• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution

    2023-03-14 06:52:44HongliWngJinnLiuXudongXioHuiyunMengJieWuChunyuGuoMngZhengXioleiWngShienGuoBojingJing
    Chinese Chemical Letters 2023年1期

    Hongli Wng,Jinn Liu,Xudong Xio,*,Huiyun Meng,Jie Wu,Chunyu Guo,Mng Zheng,Xiolei Wng,*,Shien Guo,Bojing Jing,*

    a Key Laboratory of Functional Inorganic Material Chemistry,Ministry of Education of the People’s Republic of China,School of Chemistry and Materials Science,Heilongjiang University,Harbin 150000,China

    b School of Safety Engineering,Heilongjiang University of Science and Technology,Harbin 150022,China

    c Institute of Advanced Materials (IAM),College of Chemistry and Chemical Engineering,Jiangxi Normal University,Nanchang 330022,China

    Keywords:Photocatalysis SnO2-TiO2 heterojunction Solvent thermal Charge transfer Hydrogen evolution

    ABSTRACT Fabricating an efficient charge transfer pathway at the compact interface between two kinds of semiconductors is an important strategy for designing hydrogen production heterojunction photocatalysts.In this work,we prepared a compact,stable and oxygen vacancy-rich photocatalyst (SnO2/TiO2 heterostructure) via a simple and reasonable in-situ synthesis method.Briefly,SnCl2–2H2O is hydrolyzed on the TiO2 precursor.After the pyrolysis process,SnO2 nanoparticles (5 nm) were dispersed on the surface of ultrathin TiO2 nanosheets uniformly.Herein,the heterojunction system can offer abundant oxygen vacancies,which can act as active sites for catalytic reactions.Meanwhile,the interfacial contact of SnO2/TiO2 grading semiconductor oxide is uniform and tight,which can promote the separation and migration of photogenerated carriers.As shown in the experimental results,the hydrogen production rate of SnO2/TiO2 is 16.7 mmol h-1 g-1 (4.4 times higher than that of TiO2),which is owing to its good dynamical properties.This work demonstrates an efficient strategy of tight combining SnO2/TiO2 with abundant oxygen vacancies to improve catalytic efficiency.

    Utilizing renewable solar energy resources to produce hydrogen with abundant water resources is an ideal solution to replace traditional energy and solve dual challenges of global energy and environment [1–3].At present,the use of semiconductors for photocatalytic decomposition of water to produce hydrogen has attracted extensive attention and research.In recent years,Cu2O,SnO2,TiO2,CdS and other semiconductor materials with excellent photocatalytic hydrogen evolution performance have been developed and utilized by many researchers [4,5].However,bulk materials severely reduce the accessibility to the active sites and the rate of ion diffusion [6].These shortcomings will degrade the effi-ciency of photocatalytic water splitting hydrogen production and hinder the long-term practical application.Replacing traditional bulk structure with ultrathin two-dimensional nanostructure might be an effective solution to address this issue [7–10].

    Two-dimensional ultrathin TiO2has been widely researched in photocatalytic hydrogen evolution,photocatalytic CO2reduction and organic synthesis,due to their unique electronic structure,tunable optical property and ultrathin two-dimensional nanostructure,which are more favorable to reduce the diffusion distance of carriers,provide high surface area and expose rich catalytic activity sites [11–13].Although the metal oxides composed by singlespecies ultrathin TiO2have achieved great progress,the catalytic performance of single-component photocatalysts is not entirely satisfactory,due to the slow separation and migration kinetics of photogenerated carriers.At present,fabricating tight contact twocomponent metal-oxide-semiconductors with appropriate bandgap becomes an efficient strategy to promote charge separation and transfer effectively,which can improve the photoreaction activity significantly [14].Meanwhile,the built-in electric field at the interface of two different defect semiconductor photocatalysts with suitable structures can accelerate the separation and transfer the electron-holes simultaneously [15,16].Thus,the enhancement of photocatalytic activity depends on the design and fabrication of heterogeneous coupling of different semiconductors with tight interfacial contact.Considering the excellent electron transfer properties of SnO2with the active O-defect sites,combining TiO2to form the defect heterostructure can maximize the photogenerated carrier separation efficiency [17,18].However,the interfacial contact of some heterogeneous structures is not tight enough due to the electrostatic interaction [19].Therefore,it is urgent to tighten the contact between the interfaces of two kinds of semiconductor photocatalyst,which can benefit in enhancing the reaction kinetics.In particular,the convenient and large-scale preparation of biocomponent oxide photocatalysts with tight contact interfaces to achieve efficient and practical H2production remains a great challenge [20,21].

    Fig.1.(a) The synthetic process of SnO2/TiO2–1.5.(b,c) SEM images of TiO2 nanosheets and SnO2/TiO2–1.5.(d) TEM and HRTEM images of SnO2/TiO2–1.5.(e)TEM image and the corresponding elemental mappings of SnO2/TiO2–1.5.

    In this work,we first synthesized ultrathin TiO2nanosheets by solvothermal method.Then,utilize SnCl2·2H2O as the Sn source to fabricate SnO2on TiO2precursor byin-situhydrolysis.Finally,the SnO2/TiO2with high crystallinity can be obtained by high temperature calcination (Fig.1a).As shown in the experimental results,this synthesis method can avoid damaging the morphology of TiO2framework effectively.In addition,the two kinds of metal oxide catalysts can exhibit tighter binding and more abundant oxygen vacancies.Composing SnO2with small size on the TiO2surface can shorten the band gap,broaden the light response range,and make full use of visible light efficiently.The photocatalytic hydrogen evolution rate can reach 16.7 mmol h-1g-1under the irradiation of AM1.5.

    The morphologies of TiO2and SnO2/TiO2–1.5 are investigated by scanning electron microscopy (SEM),transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) (Figs.1b-e).As revealed by the SEM images (Fig.1b and Fig.S1 in Supporting information),the TiO2nanosheets synthetized by solvothermal method present uniform thickness and size with the diameter of ~500 nm.Furthermore,the morphology of TiO2will change as the variation of hydrazine hydrate adding amount.Increasing the amount of hydrazine hydrate,TiO2can gradually grow from conical-rods precursor into a two-dimensional proton titanate nanosheets.Adequate amounts of hydrazine hydrate (4 mL) can promote to form complete nanosheets,which are fries-like assemblies composed by single crystal nanorods.While,adding insufficient hydrazine hydrate(1/2/3 mL) cannot completely formed the structure of nanosheets assembled by nanorods.After the introduction of SnO2(Fig.1c and Fig.S2 in Supporting information),TiO2nanosheets still remain intact structure and there are no significant changes on their surface,indicating that the TiO2nanosheets synthesized by solvothermal method present good structural stability.Furthermore,the existence of SnO2nanoparticles was represented by HRTEM images.It can be obviously observed in the TEM images (Fig.1d) that the SnO2nanoparticles with the diameter of ~5 nm are uniformly distributed on the surface of TiO2nanosheets.Meanwhile,two kinds of lattice stripes can be clearly seen in the Fig.1d with the spacing of 0.350 and 0.285 nm,which are attributed to the 101 faces of TiO2and the 111 faces of SnO2,respectively.The TEM mapping images of SnO2/TiO2–1.5 (Ti,O,and Sn) prove that the SnO2nanoparticles are distributed on the whole framework of the TiO2carrier uniformly.The elemental composition of Ti,O and Sn was also verified by energy spectrum X-ray spectroscopy (EDS,Fig.S3 in Supporting information) and element mapping (Fig.1e) [22–24].As shown in Fig.S4 (Supporting information),the specific surface area of TiO2and SnO2/TiO2–1.5 can be obtained by the nitrogen adsorption-desorption isotherm.Compared with the pure TiO2,loading SnO2can enhance the specific surface area of SnO2/TiO2–1.5,providing more active sites for the reaction.

    The X-ray diffraction (XRD) and Raman spectra are conducted to further investigate the composition of the synthesized materials.After being calcined at 450 °C (2 °C/min,2 h) in the air atmosphere,TiO2and SnO2can recrystallize to form a tight heterojunction.As shown in Fig.2a,the characteristic peaks can be well matched with the anatase TiO2(JCPDS No.21–1276) and SnO2(JCPDS No.33–1374) standard cards,indicating that the SnO2/TiO2–1.5 has been successfully synthesized [25].It can only observe the anatase TiO2and SnO2diffraction peaks in the XRD pattens of SnO2/TiO2–1.5.Meanwhile,in the Raman spectra (Fig.2b),it can be observed five typical anatase TiO2Raman peaks located at 146.7,200.1,402.5,518.8 and 635.5 cm-1,which are assigned to Eg,Eg,B1g,A1g (B1g),and Eg modes,respectively.There are no other peaks in the Raman spectra of SnO2/TiO2–1.5,further indicating that introduce SnO2on TiO2surface will not change the crystal phase of TiO2.As compared with pure TiO2,the peak of SnO2/TiO2–1.5 at 600–700 cm-1present a regular blue shift with the increase of the SnO2loading amount.And such blue shift of the peak may originate from the replacement of Ti4+by Sn4+,which can change the lattice structure of TiO2,produce oxygen vacancies,and induce lattice distortion [26,27].

    Herein,we utilize the XPS test (Figs.2c-e and Fig.S5 in Supporting information) to explore the elemental composition and chemical state of SnO2/TiO2–1.5.As shown in Fig.2c,the peaks located at 486.1 eV and 494.5 eV are assigned to Sn 3d3/2and Sn 3d5/2,respectively.And the corresponding peaks of Sn in the SnO2/TiO2–1.5 shift to lower binding energy compared with that in the pure SnO2,meaning that introduce SnO2can enhance the electron density of Sn in SnO2.The peaks of 458.5 eV and 464.2 eV in the Fig.2d are corresponded to Ti 2p3/2and Ti 2p1/2of Ti4+,respectively.As compared with pure TiO2,the peaks of Ti 2p in the SnO2/TiO2–1.5 shift ~0.5 eV to higher binding energy,indicating that introduce SnO2can decrease the electron density of Ti in TiO2.As shown in Fig.2e,the peaks at 529.9 eV and 531.3 eV are attributed to O 1s.The peak at 529.9 eV comes from the lattice oxygen chemically bonded with metal (Sn and Ti),and the binding energy at 531.3 eV comes from the surface oxygen vacancies.Based on the above XPS results,it can be proved the existence of electron transfer between Ti and Sn elements,indicating that the close combination of SnO2/TiO2–1.5 in favor of charge redistribution.In addition,as revealed by the electron spin resonance (EPR)spectra in Fig.2f,the oxygen defect in SnO2/TiO2heterostructure is significantly higher than that in the pure TiO2,which may be due to the occupancy of Sn4+by Ti4+during the high temperature calcination process.This speculation can be supported by the blue shift of Raman spectra in 600–700 cm-1regions after loading SnO2on the TiO2surface.As the different size of Sn4+and Ti4+,such replacement can form defects,which is favor to decrease the reaction band gap and provide more active sites [28–30].

    Fig.2.(a) XRD patterns of SnO2/TiO2–1.0,SnO2/TiO2–1.5,and SnO2/TiO2–2.0.(b)Raman spectra of TiO2,SnO2/TiO2–1.0,SnO2/TiO2–1.5 and SnO2/TiO2–2.0.Highresolution XPS spectra of (c) Sn 3d,(d) Ti 2p,and (e) O 1s of SnO2,TiO2 and SnO2/TiO2–1.5.(f) The ESR spectra of TiO2 and SnO2/TiO2–1.5.

    Fig.3a presents the UV–visible diffuse reflectance spectra (UV–vis DRS) of SnO2,TiO2,and SnO2/TiO2–1.5.Compared with the pure SnO2and TiO2,the optical response range of SnO2/TiO2–1.5 is expanded.Fig.3b shows the absorption spectra calculated by Kubelka-Munk function.And the band gap of TiO2,SnO2and SnO2/TiO2–1.5 can be calculated by the formula of (αhν)1/2~hν-Eg,which are 3.15,3.37 and 2.85 eV,respectively.The absorption edge presents red-shift with the increasing loading amount of SnO2,and SnO2/TiO2–1.5 exhibits the best light absorption property (Figs.S6 and S7 in Supporting information),indicating that the synergistic effect of SnO2and oxygen vacancies can tune the energy band structure of TiO2effectively.In order to determine the conduction band (CB) of SnO2and TiO2,the Mott-Schottky measurements were conducted under 1000,1200,and 1400 Hz (Figs.3c and d) [31,32].Both SnO2and TiO2show positive slopes,which are consistent with the test results of typical n-type semiconductor.According to the calculation ofENHE=EAg/AgCl+0.197,it can be seen that the energy bands of SnO2and TiO2locate at -0.763 and-1.103 Vvs.NHE,respectively.The CB of n-type semiconductor is located around the flat band potential,so it can be determined that the CB edges of SnO2and TiO2are -0.763 and -1.103 V,respectively.For the further confirmation of the electron transfer between SnO2and TiO2,the work functions (WFs) of SnO2and TiO2were measured by Kelvin probe.As shown in Fig.3e,the contact potential difference (CPD) between SnO2(TiO2) and metal probe is 0.023 V (0.29 V).According to the formula of WF=4.7+eCPD,it can be calculated that the WFs of SnO2and TiO2are 4.677 and 4.410 V,respectively.Therefore,the energy level diagram of SnO2/TiO2–1.5 can be illustrated by Fig.3f.Due to the lower work function and the higher Fermi level of TiO2,combine SnO2with TiO2can generate the n-n heterojunction.During the illumination process,electrons can transfer from the CB of TiO2to the CB of SnO2.Thus,the electrons are enriched on the surface of SnO2,which can effectively inhibit the recombination of photogenerated electron-hole pairs and improve the performance of photocatalytic activity [33].

    Fig.3.(a,b) UV-visible diffuse reflectance spectra and determination of the band gaps using Kubelka-Munk function of SnO2,TiO2 and SnO2/TiO2–1.5.(c,d) Mott-Schottky plots of SnO2 and TiO2.(e) Scanning Kelvin probe maps SnO2,TiO2 and SnO2/TiO2–1.5.(f) Schematic of the photodegradation mechanism of the SnO2/TiO2–1.5 porous nanowire nanosheet heterostructures.

    Fig.4.(a) The H2 evolution rates for SnO2,TiO2,and SnO2/TiO2–1.5 (AM 1.5,number of trials: 5 times).(b) Recycling performance of SnO2,TiO2 and SnO2/TiO2–1.5.

    In order to further explore the electron-hole separation effi-ciency of the composite photocatalyst,the steady-state fluorescence tests of SnO2and SnO2/TiO2–1.5 have been carried out as shown in Fig.S8a (Supporting information).The intensity of TiO2PL peak is significantly higher than that of SnO2/TiO2–1.5,owing to the rapid recombination of photogenerated carriers in TiO2.It is worth noting that loading SnO2on the surface of TiO2can attenuate the fluorescence intensity,which can prove the inhibition of the rapid recombination for the photogenerated electron-hole pairs and the better capability of capture electrons [34].The results of wavelength calculation show that the PL peak can match with the band gap of the catalyst calculated by UV–vis DRS.Moreover,it can be concluded that the heterojunction formed by SnO2and TiO2can improve the charge separation and transmission capacity effectively.Under the irradiation of AM1.5 light source,the photocurrent responses of SnO2,TiO2,and SnO2/TiO2–1.5 changes periodically with time.When the catalyst is irradiated by light,the photoexcited electrons can transfer from the valence band (VB)to the CB,which is the main reason to generate various current changes.It can be found that all samples can preset photocurrent response during the test.The current densities of SnO2and TiO2are both lower than that of SnO2/TiO2–1.5.And the largest photocurrent response of SnO2/TiO2–1.5 manifests its prominent carrier generation ability (Fig.S8b in Supporting information),which is consistent with the result of the PL spectra.Moreover,the photocurrent density changed little during the repeated cycling tests,which can prove the good stability of the catalyst [35].The electrochemical impedance spectra (EIS) of SnO2,TiO2and SnO2/TiO2–1.5 are represented in Fig.S9 (Supporting information).As usual in the Nyquist diagram of EIS,the smaller arc radius indicates that the resistance in the charge transfer process is smaller and the carrier separation efficiency is higher.It can be proved that after the introduction of SnO2particles,the tightly contact interface of SnO2/TiO2–1.5 can provide additional channels for electron transfer and reduce the resistance of electron transfer [36].Therefore,it is further confirmed that the uniform and compact loading of SnO2nanoparticles on TiO2nanosheets can accelerate the separation and transmission of photogenerated electron-hole pairs.

    Till then,the morphology,composition,and optical characteristic of SnO2/TiO2–1.5 heterostructure have been characterized successfully.Based on the advantages of its tight combination,this heterostructure can present efficient charge separation and good charge transfer ability.In addition,the photocatalytic hydrogen production performance of the catalyst has been also evaluated to evaluate its photocatalytic activity.As shown in Fig.4a,the hydrogen evolution rate of SnO2,TiO2,and SnO2/TiO2–1.5 are 0.5,3.8 and 16.7 mmol h-1g-1,respectively.And the hydrogen evolution rate of SnO2/TiO2–1.5 is higher than that of SnO2and TiO2significantly.For SnO2/TiO2composite materials with different SnO2loading amounts,SnO2/TiO2–1.5 presents the most excellent photocatalytic hydrogen production performance (Fig.S10 in Supporting information).The hydrogen production did not decrease significantly after 5 cycles in the 20-hour photocatalysis process (Fig.4b),which indicates that SnO2/TiO2–1.5 is extremely stable under photocatalytic conditions.In addition,the XRD and SEM images of SnO2/TiO2–1.5 are almost unchanged after five cycle testing(Figs.S11 and S12 in Supporting information),indicating that the SnO2/TiO2–1.5 we prepared is stable both in structure and morphology during the illumination due to its tight heterogeneous structure [37].Such excellent photocatalytic performance is originated from the following three reasons: (1) The ultrathin twodimensional structure of TiO2nanosheets,which can improve the accessibility to active sites and ion diffusion rate; (2) The close combination of small SnO2on TiO2nanosheets,which can promote the rapid separation and transmission of charges; (3) The appropriate oxygen vacancy concentration can adjust the energy band structure of TiO2effectively.

    In conclusion,we utilized a simplein-situhydrolysis method of SnCl2·2H2O to load small-size SnO2on TiO2nanosheets with ultrathin two-dimensional structure.Due to the occupancy of Sn4+by Ti4+,this kind of two-dimensional composite SnO2/TiO2–1.5 nanosheets possesses abundant oxygen defects,which can realize the regulation of energy band and provide more active sites in the hydrogen evolution process.In addition,the tight combination of TiO2with SnO2can promote the charge transfer kinetics and inhibit the recombination of photogenerated electron-hole pairs.The formed material presents excellent performance in solar-driven hydrogen evolution for a long period of time.Overall,this work presents an effective,suitable and simple strategy for tightly combining two semiconductors to efficient charge transfer and may initiate new chances for catalyst development.

    Declaration of competing interest

    We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.21771061) and the Outstanding Youth Fund of Heilongjiang Province (No.JQ 2020B002),the Natural Science Foundation of Heilongjiang Province (No.UNPYSCT-2020006),Natural Science Foundation of Jiangxi Province (No.20202BABL213002).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.018.

    精品熟女少妇av免费看| 亚洲国产欧洲综合997久久,| 一级毛片久久久久久久久女| 日韩一区二区三区影片| a级一级毛片免费在线观看| 黄色日韩在线| 国产不卡一卡二| 亚洲精品国产成人久久av| 欧美色视频一区免费| 天堂影院成人在线观看| 国产精品乱码一区二三区的特点| 久久99精品国语久久久| 深爱激情五月婷婷| 国产精品一二三区在线看| 精品久久久噜噜| 在线观看免费视频日本深夜| 国产蜜桃级精品一区二区三区| 日日干狠狠操夜夜爽| 日本黄色片子视频| 色5月婷婷丁香| 欧美+亚洲+日韩+国产| 国产av不卡久久| 亚洲欧美清纯卡通| 老女人水多毛片| 国语自产精品视频在线第100页| 97人妻精品一区二区三区麻豆| 中文字幕人妻熟人妻熟丝袜美| 亚洲三级黄色毛片| 国产极品精品免费视频能看的| 久久精品久久久久久噜噜老黄 | 好男人在线观看高清免费视频| 国产av一区在线观看免费| 亚洲色图av天堂| av免费观看日本| 我要搜黄色片| 欧美极品一区二区三区四区| 人体艺术视频欧美日本| 波多野结衣高清作品| 国产成人影院久久av| 亚洲图色成人| 亚洲第一区二区三区不卡| av免费在线看不卡| 麻豆国产av国片精品| 天堂网av新在线| 天堂中文最新版在线下载 | 免费看日本二区| 国产伦在线观看视频一区| 只有这里有精品99| 69人妻影院| 婷婷色av中文字幕| 网址你懂的国产日韩在线| 看非洲黑人一级黄片| 91在线精品国自产拍蜜月| 一级av片app| 欧美激情国产日韩精品一区| 黄色配什么色好看| 婷婷色综合大香蕉| 一级毛片我不卡| 国产在视频线在精品| av天堂中文字幕网| 亚洲av免费在线观看| 男插女下体视频免费在线播放| 在线播放国产精品三级| 在线a可以看的网站| 亚洲美女视频黄频| 最近手机中文字幕大全| 观看免费一级毛片| 精品人妻偷拍中文字幕| 国产精品一区二区三区四区久久| 国产麻豆成人av免费视频| 日韩一区二区视频免费看| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| 欧美xxxx性猛交bbbb| 国产精品野战在线观看| 神马国产精品三级电影在线观看| 午夜亚洲福利在线播放| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区免费观看| 亚洲欧美成人综合另类久久久 | 国产乱人偷精品视频| 亚洲成人av在线免费| 五月伊人婷婷丁香| 99riav亚洲国产免费| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 变态另类丝袜制服| 麻豆精品久久久久久蜜桃| 尾随美女入室| 91av网一区二区| 日韩av在线大香蕉| 色尼玛亚洲综合影院| 麻豆成人av视频| 女同久久另类99精品国产91| 日韩人妻高清精品专区| 亚洲欧美精品专区久久| 婷婷色综合大香蕉| 久久精品久久久久久噜噜老黄 | 久久久久久大精品| 婷婷色av中文字幕| 亚洲第一电影网av| 成人毛片a级毛片在线播放| 国产亚洲91精品色在线| 国产视频内射| 国产精品99久久久久久久久| 免费观看a级毛片全部| 69av精品久久久久久| 高清毛片免费看| 九九在线视频观看精品| 国产精品人妻久久久影院| 精品欧美国产一区二区三| 国产伦精品一区二区三区四那| 久久久午夜欧美精品| 在线观看美女被高潮喷水网站| 中文字幕制服av| av天堂中文字幕网| 少妇的逼好多水| 国产麻豆成人av免费视频| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| 午夜老司机福利剧场| 国内精品宾馆在线| 国产精品永久免费网站| 日韩人妻高清精品专区| 亚洲av第一区精品v没综合| 欧美高清性xxxxhd video| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 热99re8久久精品国产| 中文资源天堂在线| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 国产成人午夜福利电影在线观看| 搡女人真爽免费视频火全软件| 亚洲国产精品成人综合色| 亚洲第一电影网av| 波多野结衣高清无吗| 欧美日韩乱码在线| 久久久久久久亚洲中文字幕| 中文欧美无线码| 性插视频无遮挡在线免费观看| 国产综合懂色| 蜜臀久久99精品久久宅男| 精品免费久久久久久久清纯| 国产精品麻豆人妻色哟哟久久 | 网址你懂的国产日韩在线| 精品午夜福利在线看| 99热6这里只有精品| 尾随美女入室| 国产精品,欧美在线| 国产人妻一区二区三区在| 国产亚洲精品av在线| 少妇被粗大猛烈的视频| 精品人妻熟女av久视频| 三级经典国产精品| 亚洲内射少妇av| 成年免费大片在线观看| 午夜福利在线观看免费完整高清在 | 美女cb高潮喷水在线观看| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 亚洲精品久久国产高清桃花| 91精品一卡2卡3卡4卡| 男人舔女人下体高潮全视频| 日本欧美国产在线视频| 特级一级黄色大片| 成人欧美大片| 18禁黄网站禁片免费观看直播| 亚洲va在线va天堂va国产| av专区在线播放| 久久热精品热| 亚洲五月天丁香| 中文字幕久久专区| av免费观看日本| 免费观看的影片在线观看| 国产av麻豆久久久久久久| 亚洲精品久久久久久婷婷小说 | 好男人在线观看高清免费视频| 中国美白少妇内射xxxbb| 成人国产麻豆网| 久久九九热精品免费| 午夜免费男女啪啪视频观看| 国产精品国产三级国产av玫瑰| 久久精品夜色国产| 三级经典国产精品| 一级二级三级毛片免费看| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 久久精品综合一区二区三区| 久久久色成人| 国产伦在线观看视频一区| 成人三级黄色视频| 成人午夜高清在线视频| av在线老鸭窝| 免费看a级黄色片| 成人无遮挡网站| 中文字幕av在线有码专区| 欧美bdsm另类| 麻豆乱淫一区二区| 国产极品精品免费视频能看的| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 日产精品乱码卡一卡2卡三| 欧美成人一区二区免费高清观看| kizo精华| 国产蜜桃级精品一区二区三区| 最近2019中文字幕mv第一页| 美女脱内裤让男人舔精品视频 | 成人欧美大片| 国产私拍福利视频在线观看| 韩国av在线不卡| 日本成人三级电影网站| 97在线视频观看| 91精品国产九色| 我的老师免费观看完整版| 国产高清有码在线观看视频| 一级毛片aaaaaa免费看小| 日韩中字成人| 国产淫片久久久久久久久| 国产精品国产高清国产av| 床上黄色一级片| 熟女人妻精品中文字幕| 黄色欧美视频在线观看| 小说图片视频综合网站| 色噜噜av男人的天堂激情| 美女xxoo啪啪120秒动态图| 国产人妻一区二区三区在| 日韩视频在线欧美| 少妇丰满av| 最近2019中文字幕mv第一页| 国产熟女欧美一区二区| 一区二区三区四区激情视频 | 乱人视频在线观看| 免费观看精品视频网站| 国产精品免费一区二区三区在线| 蜜桃亚洲精品一区二区三区| av在线观看视频网站免费| 亚洲精品久久国产高清桃花| 婷婷亚洲欧美| 青青草视频在线视频观看| 国产成人a区在线观看| 免费观看a级毛片全部| 久久久国产成人免费| 亚洲经典国产精华液单| а√天堂www在线а√下载| 国产精品电影一区二区三区| 黑人高潮一二区| 成人亚洲精品av一区二区| 在线观看av片永久免费下载| 亚洲欧美日韩高清专用| 熟女电影av网| 色播亚洲综合网| 波多野结衣巨乳人妻| 草草在线视频免费看| 中文字幕精品亚洲无线码一区| av天堂中文字幕网| 久久韩国三级中文字幕| 日韩国内少妇激情av| 男女边吃奶边做爰视频| 中文字幕久久专区| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 一区二区三区高清视频在线| 一本久久中文字幕| av福利片在线观看| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 99热只有精品国产| 老师上课跳d突然被开到最大视频| 少妇人妻一区二区三区视频| 亚洲国产精品成人久久小说 | 最近2019中文字幕mv第一页| 两个人的视频大全免费| 美女内射精品一级片tv| 黄色一级大片看看| а√天堂www在线а√下载| 国产午夜精品一二区理论片| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 日韩中字成人| 国产视频内射| 亚洲精品久久久久久婷婷小说 | 又爽又黄无遮挡网站| 日本免费一区二区三区高清不卡| 伦理电影大哥的女人| 亚洲av中文av极速乱| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 爱豆传媒免费全集在线观看| 又爽又黄a免费视频| 国产午夜精品久久久久久一区二区三区| 简卡轻食公司| 精品一区二区三区人妻视频| 毛片女人毛片| 在线观看66精品国产| 亚洲av一区综合| 亚洲人成网站在线观看播放| 色哟哟·www| 十八禁国产超污无遮挡网站| 国产精品免费一区二区三区在线| 精品人妻一区二区三区麻豆| 免费av毛片视频| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩无卡精品| 久久精品国产亚洲网站| 日韩一本色道免费dvd| 99久久精品国产国产毛片| 免费av不卡在线播放| 日日干狠狠操夜夜爽| 久久亚洲国产成人精品v| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 国产精品,欧美在线| 亚洲精品乱码久久久v下载方式| 久久人人精品亚洲av| 热99re8久久精品国产| 99久久久亚洲精品蜜臀av| 99riav亚洲国产免费| 一个人看的www免费观看视频| 日韩成人av中文字幕在线观看| 中文字幕av在线有码专区| 九色成人免费人妻av| 观看免费一级毛片| 黑人高潮一二区| 国产精品一区二区三区四区免费观看| 91在线精品国自产拍蜜月| 亚洲性久久影院| 乱人视频在线观看| 国产伦一二天堂av在线观看| 我要搜黄色片| 日韩国内少妇激情av| 一级毛片久久久久久久久女| 内射极品少妇av片p| 乱人视频在线观看| kizo精华| 免费大片18禁| 精品少妇黑人巨大在线播放 | 亚洲成a人片在线一区二区| 久久精品人妻少妇| 国产中年淑女户外野战色| 久久热精品热| 一级黄片播放器| 日韩av不卡免费在线播放| 亚洲国产色片| 又粗又爽又猛毛片免费看| 午夜爱爱视频在线播放| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 一区二区三区高清视频在线| 51国产日韩欧美| av在线蜜桃| 国模一区二区三区四区视频| 亚洲人成网站在线播放欧美日韩| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 国产亚洲精品久久久久久毛片| 午夜老司机福利剧场| 欧美日韩综合久久久久久| 中国美女看黄片| 亚洲经典国产精华液单| 插阴视频在线观看视频| 日本黄大片高清| 欧美色视频一区免费| 国产精品一区二区性色av| 亚洲最大成人手机在线| 欧美一区二区精品小视频在线| 国产亚洲精品久久久com| 日本-黄色视频高清免费观看| 99国产精品一区二区蜜桃av| av天堂中文字幕网| 毛片女人毛片| 日本免费一区二区三区高清不卡| 少妇熟女欧美另类| 国产一区二区三区av在线 | 99热只有精品国产| 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 国产成人午夜福利电影在线观看| 免费大片18禁| 色综合色国产| 在线观看午夜福利视频| 亚洲一区二区三区色噜噜| 男人和女人高潮做爰伦理| 国产精品一区二区三区四区免费观看| a级毛片a级免费在线| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久| 日本熟妇午夜| 日韩三级伦理在线观看| 麻豆乱淫一区二区| 不卡一级毛片| 99国产精品一区二区蜜桃av| 亚洲人成网站在线观看播放| 国产成人91sexporn| 国产精品一二三区在线看| 亚洲人成网站在线播放欧美日韩| 国产精品女同一区二区软件| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 久99久视频精品免费| 波野结衣二区三区在线| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 亚洲va在线va天堂va国产| 天天一区二区日本电影三级| 国产精品三级大全| 中文字幕人妻熟人妻熟丝袜美| 深夜a级毛片| 乱系列少妇在线播放| 在线天堂最新版资源| 最近中文字幕高清免费大全6| 亚洲久久久久久中文字幕| 久久草成人影院| 精品一区二区三区人妻视频| 中国国产av一级| 色尼玛亚洲综合影院| 男女啪啪激烈高潮av片| 亚洲国产精品成人综合色| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 在线播放国产精品三级| 久久99精品国语久久久| 国产片特级美女逼逼视频| 亚洲成人av在线免费| 欧美激情在线99| 久久亚洲国产成人精品v| 亚洲内射少妇av| av在线老鸭窝| 搡女人真爽免费视频火全软件| 干丝袜人妻中文字幕| 久久久久久九九精品二区国产| 久久久久九九精品影院| 黄色配什么色好看| 超碰av人人做人人爽久久| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 久久人人爽人人片av| 村上凉子中文字幕在线| 别揉我奶头 嗯啊视频| 亚洲自偷自拍三级| 中文资源天堂在线| 六月丁香七月| 一区二区三区高清视频在线| 国产69精品久久久久777片| 一区福利在线观看| 亚洲欧美日韩高清在线视频| 欧美性感艳星| 夫妻性生交免费视频一级片| 国产真实乱freesex| 最好的美女福利视频网| 别揉我奶头 嗯啊视频| 最近的中文字幕免费完整| 日本五十路高清| 如何舔出高潮| 成人国产麻豆网| 亚洲在线观看片| 日韩强制内射视频| 免费无遮挡裸体视频| 免费观看的影片在线观看| 亚洲激情五月婷婷啪啪| 成熟少妇高潮喷水视频| 97超视频在线观看视频| 久久久欧美国产精品| а√天堂www在线а√下载| 国产老妇女一区| 成人性生交大片免费视频hd| 91aial.com中文字幕在线观看| 欧美极品一区二区三区四区| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 91久久精品国产一区二区成人| 成年女人看的毛片在线观看| 麻豆乱淫一区二区| 男女做爰动态图高潮gif福利片| 国产色婷婷99| 我要搜黄色片| 全区人妻精品视频| 久久久久性生活片| 国内揄拍国产精品人妻在线| 99精品在免费线老司机午夜| 搡老妇女老女人老熟妇| 全区人妻精品视频| 国产精品一二三区在线看| 久久精品国产亚洲av香蕉五月| 免费观看精品视频网站| 69人妻影院| 成年女人看的毛片在线观看| 日本黄色片子视频| 高清日韩中文字幕在线| 亚洲欧美成人精品一区二区| 欧美xxxx黑人xx丫x性爽| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 久久精品国产亚洲av香蕉五月| 亚洲丝袜综合中文字幕| 亚洲欧美日韩卡通动漫| 国产老妇女一区| 国内精品宾馆在线| 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 国产伦精品一区二区三区四那| 男人舔奶头视频| 久久久国产成人免费| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 美女黄网站色视频| 久久国内精品自在自线图片| 日本黄色视频三级网站网址| 久久午夜亚洲精品久久| 人妻夜夜爽99麻豆av| 国产麻豆成人av免费视频| 亚洲精品亚洲一区二区| 热99re8久久精品国产| 亚洲精品自拍成人| 麻豆av噜噜一区二区三区| 亚洲精品成人久久久久久| 欧美成人精品欧美一级黄| 日韩中字成人| 成年av动漫网址| 久久久久久伊人网av| 亚洲欧美日韩高清在线视频| 有码 亚洲区| 亚洲无线观看免费| 乱人视频在线观看| 午夜免费男女啪啪视频观看| 午夜亚洲福利在线播放| 久久亚洲国产成人精品v| 嫩草影院精品99| 美女被艹到高潮喷水动态| 亚洲自偷自拍三级| 99久久精品一区二区三区| 国产成人福利小说| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 18+在线观看网站| 久久韩国三级中文字幕| 丰满人妻一区二区三区视频av| 男人和女人高潮做爰伦理| 亚洲精品乱码久久久久久按摩| a级毛色黄片| 波多野结衣高清无吗| 国产精品久久视频播放| 国产探花极品一区二区| 99视频精品全部免费 在线| а√天堂www在线а√下载| 黄色日韩在线| av女优亚洲男人天堂| 男女啪啪激烈高潮av片| 麻豆乱淫一区二区| 亚洲成人精品中文字幕电影| 青春草国产在线视频 | 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 午夜福利高清视频| 久久久久性生活片| 亚洲成人精品中文字幕电影| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件| 中文字幕人妻熟人妻熟丝袜美| 国产高清视频在线观看网站| 天堂av国产一区二区熟女人妻| 乱人视频在线观看| 人妻制服诱惑在线中文字幕| 天天躁日日操中文字幕| av.在线天堂| 成人性生交大片免费视频hd| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 美女大奶头视频| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 中文字幕久久专区| 听说在线观看完整版免费高清| 欧美+日韩+精品| 69av精品久久久久久| 国产熟女欧美一区二区| 国产精品一区www在线观看| av在线观看视频网站免费| 校园春色视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人人妻人人看人人澡| 亚洲精品国产av成人精品| 人人妻人人澡欧美一区二区| 国内精品久久久久精免费| 69av精品久久久久久| 亚洲精品久久久久久婷婷小说 | av在线亚洲专区| 好男人在线观看高清免费视频| 精品国产三级普通话版| 国产伦理片在线播放av一区 | 99视频精品全部免费 在线| 男人狂女人下面高潮的视频| 一边亲一边摸免费视频| 亚洲av二区三区四区| 夜夜夜夜夜久久久久| 国产亚洲91精品色在线| 人人妻人人澡人人爽人人夜夜 | 噜噜噜噜噜久久久久久91| 成年女人看的毛片在线观看| 国产91av在线免费观看| 国产精品精品国产色婷婷| 色哟哟哟哟哟哟| 亚洲不卡免费看| 我要搜黄色片| 在线观看av片永久免费下载| 久久久a久久爽久久v久久| 日日摸夜夜添夜夜爱| 亚洲精品自拍成人| 久久久精品大字幕| 精品久久久久久久末码| 成人三级黄色视频|