• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-performance bulk heterojunction-based photocathode with facile architecture for photoelectrochemical water splitting

    2023-03-14 06:52:08YnlingWuDeyuLiuHunglongZhungJiboLeYongboKung
    Chinese Chemical Letters 2023年1期

    Ynling Wu,Deyu Liu,Hunglong Zhung,Jibo Le,Yongbo Kung,*

    a Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    c Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials,Ningde Normal University,Ningde 352100,China

    Keywords:Photocathodes Ruthenium oxide Bulk heterojunctions Hydrogen evolution Photoelectrochemical cells

    ABSTRACT Organic semiconductors are promising candidates as photoactive layers for photoelectrodes used in photoelectrochemical (PEC) cells due to their excellent light absorption and efficient charge transport properties with the help of interfacial materials.However,the use of multilayers will make the charge transfer mechanism more complicated and decrease the PEC performance of the photoelectrode caused by the increased contact resistance.In this work,a PM6:Y6 bulk heterojunction (BHJ)-based photocathode is fabricated for efficient PEC hydrogen evolution reaction (HER) in an acidic aqueous solution.With RuO2 as an interfacial modification layer,the photocathode with a simple structure (fluorine-doped tin oxide(FTO)/PM6:Y6/RuO2) generates a maximum photocurrent density up to -15 mA/cm2 at 0 V vs. reference hydrogen electrode (RHE),outperforming all previously reported BHJ-based photocathodes in terms of PEC performance.The highest ratiometric power-saved efficiency of 3.7% is achieved at 0.4 V vs. RHE.

    The pursuit of low-cost,renewable,and environmental-friendly energy sources especially hydrogen fuel has received tremendous attention in recent decades to meet the growing global energy demand and achieve carbon-neutral energy supplies [1,2].Photoelectrochemical (PEC) water splitting is a prospective pathway to converting solar energy into green hydrogen fuel [3–7].Solutionprocessed organic semiconductors,including single polymers and donor-acceptor mixed bulk heterojunction materials,represent a class of promising photoactive materials for cost-effective,largescale,and high-efficiency solar-driven water splitting [8].

    Since the blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was used as the photoactive layer of photocathodes in PEC cell for the first time,a series of research work based on P3HT:PCBM has been carried out to optimize the onset potential,photocurrent and durability by introducing interfacial layers with well-matched energy levels,including hole transporting layer (HTL,such as CuI,MoO3,PEDOT:PSS,and graphene oxide),electron transfer layer (ETL,such as TiO2) and catalytical layer (such as Pt,MoSx,and RuO2) [9–11].However,the optimized photocurrent of photocathode based on P3HT:PCBM was only obtained to -8 mA/cm2at 0 Vvs.reference hydrogen electrode (RHE) with an onset potential of 0.7 Vvs.RHE [12].In recent years,the performance of bulk heterojunction (BHJ) based photocathode for hydrogen evolution reaction (HER) has made great progress,benefiting from the rapid development of novel nonfullerene acceptors,which possess significant advantages including broad absorption band,high crystallinity,and tunable energy levels [13].For example,by using the non-fullerene acceptor,Li and coworkers have improved the photocurrent density of BHJ-based photocathodes to -11.7 and 11.98 mA/cm2at 0 Vvs.RHE with onset potentials of 0.8 and 0.87 Vvs.RHE,respectively [13,14].

    Since the organic semiconductor,Y6 ((2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2′′,3′′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile)),was first reported by Zou’ group in 2019,PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8–dione))]):Y6 based BHJ device has achieved a high PCE of 15.7% in organic solar cells (OSCs)[15].After that,PM6 (electron donor):Y6 (electron acceptor) based BHJ has attracted tremendous interest in OSCs applications in virtue of their recombination losses,small dissociation barrier,long diffusion length,beneficial morphology,and excellent light absorption properties [16,17].They have not yet been investigated as photocathodes for PEC water reduction.The rapid development of PM6:Y6 BHJ for organic photovoltaics provides an opportunity to take it as a photoactive layer for solar water reduction.

    Fig.1.(a) Chemical structures of PM6 and Y6.(b) Absorption spectra of the PM6,Y6,and the BHJ (PM6:Y6) film.(c) The energy-level diagram of semiconductors and photocathodes with different architectures that used in this work.

    Although the interfacial layers are commonly required to boost charge separation and reduce recombination [18],the multilayer structure will increase the contact resistances hence lowering the PEC performance and making the charge transfer mechanism more complicated [10].In addition,the electrochemical degradation of the HTLs (PEDOT:PSS,MoO3) has a negative impact on both the PEC performance and the long-term stability of the photocathodes[19].It has been suggested the large potential difference between the Fermi levels of the HTL and the electrolyte is responsible for the high onset potential and photocurrent of the photocathode[20].We assumed that utilizing a donor material with low-lying highest occupied molecular orbital (HOMO) level and high hole mobility might make an HTL unnecessary [21].Moreover,it has been proven that charge transfer at the BHJ/electrolyte interface is a rate-limiting process.Due to its supercapacitive nature,excellent catalytical properties,and good conductivity,RuO2can be decorated on the BHJ surface as an interfacial layer,resulting in effective charge extraction,charge transfer,and catalyzing H+to H2[22,23].

    Based on these different observations,together with the low HOMO level (-5.54 eV) of PM6,we used PM6:Y6 as the photoactive layer with RuO2as an interfacial modification layer to fabricate a simplified BHJ based photocathode,resulting in the highest photocurrent density of -15 mA/cm2at a bias of 0 Vvs.RHE,compared with a lower photocurrent density of -12 mA/cm2with TiO2and Pt as interfacial modification layers.The single RuO2layer significantly lowers the device resistance,and the morphology and thickness of RuO2play key roles in promoting the PEC performance.Moreover,the fabrication of the photocathodes could be carried out from the solution and at temperatures never going over 150°C.

    The chemical structures of PM6 and Y6 were depicted in Fig.1a.Both the donor and the accepter have largeπ-conjugated skeletons,resulting in broad absorption in the UV-vis spectra.As shown in Fig.1b,the absorption spectra of PM6 film are well complementary with Y6 film,resulting in a very high spectral response in the range of 300–900 nm.The suitable light absorption and energy levels of PM6:Y6 make it an excellent candidate photoactive layer that can be designed as a photocathode.Since lack of reactive sites on pristine BHJ for driving water splitting,a catalytic layer is indispensable to transfer photo-generated electrons.Pt and RuO2are the most efficiently and commonly used cocatalysts for reducing H+to H2[24].TiO2was selected as an ETL to enhance charge extraction and reduce recombination from BHJ [25].Fig.1c depicts three configurations of photocathodes studied in this work based on PM6:Y6 blends and different interfacial layers: (1)fluorine-doped tin oxide (FTO)/BHJ/Pt,(2) FTO/BHJ/TiO2/Pt,and (3)FTO/BHJ/RuO2.

    Fig.2.SEM images of photocathodes with different architectures.Top-view SEM images of (a) FTO/BHJ/TiO2/Pt and (b) FTO/BHJ/RuO2 photocathodes.Cross-sectional images of the photocathodes with different interfacial layers.From bottom to top:(c) FTO,BHJ,TiO2 and Pt layers; (d) FTO,BHJ and RuO2 layers.Scale bar: 100 nm.

    To meet the requirements of low-cost fabrication and highthroughput industrial implementation,all the three architectures are fabricated by solution-processed methods under ambient atmosphere.The experimental procedures are described in Supporting information.The Pt nanoparticles were loaded by photoassisted electrodeposition.The active layer (BHJ) and interfacial layers (TiO2or RuO2) were spin-coated orderly on the FTO to fabricated facile photocathodes.The surface morphology and thickness of photocathode layers were characterized by high-resolution scanning electron microscopy (SEM).The Pt nanoparticles decorated on the BHJ surface by photo-assisted electrodeposition with a particle size of 5–20 nm can be clearly observed (Fig.S1 in Supporting information).As shown in Figs.2a and b,the TiO2,and RuO2nanoparticles are covered uniformly on the BHJ with an average thickness of about 70 and 100 nm (Figs.2c and d),respectively.In fact,the RuO2layer consists of a porous layer of nanoparticle aggregates,thus its roughness is much higher than that of TiO2,thus not only offering a higher amount of reaction sites originating from the enhanced surface area but also shortening the diffusion length of charge carriers.Well-defined interfaces are observed from the cross-sectional SEM images,except for the Pt nanoparticles,whose small size and sparse distribution make them difficult to be distinguished.Therein,the optimized thickness of BHJ is about 80–150 nm.

    Fig.3.(a) J-V curves of FTO/BHJ,FTO/BHJ/Pt,FTO/BHJ/TiO2/Pt and FTO/BHJ/RuO2 photocathodes under solar spectrum AM1.5 G at 100 mW/cm2 with chopped light illumination in 0.5 mol/L Na2SO4 aqueous solution (pH 1).(b) Summary of the onset potential and current density (at 0 V vs. RHE) of state-of-the-art BHJ-based photocathodes.(c) Identification of the maximum power point (mpp) of the different photocathodes according to their J-V curves: FTO/BHJ/Pt,FTO/BHJ/TiO2/Pt,and FTO/BHJ/RuO2.(d) IPCE spectra of FTO/BHJ/RuO2 and FTO/BHJ/TiO2/Pt photocathodes in 0.5 mol/L Na2SO4 (pH 1) electrolyte with an applied potential of 0 V vs. RHE.

    It has been proved that the FTO/BHJ/RuO2photocathode demonstrates the highest performance for PEC HER in acidic solution than in neutral and alkali solution (Fig.S2 in Supporting information).The PEC performance of photocathodes with different architectures was then examined and compared under 1 sun (AM 1.5 G) in a 0.5 mol/L Na2SO4electrolyte (pH 1).The bare FTO/BHJ exhibits neglect photocurrent when the photocathode was conducted by cycle voltammetry at a scan rate of 20 mV/s in the potential range of 0.8 to 0 Vvs.RHE under chopped light illumination.The current-potential (J-V) curves of four different photocathodes are plotted in Fig.3a.After Pt deposition,the photocurrent density (j) of FTO/BHJ/Pt is effectively improved due to the existence of reactive sites for HER.However,the discrete distribution of Pt nanoparticles leads to limited charge extraction.The addition of TiO2overlayer significantly promotes charge separation and electron transfer,therefore,the FTO/BHJ/TiO2/Pt photocathode is capable of delivering a high photocurrent of -12 mA/cm2at 0 Vvs.RHE.Nevertheless,the additional interface will increase the resistance toward the charge flow and thus is harmful to the PEC performances [26].An interfacial layer that undertakes the tasks of charge extraction,electron transfer,and catalysis is urgently desired.RuO2is a good alternative.In comparison with that of FTO/BHJ/TiO2/Pt photocathode,the saturation photocurrent density of FTO/BHJ/RuO2is greatly enhanced and reaches a record photocurrent value of -15 mA/cm2at 0 Vvs.RHE with an onset potential of 0.8 Vvs.RHE (at 0.1 mA/cm2).To the best of our knowledge,thejat 0 Vvs.RHE is the highest value among the previously reported BHJ-based photocathodes (Fig.3b).In addition,the performance of the FTO/BHJ/TiO2/RuO2photocathode is not superior to FTO/BHJ/RuO2photocathode (Fig.S3 in Supporting information),indicating that the RuO2could efficiently promote charge transfer.The ideal ratiometric power-saved efficiency (Φsaved,ideal,see Supporting information for details) of the photocathodes could be obtained according to their maximum power point (mpp) calculated from theJ-Vcurves(Fig.3c).TheΦsaved,idealof FTO/BHJ/RuO2photocathode is determined to be 3.7% at 0.4 Vvs.RHE,which is nearly twice higher than that of FTO/BHJ/TiO2/Pt photocathode (1.9% at 0.3 Vvs.RHE),while the value of FTO/BHJ/Pt photocathode is below 0.2%.Thanks to the broad light absorption range,the incidentphoton-to-current efficiency (IPCE) spectra of the photocathodes at 0 Vvs.RHE show a wide and high-efficiency response in the whole range of 300–900 nm.The highest IPCEs of 76% and 69% are achieved at about 620 nm for FTO/BHJ/RuO2and FTO/BHJ/TiO2/Pt photocathodes,respectively (Fig.3d).

    To identify the feasibility of the FTO/PM6:Y6/RuO2photocathode with an HTL-free structure,HTL was introduced to investigate its effect on the PEC performance of the photocathode.We chose two commonly used HTL materials (NiO and CuOx)to fabricate FTO/NiO/BHJ/RuO2and FTO/CuOx/BHJ/RuO2photocathodes.As shown in Fig.S4 (Supporting information),due to the low hole mobility and conductivity of NiO,the onset potential of FTO/NiO/BHJ/RuO2is only 0.5 Vvs.RHE with a photocurrent density of -10.5 mA/cm2at 0 Vvs.RHE,indicating that an unsuitable HTL might block the hole transport.Previous studies suggest that CuOxis a favorable material for extracting photo-generated holes[13,14,27].However,the onset potential and photocurrent are not improved compared with the HTL-free photocathode.We inferred that the invalidation of HTL might be ascribed to the high energy difference between the HOMO level of PM6 and the electrolyte(1.1 Vvs.Vacuum).

    The thickness and morphology of RuO2that impact the carrier transport behavior are critical to achieving high PEC performance[28].As plotted in Fig.S5 (Supporting information),when the RuO2layer is not thick enough (below 100 nm),the BHJ surface could not be fully covered by RuO2.Hence the active sites and electron extraction are insufficient.On the contrary,too thick a RuO2layer causes a dramatic increase in charge transfer resistance and decreases in both photocurrent and onset potential.Therefore,a moderate thickness of the RuO2layer is a key point to obtain a saturatedJ-Vcurve.Meanwhile,the photocathode with the thickness of both BHJ and RuO2below 100 nm exhibits similar charge separation efficiency under the front and the back side illumination (Fig.S6 in Supporting information).The mass ratio of PM6:Y6 was also explored in Fig.S7 (Supporting information),and the optimized mass ratio is 1:1.2.It is worth mentioning that the PEC performance of the photocathode is insensitive to the variation of temperature,which means the device has a good working characteristic (Fig.S8 in Supporting information).

    To test the durability of the photocathodes,chronoamperometry(CA) measurements were carried out at a bias of 0.1 Vvs.RHE in a 0.5 mol/L Na2SO4electrolyte (pH 1).As shown in Fig.4a,the photocathode based on TiO2and Pt interlayers degrades rapidly,the photocurrent decreases by 90% in less than 5 min.This is caused by the poor contact between the BHJ and TiO2nanoparticles and the loose structure of the TiO2layer.As a result,the TiO2layer was detached from the BHJ surface,accompanied by the Pt layer.In comparison,with RuO2as the interlayer,~50% of the photocurrent loss occurred after 30 min.The reason for the moderate degradation speed of the FTO/BHJ/RuO2photocathode might be that although exfoliation occurred on the RuO2layer as well,the newly exposed RuO2interface continued to undertake the task of electron transfer and catalysis.The chemical structures of pristine PM6,Y6,BHJ,and BHJ after the CA test were characterized by microscopic infrared spectroscopy (Micro-FTIR) using the attenuated total reflectance (ATR) method at room temperature.The spectra of BHJ after the PEC test is consistent with that as-prepared (Fig.4b),which exhibits the main characteristic peak signals of both pristine PM6 and Y6.The results indicate that the chemical structure of BHJ has not been damaged during the PEC process.As a result,the low stability of the BHJ-based photocathodes may be caused by delamination of overlayers from the BHJ surface or exfoliation of BHJ from FTO substrates,erosion of electrolyte,and electrochemical polarization.The continuous evolution of H2bubbles was observed over the surface of the FTO/BHJ/RuO2photocathode for about 1 h with a faradaic efficiency of nearly 100% (Fig.S9 in Supporting information).

    Fig.4.(a) Stability test of FTO/BHJ/TiO2/Pt and FTO/BHJ/RuO2 photocathodes under solar spectrum AM1.5 G at 100 mW/cm2 at a bias of 0.1 V vs. RHE in 0.5 mol/L Na2SO4 aqueous solution (pH 1) with trace of H2PtCl4.(b) FTIR-ATR characterization of PM6,Y6,FTO/BHJ (PM6:Y6)/RuO2,and FTO/BHJ/RuO2 after CA test for 20 min.

    Fig.5.(a) Open circuit potentials were tested in a 0.5 mol/L H3BO3-KOH buffer solution with 0.5 mol/L Na2SO3 at pH 9 under chopped light illumination.(b) CA curve of FTO/BHJ/RuO2 photocathode under different light irradiation conditions at 0 V vs. RHE.(c) Nyquist plots of as-prepared FTO/BHJ,FTO/BHJ/Pt,FTO/BHJ/TiO2/Pt,and FTO/BHJ/RuO2 photocathodes at a bias of 0.25 V vs. RHE in 0.5 mol/L Na2SO4 aqueous solution (pH 1) under light illumination.Inset: original magnification 25×.(d)Distribution of relaxation times (DRT) curves converted from impedance spectra of(c).

    Open-circuit potential (OCP) measurements were performed to estimate the relative photovoltages of the different photoelectrodes,their OCP curves are shown in Fig.5a.Under illumination,the OCP for FTO/BHJ/Pt,FTO/BHJ/TiO2/Pt,and FTO/BHJ/RuO2photocathodes move toward the positive direction,indicating ptype semiconductor properties,and the photovoltages are 50 mV,100 mV,and 200 mV,respectively.The result corresponds to the tendency of the onset potential values of the photocathodes.Compared with FTO/BHJ/Pt and FTO/BHJ/TiO2/Pt,the more positive shift in the OCP under illumination for FTO/BHJ/RuO2suggests that the RuO2overlayer enables higher conversion efficiency of the incident light to sufficiently available photogenerated electrons,leading to improved PEC activity of PM6:Y6 based photocathode [13].

    It is worth mentioning that the value of photocurrent simultaneously irradiated under 590 nm and 810 nm monochromatic LED light is equal to the sum of photocurrent values that separately irradiated,indicating that there is no synergetic interaction between PM6 and Y6 (Fig.5b).

    To further study the electron transport kinetics in the four kinds of photocathodes and at their interfaces of photocathode/electrolyte,electrochemical impedance spectroscopy (EIS)measurements were conducted under light illumination at the bias from 0.05 V to 0.65 Vvs.RHE (Figs.S10a–h in Supporting information).As shown in Fig.5c,the EIS plots of the four kinds of photocathodes differ from one another.The arc radii of the FTO/BHJ photocathode is much larger than the other photocathodes,indicating its photo-generated charge separation and transfer is very difficult without an interfacial layer.From the high-magnification of the EIS plots in Fig.5c (upper right inset),it is clearly observed that the photocathodes modified by interfacial layers show two or more arcs.The radius values of these photoelectrodes follow the order of FTO/BHJ/RuO2<FTO/BHJ/TiO2/Pt<FTO/BHJ/Pt<FTO/BHJ,which are perfectly consistent with their corresponding photocurrent density.The resistances of FTO/BHJ/RuO2and FTO/BHJ/TiO2/Pt photocathodes are decreased at both high and low-frequency regions due to their efficient electron extraction and transfer,increased conductivity,and enhanced interface kinetics.However,it is hard to distinguish all these contributions.Distribution of relaxation times (DRT) converted from impedance spectra was introduced to effectively separate polarization processes more clearly than in common Nyquist or Bode plots [29].From the DRT plots(Fig.5d),peaks can be characterized to different polarization processes based on their relaxation time (τ) in the order of series resistances (low-τ)<charge transfer (mid-τ)<interfacial reactions(high-τ) [30].The peak intensity of FTO/BHJ/Pt and FTO/BHJ photocathodes at mid-τand high-τregions dramatically increases,indicating that their HER performances are hampered due to their inefficient charge transfer and limited reaction sites (Figs.S10e and f).The FTO/BHJ/TiO2/Pt photocathode obtained the weakest peak intensity in the high-τregion might be due to the excellent conductivity and catalytical properties of Pt.The weakest peak intensity of the FTO/BHJ/RuO2photocathode in the low-τregion indicates it possesses the smallest series resistances ascribes to the simplified architecture.In addition,the loading of RuO2effectively promotes the charge transfer in BHJ bulk and decreases the series resistance that mass transfer was the dominant process for FTO/BHJ/RuO2photocathode (Fig.S10h) [31].

    In conclusion,through the selection of PM6:Y6 BHJ as the photoactive layer and RuO2as the interfacial layer,a facile photocathode was fabricated by the all-solution processed method.The asobtained photocathode achieves the highest photocurrent density of -15 mA/cm2at 0 Vvs.RHE for HER compared with previous reported BHJ-based photocathodes.The value ofΦsaved,idealis up to 3.7% at 0.4 Vvs.RHE.The IPCE value reaches 76% at about 620 nm.By utilizing RuO2as an interfacial layer,an electron transfer layer is unnecessary,thus the interfacial recombination and excessive series resistances of the simplified photocathode are effectively reduced.Moreover,the positive shift of OCP of FTO/BHJ/ RuO2photocathode is responsible for the enhancement of its onset potential.Our work provides an easy and efficient fabrication technique that can meet the requirement of high-throughput industrial implementation.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We acknowledge the financial support by the National Natural Science Foundation of China (NSFC,21905288,and 51904288),the Zhejiang Provincial Natural Science Foundation (No.LZ21B030017),K.C.Wong Education Foundation (No.GJTD-2019-13),Ningbo Major Special Projects of the Plan “Science and Technology Innovation 2025” (Nos.2018B10056,and 2019B10046),and Ningbo 3315 Program,and Natural Science Foundation of Fujian Province (No.2021J011150).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.04.078.

    欧美xxxx黑人xx丫x性爽| 久久久久九九精品影院| 国产黄色小视频在线观看| 久9热在线精品视频| 中出人妻视频一区二区| 在线播放无遮挡| 国产高清视频在线播放一区| 99热只有精品国产| 亚洲黑人精品在线| 麻豆av噜噜一区二区三区| 国产激情偷乱视频一区二区| 国内少妇人妻偷人精品xxx网站| 99久久精品热视频| 夜夜爽天天搞| 国产成人啪精品午夜网站| 久久久久久久久久成人| 亚洲国产精品999在线| 露出奶头的视频| 精品一区二区三区视频在线| 日韩大尺度精品在线看网址| 国产亚洲精品久久久久久毛片| 97人妻精品一区二区三区麻豆| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 免费在线观看影片大全网站| 床上黄色一级片| 午夜精品在线福利| 亚洲在线观看片| 精品国产亚洲在线| 国产三级黄色录像| 两人在一起打扑克的视频| 中文字幕av在线有码专区| 亚洲专区中文字幕在线| 欧美性猛交╳xxx乱大交人| 在线免费观看不下载黄p国产 | 在线a可以看的网站| 午夜福利欧美成人| av视频在线观看入口| 日本黄色片子视频| 日韩精品中文字幕看吧| 色噜噜av男人的天堂激情| 日本a在线网址| 久久精品国产99精品国产亚洲性色| 国产熟女xx| 自拍偷自拍亚洲精品老妇| 麻豆国产97在线/欧美| 99在线视频只有这里精品首页| 高潮久久久久久久久久久不卡| 国产一级毛片七仙女欲春2| 88av欧美| 他把我摸到了高潮在线观看| 久久中文看片网| 午夜精品在线福利| 51午夜福利影视在线观看| 国产黄色小视频在线观看| 午夜福利视频1000在线观看| 18美女黄网站色大片免费观看| 一个人免费在线观看电影| www日本黄色视频网| 男女做爰动态图高潮gif福利片| 国产高清激情床上av| 国产黄a三级三级三级人| 欧美黑人巨大hd| 无人区码免费观看不卡| 国产又黄又爽又无遮挡在线| 亚洲中文日韩欧美视频| 国产精品亚洲一级av第二区| 亚洲国产精品sss在线观看| 亚洲内射少妇av| 国模一区二区三区四区视频| 美女高潮的动态| 日韩欧美国产在线观看| 国产欧美日韩一区二区精品| 欧美在线一区亚洲| 亚洲欧美清纯卡通| 日韩亚洲欧美综合| 久久99热6这里只有精品| 日本三级黄在线观看| 欧美一级a爱片免费观看看| 国产成+人综合+亚洲专区| 国产精品99久久久久久久久| 欧美精品啪啪一区二区三区| 熟女电影av网| 午夜影院日韩av| 丰满的人妻完整版| 亚洲熟妇中文字幕五十中出| 欧美日韩乱码在线| 18禁裸乳无遮挡免费网站照片| 日韩欧美国产在线观看| 好男人电影高清在线观看| 亚洲av电影在线进入| 很黄的视频免费| 亚洲无线观看免费| 草草在线视频免费看| 91久久精品国产一区二区成人| 成熟少妇高潮喷水视频| 成年版毛片免费区| 五月玫瑰六月丁香| 欧美中文日本在线观看视频| 少妇高潮的动态图| 天堂动漫精品| 老司机午夜十八禁免费视频| 欧美激情久久久久久爽电影| 精品乱码久久久久久99久播| 少妇人妻精品综合一区二区 | 国产三级中文精品| av视频在线观看入口| 国产精品永久免费网站| 日本免费一区二区三区高清不卡| 亚洲无线在线观看| 男人狂女人下面高潮的视频| 一区二区三区激情视频| 久久久久久国产a免费观看| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 国产高清视频在线观看网站| 国产视频内射| 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女| 校园春色视频在线观看| 国产高清视频在线播放一区| 一区二区三区四区激情视频 | 国产精品日韩av在线免费观看| 午夜激情欧美在线| 少妇高潮的动态图| 长腿黑丝高跟| 亚洲欧美精品综合久久99| 成年版毛片免费区| 国产精品日韩av在线免费观看| 国产亚洲欧美98| 成人国产综合亚洲| 欧美精品国产亚洲| 一进一出抽搐动态| 国产黄片美女视频| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 欧美区成人在线视频| АⅤ资源中文在线天堂| 亚洲欧美精品综合久久99| 日本成人三级电影网站| 成人特级av手机在线观看| 欧美黄色淫秽网站| 99视频精品全部免费 在线| 欧美精品国产亚洲| 成熟少妇高潮喷水视频| 精品一区二区三区人妻视频| 亚洲狠狠婷婷综合久久图片| 国产av一区在线观看免费| 我的老师免费观看完整版| 成人特级av手机在线观看| 中出人妻视频一区二区| 国产高清视频在线播放一区| 亚洲黑人精品在线| 色综合婷婷激情| www日本黄色视频网| 亚洲欧美清纯卡通| 一个人看视频在线观看www免费| 国产蜜桃级精品一区二区三区| 精品欧美国产一区二区三| 欧美高清成人免费视频www| 3wmmmm亚洲av在线观看| 欧美乱妇无乱码| 国产精品人妻久久久久久| 中文字幕人成人乱码亚洲影| 禁无遮挡网站| 特级一级黄色大片| 国产黄a三级三级三级人| 久久久国产成人精品二区| 变态另类成人亚洲欧美熟女| 99国产综合亚洲精品| 亚洲国产精品久久男人天堂| av天堂在线播放| 成人av一区二区三区在线看| 深夜精品福利| 桃色一区二区三区在线观看| 亚洲专区国产一区二区| 综合色av麻豆| 久久伊人香网站| 三级国产精品欧美在线观看| 免费人成视频x8x8入口观看| 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| 国产人妻一区二区三区在| 国产成+人综合+亚洲专区| 高清日韩中文字幕在线| 免费看日本二区| 人人妻人人澡欧美一区二区| 91在线精品国自产拍蜜月| 最近最新中文字幕大全电影3| 国产高清视频在线播放一区| 国模一区二区三区四区视频| 特级一级黄色大片| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美 国产精品| 91在线精品国自产拍蜜月| 久久久精品大字幕| 日本 av在线| 精品人妻熟女av久视频| 全区人妻精品视频| 亚洲性夜色夜夜综合| 亚洲精品乱码久久久v下载方式| 成人毛片a级毛片在线播放| 亚洲狠狠婷婷综合久久图片| 高潮久久久久久久久久久不卡| 美女大奶头视频| 国产亚洲精品久久久com| 亚洲成av人片在线播放无| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 欧美最新免费一区二区三区 | 男女那种视频在线观看| 亚洲成人精品中文字幕电影| 真人一进一出gif抽搐免费| 国产熟女xx| 久久这里只有精品中国| 亚洲av一区综合| 亚洲欧美日韩高清专用| 性欧美人与动物交配| 久久久久久久亚洲中文字幕 | 亚洲精品粉嫩美女一区| 精品人妻熟女av久视频| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 日韩欧美在线乱码| www.色视频.com| 少妇人妻精品综合一区二区 | 午夜亚洲福利在线播放| 午夜视频国产福利| 亚洲精品色激情综合| 国产成人欧美在线观看| 男人舔奶头视频| 99riav亚洲国产免费| 好看av亚洲va欧美ⅴa在| 亚洲精品色激情综合| 91麻豆av在线| 亚洲精品在线观看二区| 一本一本综合久久| 看十八女毛片水多多多| 男女之事视频高清在线观看| 看黄色毛片网站| 色吧在线观看| 亚洲美女搞黄在线观看 | 动漫黄色视频在线观看| 色精品久久人妻99蜜桃| 黄色一级大片看看| av在线天堂中文字幕| 国产高清三级在线| 婷婷六月久久综合丁香| 精品日产1卡2卡| 亚洲 国产 在线| 高清毛片免费观看视频网站| 一个人看的www免费观看视频| 成人特级av手机在线观看| 一本精品99久久精品77| 国产高清激情床上av| 欧美xxxx性猛交bbbb| 三级男女做爰猛烈吃奶摸视频| 亚洲狠狠婷婷综合久久图片| 天堂av国产一区二区熟女人妻| 五月伊人婷婷丁香| 女人被狂操c到高潮| 91久久精品电影网| 真人一进一出gif抽搐免费| 国产白丝娇喘喷水9色精品| 亚洲性夜色夜夜综合| 欧美一级a爱片免费观看看| 搡女人真爽免费视频火全软件 | 国产黄色小视频在线观看| 欧美潮喷喷水| 99热只有精品国产| 高清在线国产一区| 午夜a级毛片| 麻豆av噜噜一区二区三区| 12—13女人毛片做爰片一| 国产精品久久视频播放| 伦理电影大哥的女人| 婷婷色综合大香蕉| 99在线视频只有这里精品首页| .国产精品久久| 99国产综合亚洲精品| 99热精品在线国产| 亚洲熟妇中文字幕五十中出| 麻豆av噜噜一区二区三区| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产| 亚洲av第一区精品v没综合| 国产大屁股一区二区在线视频| 婷婷亚洲欧美| 国产伦精品一区二区三区视频9| 亚洲精品久久国产高清桃花| 亚洲成人久久爱视频| 欧美高清成人免费视频www| 国产精品综合久久久久久久免费| 久久久久九九精品影院| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| 搞女人的毛片| 精品久久国产蜜桃| 国产精品野战在线观看| avwww免费| 麻豆国产av国片精品| 黄色日韩在线| 日韩av在线大香蕉| 日本熟妇午夜| 午夜福利欧美成人| 国产精品亚洲av一区麻豆| 亚洲 国产 在线| 好男人在线观看高清免费视频| 麻豆成人av在线观看| 丝袜美腿在线中文| 人妻制服诱惑在线中文字幕| 嫩草影院新地址| 在线国产一区二区在线| 色综合站精品国产| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 脱女人内裤的视频| 国产成人福利小说| 美女被艹到高潮喷水动态| 国产私拍福利视频在线观看| 国产又黄又爽又无遮挡在线| 精品乱码久久久久久99久播| 亚洲av成人精品一区久久| 精品一区二区免费观看| 精品久久久久久久久久久久久| 中文字幕人成人乱码亚洲影| 99热这里只有精品一区| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| av国产免费在线观看| 国产亚洲欧美98| 神马国产精品三级电影在线观看| 少妇人妻精品综合一区二区 | 亚洲av日韩精品久久久久久密| 国产欧美日韩一区二区三| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| 久99久视频精品免费| 1000部很黄的大片| 日韩 亚洲 欧美在线| 12—13女人毛片做爰片一| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 最后的刺客免费高清国语| 国产精品1区2区在线观看.| 色播亚洲综合网| 婷婷亚洲欧美| 色精品久久人妻99蜜桃| 久久香蕉精品热| 亚洲精品影视一区二区三区av| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽| 波野结衣二区三区在线| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 男女视频在线观看网站免费| 免费无遮挡裸体视频| 两个人视频免费观看高清| 亚洲最大成人中文| 亚洲av熟女| 黄色一级大片看看| 精品久久久久久久末码| 国产精品久久久久久久电影| 一本一本综合久久| 日本免费一区二区三区高清不卡| 国产中年淑女户外野战色| 男人舔奶头视频| 非洲黑人性xxxx精品又粗又长| 亚洲精品亚洲一区二区| 最新在线观看一区二区三区| 精品久久久久久,| 欧美中文日本在线观看视频| 国产不卡一卡二| 99热这里只有精品一区| 亚洲成人精品中文字幕电影| 成年人黄色毛片网站| 日本一本二区三区精品| 有码 亚洲区| 亚洲人成网站在线播| 此物有八面人人有两片| 一本一本综合久久| 一区二区三区激情视频| av视频在线观看入口| 国产亚洲精品综合一区在线观看| 他把我摸到了高潮在线观看| x7x7x7水蜜桃| 99视频精品全部免费 在线| 狠狠狠狠99中文字幕| 欧美日本视频| 琪琪午夜伦伦电影理论片6080| 国产又黄又爽又无遮挡在线| 国产主播在线观看一区二区| 午夜福利成人在线免费观看| 九九在线视频观看精品| 日韩av在线大香蕉| 亚洲一区二区三区不卡视频| 国产一区二区激情短视频| av在线老鸭窝| 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| 全区人妻精品视频| 国产精品爽爽va在线观看网站| 亚洲不卡免费看| 此物有八面人人有两片| 亚洲五月婷婷丁香| 人妻制服诱惑在线中文字幕| 天堂动漫精品| 直男gayav资源| 国内揄拍国产精品人妻在线| 男插女下体视频免费在线播放| 亚洲一区二区三区不卡视频| 亚洲av电影在线进入| 91九色精品人成在线观看| 俄罗斯特黄特色一大片| 国产毛片a区久久久久| 亚洲精华国产精华精| 午夜两性在线视频| 亚洲国产色片| 午夜影院日韩av| 午夜福利成人在线免费观看| 自拍偷自拍亚洲精品老妇| 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 好男人电影高清在线观看| 欧美激情在线99| 成人永久免费在线观看视频| 免费高清视频大片| 夜夜夜夜夜久久久久| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 日韩成人在线观看一区二区三区| 亚洲久久久久久中文字幕| 免费av毛片视频| 日韩大尺度精品在线看网址| 淫秽高清视频在线观看| 亚洲欧美日韩东京热| 最近最新免费中文字幕在线| 麻豆久久精品国产亚洲av| 熟女人妻精品中文字幕| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| www.999成人在线观看| 日日摸夜夜添夜夜添小说| 欧美一区二区亚洲| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| 日韩欧美三级三区| 亚洲中文日韩欧美视频| 欧美zozozo另类| 三级男女做爰猛烈吃奶摸视频| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 三级毛片av免费| 色在线成人网| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧洲综合997久久,| 好看av亚洲va欧美ⅴa在| 免费搜索国产男女视频| 我的老师免费观看完整版| 日本撒尿小便嘘嘘汇集6| 国产一区二区在线观看日韩| av在线老鸭窝| 久久久精品欧美日韩精品| 日韩国内少妇激情av| 日韩欧美精品免费久久 | 亚洲精品久久国产高清桃花| 国产乱人视频| 成人亚洲精品av一区二区| 黄片小视频在线播放| av专区在线播放| 天美传媒精品一区二区| 午夜两性在线视频| aaaaa片日本免费| 精品国产三级普通话版| 免费人成在线观看视频色| 偷拍熟女少妇极品色| 波野结衣二区三区在线| 可以在线观看的亚洲视频| 国产真实伦视频高清在线观看 | 成人特级黄色片久久久久久久| 精品一区二区三区视频在线| 国产真实伦视频高清在线观看 | 亚洲精品在线美女| 国产亚洲欧美98| 日韩欧美一区二区三区在线观看| 中文字幕久久专区| 亚洲av第一区精品v没综合| 熟女电影av网| 99久久精品国产亚洲精品| 精品国产三级普通话版| 日日夜夜操网爽| 51午夜福利影视在线观看| 成人特级黄色片久久久久久久| 精品无人区乱码1区二区| 一a级毛片在线观看| 99热这里只有是精品50| 一级毛片久久久久久久久女| 全区人妻精品视频| 国产亚洲欧美98| 久久久久久久久大av| 精品久久久久久久人妻蜜臀av| 亚洲av熟女| 色哟哟哟哟哟哟| 国产69精品久久久久777片| www.色视频.com| 波多野结衣巨乳人妻| 女人十人毛片免费观看3o分钟| 亚洲中文字幕一区二区三区有码在线看| 99热这里只有是精品在线观看 | 小蜜桃在线观看免费完整版高清| 99久久无色码亚洲精品果冻| 老熟妇仑乱视频hdxx| 亚洲av不卡在线观看| 国产欧美日韩精品亚洲av| 欧美绝顶高潮抽搐喷水| 在现免费观看毛片| 18禁黄网站禁片免费观看直播| 99热这里只有是精品50| 性色av乱码一区二区三区2| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 丰满人妻一区二区三区视频av| 午夜日韩欧美国产| 日韩欧美精品免费久久 | 国产av一区在线观看免费| 久久久久久国产a免费观看| 免费无遮挡裸体视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲最大成人手机在线| 91av网一区二区| 精品一区二区三区av网在线观看| 观看美女的网站| 精品国产亚洲在线| 蜜桃亚洲精品一区二区三区| 久久人人爽人人爽人人片va | 中文字幕熟女人妻在线| 在线观看66精品国产| 免费在线观看亚洲国产| 久久久久久久久大av| 亚洲成av人片在线播放无| 午夜老司机福利剧场| 神马国产精品三级电影在线观看| 亚洲久久久久久中文字幕| 长腿黑丝高跟| 白带黄色成豆腐渣| 国产精品美女特级片免费视频播放器| 久久精品国产自在天天线| 美女被艹到高潮喷水动态| 亚洲黑人精品在线| 此物有八面人人有两片| 中文在线观看免费www的网站| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播放欧美日韩| 免费在线观看成人毛片| 在线免费观看的www视频| 国产成+人综合+亚洲专区| 成年人黄色毛片网站| 精华霜和精华液先用哪个| 免费在线观看日本一区| 日韩av在线大香蕉| 日韩欧美国产一区二区入口| 精品久久久久久久久久久久久| 亚洲国产欧美人成| 在线a可以看的网站| 夜夜夜夜夜久久久久| 亚洲自偷自拍三级| 婷婷亚洲欧美| 很黄的视频免费| 99热只有精品国产| 黄色配什么色好看| 少妇人妻精品综合一区二区 | 亚洲男人的天堂狠狠| 久久久久久大精品| 一区二区三区激情视频| 91麻豆av在线| a级毛片免费高清观看在线播放| 欧美日韩综合久久久久久 | 国产色爽女视频免费观看| 51午夜福利影视在线观看| 国内少妇人妻偷人精品xxx网站| 国产精品永久免费网站| 一级毛片久久久久久久久女| 每晚都被弄得嗷嗷叫到高潮| 中文字幕免费在线视频6| 久久精品综合一区二区三区| 中文亚洲av片在线观看爽| 又爽又黄无遮挡网站| 亚洲熟妇熟女久久| 亚洲av二区三区四区| xxxwww97欧美| 久久精品影院6| 欧美最新免费一区二区三区 | 好男人电影高清在线观看| 乱码一卡2卡4卡精品| 日日干狠狠操夜夜爽| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一电影网av| 国产伦人伦偷精品视频| 中文字幕av成人在线电影| 国产aⅴ精品一区二区三区波| 在线观看美女被高潮喷水网站 | 给我免费播放毛片高清在线观看| 美女大奶头视频| 赤兔流量卡办理| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 日韩欧美在线乱码| 久久午夜亚洲精品久久| 热99在线观看视频| 亚洲,欧美,日韩| 一进一出抽搐动态| 美女高潮喷水抽搐中文字幕| 看十八女毛片水多多多|