• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution

    2023-03-14 06:52:44HongliWngJinnLiuXudongXioHuiyunMengJieWuChunyuGuoMngZhengXioleiWngShienGuoBojingJing
    Chinese Chemical Letters 2023年1期

    Hongli Wng,Jinn Liu,Xudong Xio,*,Huiyun Meng,Jie Wu,Chunyu Guo,Mng Zheng,Xiolei Wng,*,Shien Guo,Bojing Jing,*

    a Key Laboratory of Functional Inorganic Material Chemistry,Ministry of Education of the People’s Republic of China,School of Chemistry and Materials Science,Heilongjiang University,Harbin 150000,China

    b School of Safety Engineering,Heilongjiang University of Science and Technology,Harbin 150022,China

    c Institute of Advanced Materials (IAM),College of Chemistry and Chemical Engineering,Jiangxi Normal University,Nanchang 330022,China

    Keywords:Photocatalysis SnO2-TiO2 heterojunction Solvent thermal Charge transfer Hydrogen evolution

    ABSTRACT Fabricating an efficient charge transfer pathway at the compact interface between two kinds of semiconductors is an important strategy for designing hydrogen production heterojunction photocatalysts.In this work,we prepared a compact,stable and oxygen vacancy-rich photocatalyst (SnO2/TiO2 heterostructure) via a simple and reasonable in-situ synthesis method.Briefly,SnCl2–2H2O is hydrolyzed on the TiO2 precursor.After the pyrolysis process,SnO2 nanoparticles (5 nm) were dispersed on the surface of ultrathin TiO2 nanosheets uniformly.Herein,the heterojunction system can offer abundant oxygen vacancies,which can act as active sites for catalytic reactions.Meanwhile,the interfacial contact of SnO2/TiO2 grading semiconductor oxide is uniform and tight,which can promote the separation and migration of photogenerated carriers.As shown in the experimental results,the hydrogen production rate of SnO2/TiO2 is 16.7 mmol h-1 g-1 (4.4 times higher than that of TiO2),which is owing to its good dynamical properties.This work demonstrates an efficient strategy of tight combining SnO2/TiO2 with abundant oxygen vacancies to improve catalytic efficiency.

    Utilizing renewable solar energy resources to produce hydrogen with abundant water resources is an ideal solution to replace traditional energy and solve dual challenges of global energy and environment [1–3].At present,the use of semiconductors for photocatalytic decomposition of water to produce hydrogen has attracted extensive attention and research.In recent years,Cu2O,SnO2,TiO2,CdS and other semiconductor materials with excellent photocatalytic hydrogen evolution performance have been developed and utilized by many researchers [4,5].However,bulk materials severely reduce the accessibility to the active sites and the rate of ion diffusion [6].These shortcomings will degrade the effi-ciency of photocatalytic water splitting hydrogen production and hinder the long-term practical application.Replacing traditional bulk structure with ultrathin two-dimensional nanostructure might be an effective solution to address this issue [7–10].

    Two-dimensional ultrathin TiO2has been widely researched in photocatalytic hydrogen evolution,photocatalytic CO2reduction and organic synthesis,due to their unique electronic structure,tunable optical property and ultrathin two-dimensional nanostructure,which are more favorable to reduce the diffusion distance of carriers,provide high surface area and expose rich catalytic activity sites [11–13].Although the metal oxides composed by singlespecies ultrathin TiO2have achieved great progress,the catalytic performance of single-component photocatalysts is not entirely satisfactory,due to the slow separation and migration kinetics of photogenerated carriers.At present,fabricating tight contact twocomponent metal-oxide-semiconductors with appropriate bandgap becomes an efficient strategy to promote charge separation and transfer effectively,which can improve the photoreaction activity significantly [14].Meanwhile,the built-in electric field at the interface of two different defect semiconductor photocatalysts with suitable structures can accelerate the separation and transfer the electron-holes simultaneously [15,16].Thus,the enhancement of photocatalytic activity depends on the design and fabrication of heterogeneous coupling of different semiconductors with tight interfacial contact.Considering the excellent electron transfer properties of SnO2with the active O-defect sites,combining TiO2to form the defect heterostructure can maximize the photogenerated carrier separation efficiency [17,18].However,the interfacial contact of some heterogeneous structures is not tight enough due to the electrostatic interaction [19].Therefore,it is urgent to tighten the contact between the interfaces of two kinds of semiconductor photocatalyst,which can benefit in enhancing the reaction kinetics.In particular,the convenient and large-scale preparation of biocomponent oxide photocatalysts with tight contact interfaces to achieve efficient and practical H2production remains a great challenge [20,21].

    Fig.1.(a) The synthetic process of SnO2/TiO2–1.5.(b,c) SEM images of TiO2 nanosheets and SnO2/TiO2–1.5.(d) TEM and HRTEM images of SnO2/TiO2–1.5.(e)TEM image and the corresponding elemental mappings of SnO2/TiO2–1.5.

    In this work,we first synthesized ultrathin TiO2nanosheets by solvothermal method.Then,utilize SnCl2·2H2O as the Sn source to fabricate SnO2on TiO2precursor byin-situhydrolysis.Finally,the SnO2/TiO2with high crystallinity can be obtained by high temperature calcination (Fig.1a).As shown in the experimental results,this synthesis method can avoid damaging the morphology of TiO2framework effectively.In addition,the two kinds of metal oxide catalysts can exhibit tighter binding and more abundant oxygen vacancies.Composing SnO2with small size on the TiO2surface can shorten the band gap,broaden the light response range,and make full use of visible light efficiently.The photocatalytic hydrogen evolution rate can reach 16.7 mmol h-1g-1under the irradiation of AM1.5.

    The morphologies of TiO2and SnO2/TiO2–1.5 are investigated by scanning electron microscopy (SEM),transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) (Figs.1b-e).As revealed by the SEM images (Fig.1b and Fig.S1 in Supporting information),the TiO2nanosheets synthetized by solvothermal method present uniform thickness and size with the diameter of ~500 nm.Furthermore,the morphology of TiO2will change as the variation of hydrazine hydrate adding amount.Increasing the amount of hydrazine hydrate,TiO2can gradually grow from conical-rods precursor into a two-dimensional proton titanate nanosheets.Adequate amounts of hydrazine hydrate (4 mL) can promote to form complete nanosheets,which are fries-like assemblies composed by single crystal nanorods.While,adding insufficient hydrazine hydrate(1/2/3 mL) cannot completely formed the structure of nanosheets assembled by nanorods.After the introduction of SnO2(Fig.1c and Fig.S2 in Supporting information),TiO2nanosheets still remain intact structure and there are no significant changes on their surface,indicating that the TiO2nanosheets synthesized by solvothermal method present good structural stability.Furthermore,the existence of SnO2nanoparticles was represented by HRTEM images.It can be obviously observed in the TEM images (Fig.1d) that the SnO2nanoparticles with the diameter of ~5 nm are uniformly distributed on the surface of TiO2nanosheets.Meanwhile,two kinds of lattice stripes can be clearly seen in the Fig.1d with the spacing of 0.350 and 0.285 nm,which are attributed to the 101 faces of TiO2and the 111 faces of SnO2,respectively.The TEM mapping images of SnO2/TiO2–1.5 (Ti,O,and Sn) prove that the SnO2nanoparticles are distributed on the whole framework of the TiO2carrier uniformly.The elemental composition of Ti,O and Sn was also verified by energy spectrum X-ray spectroscopy (EDS,Fig.S3 in Supporting information) and element mapping (Fig.1e) [22–24].As shown in Fig.S4 (Supporting information),the specific surface area of TiO2and SnO2/TiO2–1.5 can be obtained by the nitrogen adsorption-desorption isotherm.Compared with the pure TiO2,loading SnO2can enhance the specific surface area of SnO2/TiO2–1.5,providing more active sites for the reaction.

    The X-ray diffraction (XRD) and Raman spectra are conducted to further investigate the composition of the synthesized materials.After being calcined at 450 °C (2 °C/min,2 h) in the air atmosphere,TiO2and SnO2can recrystallize to form a tight heterojunction.As shown in Fig.2a,the characteristic peaks can be well matched with the anatase TiO2(JCPDS No.21–1276) and SnO2(JCPDS No.33–1374) standard cards,indicating that the SnO2/TiO2–1.5 has been successfully synthesized [25].It can only observe the anatase TiO2and SnO2diffraction peaks in the XRD pattens of SnO2/TiO2–1.5.Meanwhile,in the Raman spectra (Fig.2b),it can be observed five typical anatase TiO2Raman peaks located at 146.7,200.1,402.5,518.8 and 635.5 cm-1,which are assigned to Eg,Eg,B1g,A1g (B1g),and Eg modes,respectively.There are no other peaks in the Raman spectra of SnO2/TiO2–1.5,further indicating that introduce SnO2on TiO2surface will not change the crystal phase of TiO2.As compared with pure TiO2,the peak of SnO2/TiO2–1.5 at 600–700 cm-1present a regular blue shift with the increase of the SnO2loading amount.And such blue shift of the peak may originate from the replacement of Ti4+by Sn4+,which can change the lattice structure of TiO2,produce oxygen vacancies,and induce lattice distortion [26,27].

    Herein,we utilize the XPS test (Figs.2c-e and Fig.S5 in Supporting information) to explore the elemental composition and chemical state of SnO2/TiO2–1.5.As shown in Fig.2c,the peaks located at 486.1 eV and 494.5 eV are assigned to Sn 3d3/2and Sn 3d5/2,respectively.And the corresponding peaks of Sn in the SnO2/TiO2–1.5 shift to lower binding energy compared with that in the pure SnO2,meaning that introduce SnO2can enhance the electron density of Sn in SnO2.The peaks of 458.5 eV and 464.2 eV in the Fig.2d are corresponded to Ti 2p3/2and Ti 2p1/2of Ti4+,respectively.As compared with pure TiO2,the peaks of Ti 2p in the SnO2/TiO2–1.5 shift ~0.5 eV to higher binding energy,indicating that introduce SnO2can decrease the electron density of Ti in TiO2.As shown in Fig.2e,the peaks at 529.9 eV and 531.3 eV are attributed to O 1s.The peak at 529.9 eV comes from the lattice oxygen chemically bonded with metal (Sn and Ti),and the binding energy at 531.3 eV comes from the surface oxygen vacancies.Based on the above XPS results,it can be proved the existence of electron transfer between Ti and Sn elements,indicating that the close combination of SnO2/TiO2–1.5 in favor of charge redistribution.In addition,as revealed by the electron spin resonance (EPR)spectra in Fig.2f,the oxygen defect in SnO2/TiO2heterostructure is significantly higher than that in the pure TiO2,which may be due to the occupancy of Sn4+by Ti4+during the high temperature calcination process.This speculation can be supported by the blue shift of Raman spectra in 600–700 cm-1regions after loading SnO2on the TiO2surface.As the different size of Sn4+and Ti4+,such replacement can form defects,which is favor to decrease the reaction band gap and provide more active sites [28–30].

    Fig.2.(a) XRD patterns of SnO2/TiO2–1.0,SnO2/TiO2–1.5,and SnO2/TiO2–2.0.(b)Raman spectra of TiO2,SnO2/TiO2–1.0,SnO2/TiO2–1.5 and SnO2/TiO2–2.0.Highresolution XPS spectra of (c) Sn 3d,(d) Ti 2p,and (e) O 1s of SnO2,TiO2 and SnO2/TiO2–1.5.(f) The ESR spectra of TiO2 and SnO2/TiO2–1.5.

    Fig.3a presents the UV–visible diffuse reflectance spectra (UV–vis DRS) of SnO2,TiO2,and SnO2/TiO2–1.5.Compared with the pure SnO2and TiO2,the optical response range of SnO2/TiO2–1.5 is expanded.Fig.3b shows the absorption spectra calculated by Kubelka-Munk function.And the band gap of TiO2,SnO2and SnO2/TiO2–1.5 can be calculated by the formula of (αhν)1/2~hν-Eg,which are 3.15,3.37 and 2.85 eV,respectively.The absorption edge presents red-shift with the increasing loading amount of SnO2,and SnO2/TiO2–1.5 exhibits the best light absorption property (Figs.S6 and S7 in Supporting information),indicating that the synergistic effect of SnO2and oxygen vacancies can tune the energy band structure of TiO2effectively.In order to determine the conduction band (CB) of SnO2and TiO2,the Mott-Schottky measurements were conducted under 1000,1200,and 1400 Hz (Figs.3c and d) [31,32].Both SnO2and TiO2show positive slopes,which are consistent with the test results of typical n-type semiconductor.According to the calculation ofENHE=EAg/AgCl+0.197,it can be seen that the energy bands of SnO2and TiO2locate at -0.763 and-1.103 Vvs.NHE,respectively.The CB of n-type semiconductor is located around the flat band potential,so it can be determined that the CB edges of SnO2and TiO2are -0.763 and -1.103 V,respectively.For the further confirmation of the electron transfer between SnO2and TiO2,the work functions (WFs) of SnO2and TiO2were measured by Kelvin probe.As shown in Fig.3e,the contact potential difference (CPD) between SnO2(TiO2) and metal probe is 0.023 V (0.29 V).According to the formula of WF=4.7+eCPD,it can be calculated that the WFs of SnO2and TiO2are 4.677 and 4.410 V,respectively.Therefore,the energy level diagram of SnO2/TiO2–1.5 can be illustrated by Fig.3f.Due to the lower work function and the higher Fermi level of TiO2,combine SnO2with TiO2can generate the n-n heterojunction.During the illumination process,electrons can transfer from the CB of TiO2to the CB of SnO2.Thus,the electrons are enriched on the surface of SnO2,which can effectively inhibit the recombination of photogenerated electron-hole pairs and improve the performance of photocatalytic activity [33].

    Fig.3.(a,b) UV-visible diffuse reflectance spectra and determination of the band gaps using Kubelka-Munk function of SnO2,TiO2 and SnO2/TiO2–1.5.(c,d) Mott-Schottky plots of SnO2 and TiO2.(e) Scanning Kelvin probe maps SnO2,TiO2 and SnO2/TiO2–1.5.(f) Schematic of the photodegradation mechanism of the SnO2/TiO2–1.5 porous nanowire nanosheet heterostructures.

    Fig.4.(a) The H2 evolution rates for SnO2,TiO2,and SnO2/TiO2–1.5 (AM 1.5,number of trials: 5 times).(b) Recycling performance of SnO2,TiO2 and SnO2/TiO2–1.5.

    In order to further explore the electron-hole separation effi-ciency of the composite photocatalyst,the steady-state fluorescence tests of SnO2and SnO2/TiO2–1.5 have been carried out as shown in Fig.S8a (Supporting information).The intensity of TiO2PL peak is significantly higher than that of SnO2/TiO2–1.5,owing to the rapid recombination of photogenerated carriers in TiO2.It is worth noting that loading SnO2on the surface of TiO2can attenuate the fluorescence intensity,which can prove the inhibition of the rapid recombination for the photogenerated electron-hole pairs and the better capability of capture electrons [34].The results of wavelength calculation show that the PL peak can match with the band gap of the catalyst calculated by UV–vis DRS.Moreover,it can be concluded that the heterojunction formed by SnO2and TiO2can improve the charge separation and transmission capacity effectively.Under the irradiation of AM1.5 light source,the photocurrent responses of SnO2,TiO2,and SnO2/TiO2–1.5 changes periodically with time.When the catalyst is irradiated by light,the photoexcited electrons can transfer from the valence band (VB)to the CB,which is the main reason to generate various current changes.It can be found that all samples can preset photocurrent response during the test.The current densities of SnO2and TiO2are both lower than that of SnO2/TiO2–1.5.And the largest photocurrent response of SnO2/TiO2–1.5 manifests its prominent carrier generation ability (Fig.S8b in Supporting information),which is consistent with the result of the PL spectra.Moreover,the photocurrent density changed little during the repeated cycling tests,which can prove the good stability of the catalyst [35].The electrochemical impedance spectra (EIS) of SnO2,TiO2and SnO2/TiO2–1.5 are represented in Fig.S9 (Supporting information).As usual in the Nyquist diagram of EIS,the smaller arc radius indicates that the resistance in the charge transfer process is smaller and the carrier separation efficiency is higher.It can be proved that after the introduction of SnO2particles,the tightly contact interface of SnO2/TiO2–1.5 can provide additional channels for electron transfer and reduce the resistance of electron transfer [36].Therefore,it is further confirmed that the uniform and compact loading of SnO2nanoparticles on TiO2nanosheets can accelerate the separation and transmission of photogenerated electron-hole pairs.

    Till then,the morphology,composition,and optical characteristic of SnO2/TiO2–1.5 heterostructure have been characterized successfully.Based on the advantages of its tight combination,this heterostructure can present efficient charge separation and good charge transfer ability.In addition,the photocatalytic hydrogen production performance of the catalyst has been also evaluated to evaluate its photocatalytic activity.As shown in Fig.4a,the hydrogen evolution rate of SnO2,TiO2,and SnO2/TiO2–1.5 are 0.5,3.8 and 16.7 mmol h-1g-1,respectively.And the hydrogen evolution rate of SnO2/TiO2–1.5 is higher than that of SnO2and TiO2significantly.For SnO2/TiO2composite materials with different SnO2loading amounts,SnO2/TiO2–1.5 presents the most excellent photocatalytic hydrogen production performance (Fig.S10 in Supporting information).The hydrogen production did not decrease significantly after 5 cycles in the 20-hour photocatalysis process (Fig.4b),which indicates that SnO2/TiO2–1.5 is extremely stable under photocatalytic conditions.In addition,the XRD and SEM images of SnO2/TiO2–1.5 are almost unchanged after five cycle testing(Figs.S11 and S12 in Supporting information),indicating that the SnO2/TiO2–1.5 we prepared is stable both in structure and morphology during the illumination due to its tight heterogeneous structure [37].Such excellent photocatalytic performance is originated from the following three reasons: (1) The ultrathin twodimensional structure of TiO2nanosheets,which can improve the accessibility to active sites and ion diffusion rate; (2) The close combination of small SnO2on TiO2nanosheets,which can promote the rapid separation and transmission of charges; (3) The appropriate oxygen vacancy concentration can adjust the energy band structure of TiO2effectively.

    In conclusion,we utilized a simplein-situhydrolysis method of SnCl2·2H2O to load small-size SnO2on TiO2nanosheets with ultrathin two-dimensional structure.Due to the occupancy of Sn4+by Ti4+,this kind of two-dimensional composite SnO2/TiO2–1.5 nanosheets possesses abundant oxygen defects,which can realize the regulation of energy band and provide more active sites in the hydrogen evolution process.In addition,the tight combination of TiO2with SnO2can promote the charge transfer kinetics and inhibit the recombination of photogenerated electron-hole pairs.The formed material presents excellent performance in solar-driven hydrogen evolution for a long period of time.Overall,this work presents an effective,suitable and simple strategy for tightly combining two semiconductors to efficient charge transfer and may initiate new chances for catalyst development.

    Declaration of competing interest

    We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.21771061) and the Outstanding Youth Fund of Heilongjiang Province (No.JQ 2020B002),the Natural Science Foundation of Heilongjiang Province (No.UNPYSCT-2020006),Natural Science Foundation of Jiangxi Province (No.20202BABL213002).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.018.

    亚洲国产最新在线播放| av网站在线播放免费| 亚洲精品日韩在线中文字幕| 最近中文字幕2019免费版| 亚洲成色77777| 国产探花极品一区二区| 国产亚洲av片在线观看秒播厂| 国产精品国产三级国产专区5o| 午夜老司机福利剧场| 精品少妇久久久久久888优播| 2018国产大陆天天弄谢| 搡女人真爽免费视频火全软件| 天天操日日干夜夜撸| 黑丝袜美女国产一区| 亚洲精品美女久久av网站| 在线观看免费视频网站a站| 伊人久久国产一区二区| 欧美 日韩 精品 国产| 黄色视频在线播放观看不卡| 国产在视频线精品| 免费观看无遮挡的男女| 天美传媒精品一区二区| 91久久精品国产一区二区三区| 大片电影免费在线观看免费| 色吧在线观看| 免费播放大片免费观看视频在线观看| 亚洲人成电影观看| 亚洲精品视频女| a级毛片在线看网站| 交换朋友夫妻互换小说| 成人亚洲精品一区在线观看| 黄色一级大片看看| 久久精品国产亚洲av涩爱| 高清视频免费观看一区二区| 国产又色又爽无遮挡免| 成年动漫av网址| 日韩精品免费视频一区二区三区| 波多野结衣av一区二区av| www.自偷自拍.com| 久热久热在线精品观看| 青春草国产在线视频| 亚洲精品成人av观看孕妇| 午夜激情av网站| 久久久久精品性色| 亚洲精品日本国产第一区| 久久国产亚洲av麻豆专区| 日韩av不卡免费在线播放| 久久精品国产亚洲av高清一级| 在线天堂最新版资源| 大陆偷拍与自拍| 最近中文字幕2019免费版| 90打野战视频偷拍视频| 亚洲经典国产精华液单| 黑丝袜美女国产一区| 在线天堂最新版资源| 久久人妻熟女aⅴ| 国产av码专区亚洲av| 国产av精品麻豆| 夫妻性生交免费视频一级片| 亚洲av电影在线进入| 精品酒店卫生间| 亚洲在久久综合| 精品酒店卫生间| 波野结衣二区三区在线| 女性生殖器流出的白浆| 90打野战视频偷拍视频| 99国产综合亚洲精品| 免费观看av网站的网址| 亚洲欧美精品自产自拍| 永久网站在线| 午夜福利网站1000一区二区三区| 男女免费视频国产| 久久久亚洲精品成人影院| 91午夜精品亚洲一区二区三区| 母亲3免费完整高清在线观看 | 国产福利在线免费观看视频| 国产成人精品久久二区二区91 | 精品99又大又爽又粗少妇毛片| 18禁动态无遮挡网站| 99久久人妻综合| 日本91视频免费播放| 亚洲图色成人| 极品少妇高潮喷水抽搐| 在线观看一区二区三区激情| 日韩精品免费视频一区二区三区| 午夜福利视频在线观看免费| 精品视频人人做人人爽| 少妇被粗大的猛进出69影院| 1024香蕉在线观看| 亚洲久久久国产精品| 成年人免费黄色播放视频| 亚洲精品美女久久av网站| 亚洲av电影在线进入| 午夜福利在线观看免费完整高清在| 免费观看av网站的网址| 欧美精品一区二区大全| 天天躁夜夜躁狠狠久久av| 午夜福利网站1000一区二区三区| 久久久久久久久久久久大奶| 亚洲一区二区三区欧美精品| 如日韩欧美国产精品一区二区三区| 日本午夜av视频| 99热网站在线观看| xxx大片免费视频| 亚洲精品国产一区二区精华液| 伦理电影免费视频| 亚洲精品av麻豆狂野| 色播在线永久视频| 最近手机中文字幕大全| 欧美 亚洲 国产 日韩一| 成年人午夜在线观看视频| 少妇人妻精品综合一区二区| 日韩中文字幕欧美一区二区 | 精品人妻在线不人妻| 亚洲欧美色中文字幕在线| 午夜免费观看性视频| 尾随美女入室| 人人妻人人爽人人添夜夜欢视频| 捣出白浆h1v1| 波野结衣二区三区在线| 日本免费在线观看一区| 男的添女的下面高潮视频| 国产精品成人在线| 国产国语露脸激情在线看| 最近最新中文字幕免费大全7| 国产成人精品婷婷| √禁漫天堂资源中文www| 欧美日韩视频高清一区二区三区二| 少妇猛男粗大的猛烈进出视频| 丰满少妇做爰视频| 水蜜桃什么品种好| 国产亚洲一区二区精品| 99热全是精品| 五月天丁香电影| 丰满少妇做爰视频| 中文字幕av电影在线播放| 亚洲欧美清纯卡通| 欧美日韩av久久| 一边摸一边做爽爽视频免费| 狠狠精品人妻久久久久久综合| 女人高潮潮喷娇喘18禁视频| a级片在线免费高清观看视频| 亚洲国产看品久久| 久久av网站| 亚洲成人av在线免费| 永久免费av网站大全| 久久精品亚洲av国产电影网| 亚洲欧美成人综合另类久久久| 亚洲成国产人片在线观看| 男女高潮啪啪啪动态图| 校园人妻丝袜中文字幕| 亚洲国产欧美网| 久久久久网色| 亚洲成人一二三区av| 丁香六月天网| 少妇被粗大的猛进出69影院| 欧美日本中文国产一区发布| 久久女婷五月综合色啪小说| 国产成人精品久久二区二区91 | 成年动漫av网址| 国产一区二区激情短视频 | 亚洲成人av在线免费| 1024视频免费在线观看| 国产极品粉嫩免费观看在线| 日韩三级伦理在线观看| 成人18禁高潮啪啪吃奶动态图| 久久韩国三级中文字幕| 最近2019中文字幕mv第一页| 欧美成人精品欧美一级黄| videos熟女内射| 亚洲视频免费观看视频| 免费观看在线日韩| 青草久久国产| 视频区图区小说| 色哟哟·www| 日日爽夜夜爽网站| 美女国产高潮福利片在线看| 晚上一个人看的免费电影| 免费少妇av软件| 捣出白浆h1v1| 欧美激情极品国产一区二区三区| 边亲边吃奶的免费视频| 成人国产麻豆网| av天堂久久9| 日韩免费高清中文字幕av| 日韩一区二区三区影片| 亚洲av在线观看美女高潮| 亚洲欧美成人精品一区二区| 久久久国产精品麻豆| 男的添女的下面高潮视频| 久久这里只有精品19| 在线观看国产h片| 美女福利国产在线| 免费日韩欧美在线观看| 欧美亚洲日本最大视频资源| 少妇精品久久久久久久| 国产一区二区三区综合在线观看| 纵有疾风起免费观看全集完整版| 少妇被粗大猛烈的视频| 少妇的丰满在线观看| 黄色毛片三级朝国网站| 欧美成人午夜精品| 涩涩av久久男人的天堂| 亚洲第一青青草原| 亚洲国产精品一区二区三区在线| 亚洲天堂av无毛| 日韩av免费高清视频| 久久 成人 亚洲| 欧美日韩av久久| 伊人久久国产一区二区| 免费在线观看完整版高清| 制服丝袜香蕉在线| 久久久久精品久久久久真实原创| 大片电影免费在线观看免费| av国产久精品久网站免费入址| 妹子高潮喷水视频| 国产日韩欧美在线精品| 国产精品.久久久| 婷婷色麻豆天堂久久| 女人精品久久久久毛片| 久久久久人妻精品一区果冻| 人妻人人澡人人爽人人| 丝袜在线中文字幕| 亚洲人成网站在线观看播放| 免费高清在线观看日韩| 男人操女人黄网站| 国产激情久久老熟女| 9191精品国产免费久久| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 国产精品成人在线| 欧美日韩亚洲国产一区二区在线观看 | 男人舔女人的私密视频| 宅男免费午夜| 午夜福利影视在线免费观看| videossex国产| 国产无遮挡羞羞视频在线观看| 成年动漫av网址| 90打野战视频偷拍视频| 亚洲天堂av无毛| 久久热在线av| 在线观看人妻少妇| 亚洲第一青青草原| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 国产av国产精品国产| 97精品久久久久久久久久精品| 91成人精品电影| 久久精品人人爽人人爽视色| 免费高清在线观看视频在线观看| av网站在线播放免费| 人妻人人澡人人爽人人| 晚上一个人看的免费电影| 国产不卡av网站在线观看| 亚洲欧美精品自产自拍| 桃花免费在线播放| 国产成人a∨麻豆精品| 美女视频免费永久观看网站| 久久久国产欧美日韩av| 日韩,欧美,国产一区二区三区| 婷婷色麻豆天堂久久| 欧美国产精品一级二级三级| 99久久精品国产国产毛片| 国产在线一区二区三区精| 成年人免费黄色播放视频| 视频在线观看一区二区三区| 国产亚洲欧美精品永久| 老司机亚洲免费影院| 女人高潮潮喷娇喘18禁视频| 久久精品人人爽人人爽视色| 如日韩欧美国产精品一区二区三区| 亚洲精品国产色婷婷电影| av不卡在线播放| 少妇精品久久久久久久| 成人亚洲欧美一区二区av| 亚洲天堂av无毛| 天美传媒精品一区二区| 少妇熟女欧美另类| 久热这里只有精品99| 亚洲av日韩在线播放| 成人国产av品久久久| 亚洲精品一区蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区在线观看完整版| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| 美女中出高潮动态图| 免费黄频网站在线观看国产| 国产av码专区亚洲av| 日本wwww免费看| 啦啦啦中文免费视频观看日本| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| 成年美女黄网站色视频大全免费| 精品国产一区二区久久| 亚洲 欧美一区二区三区| 啦啦啦啦在线视频资源| 少妇被粗大的猛进出69影院| 日韩人妻精品一区2区三区| 免费久久久久久久精品成人欧美视频| 日本欧美国产在线视频| 亚洲第一av免费看| 亚洲欧美精品自产自拍| 国产精品亚洲av一区麻豆 | 啦啦啦在线免费观看视频4| 我要看黄色一级片免费的| 天天影视国产精品| 欧美精品人与动牲交sv欧美| 免费av中文字幕在线| 一级a爱视频在线免费观看| 一区福利在线观看| 交换朋友夫妻互换小说| 精品一区在线观看国产| 欧美成人午夜精品| 国产毛片在线视频| 亚洲精品视频女| 国产精品 欧美亚洲| 国产成人aa在线观看| 午夜免费男女啪啪视频观看| 久久精品亚洲av国产电影网| 美女xxoo啪啪120秒动态图| 亚洲三区欧美一区| 国产精品不卡视频一区二区| 街头女战士在线观看网站| 日韩成人av中文字幕在线观看| 国产精品久久久久久久久免| 老汉色av国产亚洲站长工具| 波多野结衣一区麻豆| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线| 欧美激情极品国产一区二区三区| 免费在线观看黄色视频的| 少妇猛男粗大的猛烈进出视频| 国产精品蜜桃在线观看| 免费大片黄手机在线观看| 婷婷色综合大香蕉| 日日爽夜夜爽网站| 乱人伦中国视频| 肉色欧美久久久久久久蜜桃| 亚洲av福利一区| 丝袜脚勾引网站| 日韩在线高清观看一区二区三区| 久久99精品国语久久久| 国产综合精华液| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡 | 青春草视频在线免费观看| 一级片免费观看大全| 欧美少妇被猛烈插入视频| 国产精品一二三区在线看| 亚洲精品美女久久av网站| 99香蕉大伊视频| 久久精品国产综合久久久| 日韩视频在线欧美| 欧美日韩成人在线一区二区| 久久青草综合色| 99久久人妻综合| 永久网站在线| 中文精品一卡2卡3卡4更新| 国产精品99久久99久久久不卡 | 久久久久久人妻| 美女脱内裤让男人舔精品视频| 成人国产av品久久久| 欧美激情极品国产一区二区三区| 亚洲美女视频黄频| 亚洲四区av| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 老鸭窝网址在线观看| 国产一区二区 视频在线| 在线亚洲精品国产二区图片欧美| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 国产成人欧美| 人体艺术视频欧美日本| 午夜久久久在线观看| 黄网站色视频无遮挡免费观看| 黄色配什么色好看| 亚洲精品乱久久久久久| 国产 精品1| 人妻一区二区av| 一区二区av电影网| 亚洲一区中文字幕在线| kizo精华| 26uuu在线亚洲综合色| 咕卡用的链子| 久久久久久久亚洲中文字幕| 丝袜人妻中文字幕| 一二三四中文在线观看免费高清| 91成人精品电影| 亚洲av中文av极速乱| 久久久久久久精品精品| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 在线观看国产h片| 亚洲精品一区蜜桃| 纵有疾风起免费观看全集完整版| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 亚洲欧美一区二区三区黑人 | 国产日韩欧美在线精品| 免费高清在线观看视频在线观看| 91精品伊人久久大香线蕉| 精品视频人人做人人爽| 成人黄色视频免费在线看| 国产1区2区3区精品| 久久久久久久亚洲中文字幕| 欧美日韩成人在线一区二区| av卡一久久| 成年女人在线观看亚洲视频| 欧美人与性动交α欧美精品济南到 | 欧美另类一区| 黑人巨大精品欧美一区二区蜜桃| 亚洲一级一片aⅴ在线观看| 欧美精品亚洲一区二区| 不卡视频在线观看欧美| 中文字幕色久视频| 精品国产超薄肉色丝袜足j| 欧美日韩一区二区视频在线观看视频在线| 国产男女内射视频| 久久久久久免费高清国产稀缺| 欧美日韩综合久久久久久| 亚洲欧洲精品一区二区精品久久久 | 老鸭窝网址在线观看| 精品少妇久久久久久888优播| 国产精品久久久av美女十八| 街头女战士在线观看网站| 咕卡用的链子| 尾随美女入室| 一级毛片 在线播放| 最近2019中文字幕mv第一页| 精品酒店卫生间| 黑人猛操日本美女一级片| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 巨乳人妻的诱惑在线观看| 欧美日韩精品成人综合77777| 夜夜骑夜夜射夜夜干| 伦精品一区二区三区| 国产男人的电影天堂91| 热re99久久精品国产66热6| 最近最新中文字幕大全免费视频 | 男人添女人高潮全过程视频| 国产极品天堂在线| 9191精品国产免费久久| 亚洲精品一二三| 日本vs欧美在线观看视频| 狂野欧美激情性bbbbbb| 亚洲人成77777在线视频| 男女边吃奶边做爰视频| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 99久久综合免费| 国产成人一区二区在线| 久久久久视频综合| 女的被弄到高潮叫床怎么办| 久久久久久久久久久久大奶| 好男人视频免费观看在线| 少妇的逼水好多| 一本—道久久a久久精品蜜桃钙片| 韩国高清视频一区二区三区| 亚洲欧美一区二区三区黑人 | 国产午夜精品一二区理论片| 久久久精品国产亚洲av高清涩受| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 青春草亚洲视频在线观看| 午夜福利视频在线观看免费| 成人黄色视频免费在线看| 曰老女人黄片| 国产高清不卡午夜福利| 成人漫画全彩无遮挡| 国产日韩欧美在线精品| 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 国产乱人偷精品视频| 老司机影院毛片| 国产精品欧美亚洲77777| 飞空精品影院首页| 日韩人妻精品一区2区三区| 看免费av毛片| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 欧美另类一区| 少妇熟女欧美另类| 国产精品.久久久| 国产综合精华液| 在线观看免费视频网站a站| 亚洲伊人久久精品综合| 婷婷成人精品国产| 伊人亚洲综合成人网| videossex国产| 国产一区二区激情短视频 | 性少妇av在线| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 精品国产国语对白av| 久久久久国产网址| 成人影院久久| 国产xxxxx性猛交| 最新中文字幕久久久久| 国产亚洲一区二区精品| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 久久毛片免费看一区二区三区| 各种免费的搞黄视频| 蜜桃国产av成人99| 亚洲一区二区三区欧美精品| 又黄又粗又硬又大视频| 国产一区二区三区综合在线观看| 国产精品 欧美亚洲| tube8黄色片| 免费在线观看黄色视频的| 蜜桃国产av成人99| 天天躁夜夜躁狠狠久久av| 人妻人人澡人人爽人人| 看免费成人av毛片| 国产综合精华液| 青春草视频在线免费观看| 亚洲精品乱久久久久久| 久久久久久久国产电影| 国产精品无大码| 欧美日韩av久久| 黑丝袜美女国产一区| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 两性夫妻黄色片| 国产乱来视频区| 亚洲激情五月婷婷啪啪| 亚洲综合精品二区| 伦理电影大哥的女人| 天美传媒精品一区二区| 99re6热这里在线精品视频| 亚洲欧洲日产国产| 一级爰片在线观看| 亚洲伊人久久精品综合| 九九爱精品视频在线观看| 亚洲人成电影观看| 亚洲精品成人av观看孕妇| 午夜福利网站1000一区二区三区| 9191精品国产免费久久| 九草在线视频观看| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 免费久久久久久久精品成人欧美视频| 欧美精品高潮呻吟av久久| 成人国语在线视频| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 在现免费观看毛片| 国产成人精品久久久久久| 久久午夜福利片| 成人亚洲精品一区在线观看| 最近中文字幕高清免费大全6| 亚洲精品美女久久久久99蜜臀 | 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 成人黄色视频免费在线看| 建设人人有责人人尽责人人享有的| 永久免费av网站大全| 五月天丁香电影| 满18在线观看网站| 女性被躁到高潮视频| 午夜福利在线观看免费完整高清在| 性色avwww在线观看| 欧美人与善性xxx| 人人妻人人添人人爽欧美一区卜| 黄片小视频在线播放| 美女xxoo啪啪120秒动态图| 国产精品国产av在线观看| 午夜久久久在线观看| 亚洲欧美色中文字幕在线| 成年女人毛片免费观看观看9 | av国产精品久久久久影院| 国产成人一区二区在线| 国产高清国产精品国产三级| 18禁国产床啪视频网站| 多毛熟女@视频| 少妇的逼水好多| 欧美国产精品一级二级三级| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 宅男免费午夜| 久久久久久久精品精品| 尾随美女入室| 亚洲 欧美一区二区三区| 在线精品无人区一区二区三| 中文字幕最新亚洲高清| 黄片小视频在线播放| 人人妻人人添人人爽欧美一区卜| 国产在线视频一区二区| 免费观看性生交大片5| 国产精品.久久久| av卡一久久| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 高清黄色对白视频在线免费看| www日本在线高清视频| 亚洲一区二区三区欧美精品| 亚洲精品成人av观看孕妇| 久久精品亚洲av国产电影网|