体分泌物呈黄色| 亚洲欧美精品自产自拍| 亚洲精品国产av成人精品| 欧美日韩综合久久久久久| 丝袜美足系列| 岛国毛片在线播放| netflix在线观看网站| 女人久久www免费人成看片| 校园人妻丝袜中文字幕| 国产不卡av网站在线观看| 各种免费的搞黄视频| 18禁观看日本| 国产精品偷伦视频观看了| 侵犯人妻中文字幕一二三四区| 在线看a的网站| 亚洲精品国产av成人精品| 免费高清在线观看日韩| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 国产日韩一区二区三区精品不卡| 考比视频在线观看| 高清av免费在线| 日本欧美视频一区| 少妇的丰满在线观看| 国产日韩欧美亚洲二区| 日本wwww免费看| 韩国精品一区二区三区| 日本一区二区免费在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产成人系列免费观看| 久久久国产一区二区| 久久毛片免费看一区二区三区| 亚洲国产精品一区三区| 99国产精品免费福利视频| 校园人妻丝袜中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产高清国产精品国产三级| 考比视频在线观看| 国产1区2区3区精品| 国产福利在线免费观看视频| 蜜桃国产av成人99| 日韩中文字幕视频在线看片| 人人妻人人爽人人添夜夜欢视频| 人妻人人澡人人爽人人| 亚洲人成电影观看| 精品人妻一区二区三区麻豆| 欧美精品av麻豆av| 夫妻性生交免费视频一级片| 一级a爱视频在线免费观看| 中文字幕人妻熟女乱码| 青春草视频在线免费观看| 校园人妻丝袜中文字幕| 免费女性裸体啪啪无遮挡网站| 亚洲成人免费电影在线观看 | 国产xxxxx性猛交| 丰满迷人的少妇在线观看| 成人亚洲精品一区在线观看| 九色亚洲精品在线播放| 亚洲av成人精品一二三区| 在线观看免费视频网站a站| 亚洲 欧美一区二区三区| 亚洲欧美精品自产自拍| 老汉色∧v一级毛片| e午夜精品久久久久久久| 午夜免费男女啪啪视频观看| 亚洲中文日韩欧美视频| 1024视频免费在线观看| 三上悠亚av全集在线观看| 91麻豆av在线| 亚洲国产日韩一区二区| 老司机影院成人| 成人黄色视频免费在线看| 亚洲国产毛片av蜜桃av| 人人妻人人添人人爽欧美一区卜| 天堂中文最新版在线下载| 欧美日韩黄片免| 成人国产av品久久久| 国产精品久久久久久精品古装| 成人国语在线视频| 一本一本久久a久久精品综合妖精| 人妻人人澡人人爽人人| 91国产中文字幕| 一个人免费看片子| 高潮久久久久久久久久久不卡| 精品免费久久久久久久清纯 | 十分钟在线观看高清视频www| 亚洲精品一二三| 欧美乱码精品一区二区三区| 国产精品偷伦视频观看了| 无遮挡黄片免费观看| 久久久久久久久免费视频了| 51午夜福利影视在线观看| 黄色 视频免费看| 一级片'在线观看视频| 久久精品国产亚洲av涩爱| 老司机亚洲免费影院| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区激情| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 在线亚洲精品国产二区图片欧美| 国产精品三级大全| 免费高清在线观看日韩| 国产亚洲一区二区精品| 婷婷丁香在线五月| 女人久久www免费人成看片| 国产精品免费视频内射| 七月丁香在线播放| 99re6热这里在线精品视频| 女性被躁到高潮视频| 99精品久久久久人妻精品| 欧美黑人精品巨大| 99久久综合免费| 国产黄色免费在线视频| 午夜福利视频在线观看免费| 一级毛片女人18水好多 | 999精品在线视频| 欧美日韩亚洲国产一区二区在线观看 | 超色免费av| 一个人免费看片子| av在线播放精品| 日韩人妻精品一区2区三区| 午夜免费成人在线视频| 9色porny在线观看| 久久99一区二区三区| 在线亚洲精品国产二区图片欧美| 久久久精品94久久精品| 成在线人永久免费视频| 国产精品久久久久久精品古装| 高清av免费在线| 国产精品一区二区在线观看99| 一区二区三区激情视频| 亚洲综合色网址| 90打野战视频偷拍视频| 亚洲中文字幕日韩| 中文精品一卡2卡3卡4更新| 视频区欧美日本亚洲| 亚洲中文字幕日韩| 成人三级做爰电影| 精品久久久久久久毛片微露脸 | 精品亚洲成a人片在线观看| 黄色a级毛片大全视频| 男的添女的下面高潮视频| 极品少妇高潮喷水抽搐| xxxhd国产人妻xxx| 中国美女看黄片| 国产精品麻豆人妻色哟哟久久| 日日摸夜夜添夜夜爱| 亚洲精品久久久久久婷婷小说| 亚洲第一av免费看| 真人做人爱边吃奶动态| 免费人妻精品一区二区三区视频| 免费少妇av软件| 男男h啪啪无遮挡| 久久九九热精品免费| 午夜免费观看性视频| 国产在视频线精品| 国产极品粉嫩免费观看在线| 亚洲,欧美精品.| 丝袜脚勾引网站|