• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Well-dispersed porous Fe–N–C catalyst towards the high-selective and high-efficiency conversion of CO2 to CO

    2023-03-14 06:52:38QiuHuiZhengChuangChenSiMinCaoMengTingPengBaoXiaDongYunLeiTeng
    Chinese Chemical Letters 2023年1期

    Qiu-Hui Zheng,Chuang Chen,Si-Min Cao,Meng-Ting Peng,Bao-Xia Dong,Yun-Lei Teng

    School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,China

    Keywords:Electrochemical CO2 reduction Fe–N–C Metal-organic framework High-temperature pyrolysis Acid leaching

    ABSTRACT In this study,through direct pyrolysis of a nitrogen-rich metal-organic framework of Fe-BTT at different temperatures and followed by acid treatment,we prepared a series of Fe–N–CT (T=800–1000 °C) composite catalysts with uniform cubic morphology and homogeneously distributed active sites.Acid leaching leads to the removal of excess Fe NPs and the exposure of more pyridinic N and porphyrin-like Fe–Nx sites and creates a higher specific surface area.Structural and electrochemical performance test results showed that Fe–N–C900 catalyst exhibited the highest selectivity for CO product at–1.2 V vs. Ag/AgCl,with 496 mV of overpotential and 86.8% of Faraday efficiency,as well as excellent long-term stability,due to the good inheritance from rich-N Fe–BTT precursor.

    Partial combustion of fossil fuels causes excessive emission of CO2,creating environmental problems and energy crises.Solutions to this situation include using renewable energy sources,such as wind and solar,and the development of carbon capture,utilization,and storage (CCUS) technologies [1].Carbon utilization involves using CO2as a solvent or converting it into fuel and chemical precursors [2,3].The electrochemical CO2reduction reaction (CO2RR)is a desirable option to convert CO2into valuable chemicals and synthetic fuels,which has the advantage of operating at atmospheric pressure and room temperature [4].Besides,when combined with renewable energy sources,it can store the surplus electricity generated during peak production periods in a format of energy-intensive and easily transportable liquid fuel.CO2can be reduced to carbon-based products of formate,CO,hydrocarbons,and alcohols [5].At the current stage,the technical feasibility of CO2RR still faces some limitations,such as the low selectivity of the products,and the accompanied competitive hydrogen evolution reaction (HER) process due to the aqueous electrolyte.Moreover,the high kinetic barriers associated with CO2reduction and the multi-proton/electron transfer required for hydrocarbon formation result in a high overpotential of CO2RR,which transfers into significant energy loss [6].Aiming to find a catalyst with high effi-ciency,high stability,and low overpotential,various cathode catalysts,including four groups of single metal electrodes,metal complexes,carbon-based catalysts,etc.have been developed [7–9].

    Metal-organic frameworks (MOFs) are a class of coordination polymers with a high specific surface area and high porosity,meanwhile,they have rich coordination styles between metal ions and organic ligands.Some of them have a high adsorption capacity for CO2,which is a prerequisite for CO2reduction [10].Therefore,MOFs with different metal nodes are promising and have been chosen as catalysts for CO2RR [11–13].However,the direct application of pristine MOFs to CO2RR still faces many challenges,that is,the poor conductivity,instability,and easy deactivation,which proposes a stricter requirement about the structure of MOFs.In consequence,the nitrogen-doped porous carbon material derived from MOFs has become a kind of promising CO2RR electrocatalyst due to its low cost,adjustable porosity,and abundant active sites.Previous studies have shown that the HER kinetics of carbon materials in aqueous solution is sluggish [14].The introduction of transition metals into N-doped carbon materials helps to significantly enhance the activity of CO2RR [4,15,16],especially the Fe–N–C catalyst reported by Juet al.,which can selectively reduce CO2to CO,and its catalytic performance is comparable to Au and Ag-based catalysts [17].

    Scheme 1.Schematic diagram of the synthesis of Fe–N–CT material.

    However,in the process of preparing Fe–N–C materials from high-temperature pyrolysis precursors,due to the newly formed C–C and C–N bonds,the carbon-based catalysts inevitably fuse and aggregate to form Fe nanoparticles (NPs),resulting in a decrease in the content of the effective Fe–Nxsites used for catalysis [18].Also,the non-uniform distribution of active sites,or encapsulation within the carbon matrix,makes it difficult for the reactants to reach the Fe–Nxsite.Huanet al.have developed a series of Fe–N–C catalysts with different active centers (Fe–N4or Fe NPs) [19].They have proved that the Fe–N4site is the crucial foundation for converting CO2to CO,and Fe NPs promote the HER.However,when compared with the N–C catalyst,the selectivity of Fe–N–C material is not improved substantially.Due to the strong binding ability between CO intermediate and Fe center,it brings more challenges for CO to desorb from the Fe–N–C catalyst thereby inhibiting the CO2RR process [17].Therefore,an efficient Fe–N–C catalyst requires sufficient iron content to form Fe–Nxactive sites and prevent the aggregation of iron NPs at the same time.For this purpose,it is essential to design an ideal electrocatalyst that exposure as many M–Nxactive sites as possible.

    In our previous work,we have isolated the CuFe–N–C catalyst by introducing the ferrous ion into a microporous N-rich MOF of Cu–BTT which is constructed from tetrazolium [20].We have found that the mesoporous structure of the pyrolyzed materials is prominent as the Fe content increases,which is not only conducive to mass transfer but also contributes to exposing more active sites for full contact by the reactants.Nevertheless,the maximum FECOof the Fe0.07Cu–N–C800material is 47.8% with fierce HER competition,probably due to the existence of excess Fe NPs.Herein,we use Fe–BTT as the precursor for the preparation of Fe–N–CT(T=800,900,1000°C) composite catalysts with high content of Fe–Nxsites and well-dispersion (Scheme 1).After pyrolysis,it retains the precursors’shape and porous structure,while the conductivity and stability of the Fe–N–CTare enhanced,and the CO2RR activity is improved.The precursor of Fe3[(Fe4Cl)3(BTT)8]2·solvent (Fe–BTT) was synthesized from a solvothermal reaction of FeCl2·4H2O,H3BTT at a 3:1 molar ratio in a mixture of DMF and DMSO [21].The assynthesized light-yellow crystals,with uniform cubic morphology of 10~15 μm size,exhibit similar diffraction peaks with that of the simulated Fe–BTT based on the single-crystal structure (Figs.S1a and b in Supporting information).As shown in Fig.S1c (Supporting information),it behaves type I adsorption isotherm with a small hysteresis loop,which is probably due to the existence of a slight capillary condensation phenomenon [22].The BET surface area is given as 729 m2/g,lower than the reported 2010 m2/g[21].Thermogravimetric analysis of Fe–BTT was carried out in the range of 30–1000 °C,indicating that there is a large amount of solvent released below 300 °C,which should account for the partial activation of the porosity (Fig.S1d in Supporting information).Great weight loss from 300 °C to 600 °C could be attributed to the decomposition of BTT3–ligand,and there is no apparent change around 1000 °C.

    The carbonization of Fe–BTT precursor was achieved through the pyrolysis process at 800,900,and 1000 °C,respectively,for 1 h at a slow heating rate of 3 °C/min,which were labeled as Fe–N–C800,Fe–N–C900,and Fe–N–C1000,respectively.The decomposition of BTT3–leaves plenty of iron NPs,as revealed by the PXRD characterization which exhibits a strong diffraction peak at 2θ=45.9° attributed to Fe (PDF #88–2324),for the directly pyrolyzed products(Fig.1).To expose more active sites of Fe–Nx,we used acid etching (4 mol/L HCl) to remove Fe NPs that were not active to CO2RR.As a result,for the catalysts after hydrochloric acid treatment,the diffraction signal of Fe disappeared.They also exhibit enhanced Fe3C (PDF #72–1110) signals at 2θ=44.9°,49.2°,and FeN0.05(PDF#75–2129) signals at 2θ=43.6°,50.8°,74.6° when comparing with the catalyst before acid leaching.

    Fig.1.The PXRD patterns of the synthetic Fe–N–CT material before and after hydrochloric acid treatment.

    To further demonstrate the effect of acid leaching,we performed TEM tests on each Fe–N–CTmaterial before and after acid treatment (Fig.S2 in Supporting information).Visible agglomerated Fe NPs on the surface of each sample could be observed (Figs.S2a–c),with 50–57 (Fe–N–C800),64–78 (Fe–N–C900),153–166 nm(Fe–N–C1000) size ranges,respectively,indicating that the agglomeration trend becomes more severe with the increase of temperature.They were significantly reduced but left little number of particles with smaller sizes after acid treatment (Figs.S2g–i).Based on the N2adsorption and desorption curves analysis,the specific surface area and micropore volume decrease after pyrolysis,which is caused by the collapse of the precursor and slight aggregation of Fe NPs during heating treatment (Fig.S3 and Table S1 in Supporting information).It’s worth noting that the mesoporous volume increases significantly after pyrolysis,which is verified by the prominent hysteresis loop ofP/P0in the range of 0.45–1.0 for each Fe–N–CTsample.More interestingly,after getting rid of substantial Fe NPs,the specific surface area and total pore volume,especially the mesoporous part,raise a lot,of which Fe–N–C900increases the most (551 m2/g,Vtotalpore=0.635 cm3/g).These advantages are beneficial to facilitating the mass transfer and exposing active sites for effective CO2RR.

    Based on the above analysis,we can conclude that the acidtreated Fe–N–CTmaterials have the prerequisite and could expose more active sites for promoting CO2RR.Therefore,these catalysts were then subjected to the following tests.Raman spectroscopy characterizations show typical D and G bands at 1352 and 1580 cm–1,respectively,inferring the disordered and graphitized sp2carbon in them (Fig.S4 in Supporting information).TheID/IGratio of Fe–N–C900and Fe–N–C1000is very close to 0.90,indicating their amorphous carbon skeletons have similar defects [23].ICP and elemental analysis tests were also carried out to determine the content of Fe,C,N in each ternary composite (Table S2 in Supporting information).The results showed that the content of Fe and N follows a different trend with the increase of temperature,that is,Fe content increases and N decreases,which is probably due to the gradual removal of unstable N by raising the temperature.Moreover,the severer agglomeration at 1000 °C caused the hard elimination of Fe NPs even by acid leaching,consequently,the content of Fe is highest in Fe–N–C1000(of 12.45 wt%).We also conducted the SEM test to observe the influence of carbonization temperature on the microscopic morphology of each catalyst.As shown in Fig.S5 (Supporting information),it still preserves the uniform cubic morphology of Fe–BTT even under 1000 °C pyrolysis with evenly distributed C,N,O,and Fe elements.

    Fig.2.The selectivity for H2 and CO in the potential range of–1.0~–1.5 V vs. Ag/AgCl: (a) Fe–N–C800; (b) Fe–N–C900; (c) Fe–N–C1000.(d) Comparison of FECO for Fe–N–C800–1000.

    With C 1s (284.80 eV) binding energy as the reference calibration peak position,we performed the XPS measurement to obtain the valence states of each element (Fe,N,C and O) in Fe–N–C800–1000(Fig.S6 in Supporting information).In the full spectrum,only the sample Fe–N–C800before hydrochloric acid-treated showed an unmistakable Fe signal.In contrast,all the materials treated with hydrochloric acid showed weak Fe spectrum lines,despite the high content of iron (2.57–12.45 wt%) being verified in them by ICP.Iron species were not detected by the surfacesensitive technique of XPS in Fe–N–C1000,hinting that they were immersed in the pores of the carbon matrix (Fig.S6b) [24].For Fe–N–C800and Fe–N–C900,more detailed analysis of Fe 2p regions were carried out,indicating the existence form of Fe0(707.9 eV),Fe2+(710.9 eV 2p3/2; 724.4 eV 2p1/2),and Fe3+(713.1 eV 2p3/2,726.6 eV 2p1/2).It is noteworthy that the Fe0signal is severely suppressed in Fe–N–C900,pointing to a higher concentration of Fe–Nxin it.According to the identification convention of typical M–N–C materials,we divided the N 1s spectrum into five types of N,which are pyridine N (398.2 eV),Fex–N (399.4 eV),pyrrole N (400.5±0.3 eV),graphite N or quaternary N (401.5 eV) and NO(402.6 eV),where the occurrence of Fe–Nxpeak indicates that the Fe–Nxunit has good inheritance after Fe–BTT pyrolysis (Fig.S6c)[24].Based on N percentage content analysis,we observed that the most considerable N contributions are mainly from pyridine N,pyrrole N,and Fe–Nx(Table S3 in Supporting information).With the increase of carbonization temperature,the content of pyridine N decreased,and the content of graphite N increased significantly(Fig.S6d in Supporting information),which is consistent with our previous conclusion [25].The acid leaching helps to the removal of major Fe NPs and leads to the exposure of more Fe–Nxsites,which is evidenced by the increase of Fe–Nxcontent in the sample Fe–N–C800after being treated by hydrochloric acid (9.65%vs.16.34%).

    To further clarify the role of acid leaching on the CO2RR performance,we carried out the potentiostaic test for Fe–N–C800before and after acid treatment in a gas-tight H-type cell at–1.0~–1.5 Vvs.Ag/AgCl (Fig.S7 in Supporting information).Gaseous products CO and H2were detected by gas chromatography and were quantified based on the standard lines (Fig.S8 in Supporting information).H2is the main product (FEH2,62.0%-82.0%) for Fe–N–C800before treatment (FECO,0.9%-10.9%).It shows remarkable enhancement in FECOafter the acid treatment,especially in potential of–1.0~–1.3 Vvs.Ag/AgCl (19.5%-49.0%).Meanwhile,the FEH2was inhibited (52.1%-64.4%).The current density is similar in both catalysts.Combined with previous XRD,TEM and BET characterization results,we can confirm that the Fe NPs on the catalyst surface mainly promote the HER.Therefore,in preparing a Fe–N–C catalyst,the pre-treatment by hydrochloric acid is vital for preventing the aggregation of Fe NPs.The following discussion will concentrate on the Fe–N–C after pre-treatment.

    Linear sweep voltammetry (LSV) test for each Fe–N–C in Aror CO2-saturated electrolytes were carried out,as shown in Fig.S9 (Supporting information).The reduction potential all appears earlier in the latter,indicating that the CO2RR is more active.It also reveals that Fe–N–C900catalyst possesses the highest current density and earliest onset potential (Fig.S9d in Supporting information).Stable electrolysis current was exhibited in all catalysts during the 2 hi-t-test with H2and CO generated as the main product (Fig.2 and Fig.S10 in Supporting information).The potential significantly affects the activity and selectivity of CO2RR.The FECOis improved remarkably in Fe–N–C900and Fe–N–C1000,of which maximum 86.8% and 77.1% FECOwere exhibited in them at–1.2 Vvs.Ag/AgCl,respectively.By taking the linear relationship between the overpotential and the fractional current density of CO at low potential,we got the Tafel curve for each catalyst (Fig.S11 in Supporting information).It displays the smallest Tafel slope in Fe–N–C900of 165 mV/decade,hinting at the fastest CO generation kinetics among Fe–N–C800–1000.Through the electrical impedance spectroscopy (EIS) tests,we also verified that it has the smallest impedance semicircle diameter (Fig.S12 in Supporting information).The charge transfer resistance is 6.48Ω,indicating that Fe–N–C900has a faster interface charge transfer process in the CO2reduction process (Table S4 in Supporting information) [26].Moreover,the electrochemical active area (ECSA) was evaluated through double-layer capacitance (Cdl) measurement (Fig.S13 in Supporting information).The biggestCdlwas yield in Fe–N–C900,giving rise to the highest ECSA of 371 cm2.

    Fig.3.Electrolysis of Fe–N–C900 at–1.2 V vs. Ag/AgCl for 10 h.

    Herein,Fe–N–C900was selected as the research object for stability study at–1.2 Vvs.Ag/AgCl.The current density reaches the platform quickly and maintains constantly for 10 h with an average value of 1.2 mA/cm2(Fig.3).The FECOand FEH2keep in 76%-85%,and 21%-23% during this period,with a stable H/C ratio of 0.24–0.29 which would be useful for the Fischer-Tropsch process (Table S5 in Supporting information) [27].

    After digging the previous reports about Fe–N–C catalysts,the Fe–N–CTcatalyst synthesized through the direct pyrolysis of MOF precursor in this work has the advantages of method simplification,structural stability,excellent selectivity,and durability (Table S6 in Supporting information).According to a previous report,pyridine N,porphyrin-like Fe–Nx,and quaternary N structures play an essential role in the selectivity of CO2reduction[17,24,28].Among Fe–N–C800–1000,Fe–N–C800possesses the highest total N content,pyridinic N/Ntotal,and FeNx/Ntotalratios,with the Fe–N–C900being the second.However,the catalytic performance of the latter is outstanding.The prominent pore structure character of Fe–N–C900reminds us the specific surface area and pore volume would have an important impact on CO2RR.Regarding this topic,Strasseret al.used several Fe–N–C made by different nitrogen precursors (melamine,cyanamide,urea,nicarbazin)to explore the structure-activity relationship on transferring CO2to CO.A strong correlation between BET surface area and performance was established,of which the melamine precursor leads to the highest FECO(85%) with>800 m2/g BET surface area [24].Inconsistent with their findings,we observed that high content of pyridinic N,porphyrin-like Fe–Nx,as well as high specific surface areas,are facilitated to high CO production [26,29,30].The porphyrin-like Fe–N4has usually been recognized as the catalytic sites thanks to the appropriate binding strength with the intermediates.To elucidate the CO2RR mechanism on Fe–N–C catalyst,we employ a porphyrin-like Fe–N4embedded in a graphitic plane as the model for the DFT calculation.To draw the free energy profile of transferring CO2to CO,three steps were considered,that is,(1) CO2+*+H++e–→*COOH; (2)*COOH+H++e–→*CO+H2O;and (3)*CO →CO+*.As shown in Fig.S14 (Supporting information),the formation of*COOH requires overcoming an energy barrier of 0.54 eV,which is much more favorable for the formation of*H (1.014 eV).As a result,the HER is less active on Fe–N4–C than CO2RR.The ΔGrequired for desorption of*CO is 0.71 eV,which is the rate-determining step of CO2→CO.To facilitate the desorption of*CO,an appropriate binding strength with*CO and extensive mesoporous structure is especially important for highly effi-cient and durable electrocatalysts.

    In conclusion,Fe–N–CT(T=800–1000 °C) composite catalyst with high specific surface area and uniform active sites was successfully prepared by the direct pyrolysis of Fe-BTT and followed by acid treatment.A series of characterization results showed that the mesoporous volume of Fe–N–CTincreased with the increase of temperature from 800 °C to 900 °C,which was beneficial to the mass transfer and the contact of the active site,thus improving their CO2RR performance.Elevating temperature to 1000 °C leads to obvious agglomeration of Fe NPs which would be isolated in pores of the carbon matrix and are hard to be removed by acid leading.The systematic electrochemical test indicated that Fe–N–C900catalyst showed the highest selectivity for CO product at–1.2 Vvs.Ag/AgCl,with 496 mV of overpotential,1.26 mA/cm2of current density,and 86.8% of Faraday efficiency,as well as excellent long-term stability.It behaves homogeneous distribution of pyridinic N and porphyrin-like Fe–Nxwith high content,and highest BET specific surface area,which is due to the good inheritance from rich-N Fe–BTT precursor.The catalyst studied in this paper also has the advantages of preparation method simplification and structural stability,which still preserves the uniform cubic morphology of the precursor even under high-temperature calcination.This work would provide a reference for preparing M–N–C catalysts with uniform active sites,high specific surface areas,and excellent selectivity for producing CO.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work is supported by the National Natural Science Foundation of China (No.21671169),and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.02.078.

    国产黄色免费在线视频| 亚洲av电影在线观看一区二区三区| 久久6这里有精品| 人妻少妇偷人精品九色| 免费少妇av软件| 国产精品一区二区三区四区免费观看| 久久99蜜桃精品久久| 51国产日韩欧美| 国产日韩欧美在线精品| 三级国产精品欧美在线观看| 久久久久视频综合| 美女cb高潮喷水在线观看| 亚洲美女搞黄在线观看| 免费av不卡在线播放| 日本午夜av视频| 在线观看美女被高潮喷水网站| 狂野欧美激情性bbbbbb| 免费看不卡的av| 天堂中文最新版在线下载| 亚洲综合色惰| 高清欧美精品videossex| 久久久久久人妻| 精品一品国产午夜福利视频| av在线蜜桃| 欧美日韩视频精品一区| 国国产精品蜜臀av免费| 人妻系列 视频| 秋霞伦理黄片| 这个男人来自地球电影免费观看 | 欧美日韩综合久久久久久| 日韩中字成人| 91精品伊人久久大香线蕉| 美女高潮的动态| 国产伦精品一区二区三区四那| av.在线天堂| 亚洲av男天堂| 亚洲欧美清纯卡通| 99热这里只有精品一区| 熟女电影av网| 国产男女内射视频| 免费在线观看成人毛片| 精品少妇黑人巨大在线播放| 日本色播在线视频| 在线观看美女被高潮喷水网站| 韩国高清视频一区二区三区| 伦精品一区二区三区| 22中文网久久字幕| 免费av中文字幕在线| 在线免费十八禁| 亚洲三级黄色毛片| 日韩一本色道免费dvd| 欧美另类一区| 色视频www国产| kizo精华| 永久免费av网站大全| 黑人高潮一二区| 一本久久精品| 中文字幕久久专区| 国产女主播在线喷水免费视频网站| 免费不卡的大黄色大毛片视频在线观看| 午夜福利视频精品| 丝袜喷水一区| 精品人妻偷拍中文字幕| 美女xxoo啪啪120秒动态图| 国产中年淑女户外野战色| 联通29元200g的流量卡| 2022亚洲国产成人精品| 校园人妻丝袜中文字幕| 久久精品国产a三级三级三级| 国产黄片美女视频| 精品久久久久久电影网| 中文字幕精品免费在线观看视频 | 国国产精品蜜臀av免费| 美女高潮的动态| 久久精品国产亚洲av涩爱| 自拍偷自拍亚洲精品老妇| 久久ye,这里只有精品| 水蜜桃什么品种好| 国产成人一区二区在线| 少妇丰满av| 在线观看免费高清a一片| 中文字幕亚洲精品专区| 99精国产麻豆久久婷婷| 精品久久久久久久久av| 日本黄色片子视频| 精品酒店卫生间| 日本午夜av视频| 卡戴珊不雅视频在线播放| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 亚洲精品乱久久久久久| 狂野欧美激情性bbbbbb| 国产成人一区二区在线| 男女下面进入的视频免费午夜| av卡一久久| 久久精品国产鲁丝片午夜精品| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 久热久热在线精品观看| 99视频精品全部免费 在线| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 五月开心婷婷网| 少妇人妻久久综合中文| 国产精品久久久久成人av| av在线app专区| 肉色欧美久久久久久久蜜桃| 久久久国产一区二区| 欧美精品亚洲一区二区| 黄色配什么色好看| 午夜激情久久久久久久| 干丝袜人妻中文字幕| 伦理电影大哥的女人| 日韩不卡一区二区三区视频在线| 男人和女人高潮做爰伦理| 久久国产精品男人的天堂亚洲 | 蜜桃亚洲精品一区二区三区| 熟女电影av网| 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 黄色配什么色好看| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 欧美+日韩+精品| 日韩伦理黄色片| 大片免费播放器 马上看| 一个人免费看片子| 国产亚洲5aaaaa淫片| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| av天堂中文字幕网| 亚洲精品国产成人久久av| 免费看av在线观看网站| 国产成人精品久久久久久| 精品久久国产蜜桃| 亚洲国产成人一精品久久久| 国产免费一级a男人的天堂| 国产亚洲午夜精品一区二区久久| 天堂8中文在线网| 国产精品蜜桃在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲欧美精品永久| 极品教师在线视频| 久久女婷五月综合色啪小说| a级毛片免费高清观看在线播放| 国产乱来视频区| www.av在线官网国产| 99热网站在线观看| 日韩一区二区三区影片| 一个人看的www免费观看视频| 国产精品人妻久久久影院| 免费黄色在线免费观看| 黄色配什么色好看| 有码 亚洲区| 成人二区视频| 亚洲精品aⅴ在线观看| 国产精品免费大片| 九九爱精品视频在线观看| 欧美区成人在线视频| 少妇的逼好多水| 国产69精品久久久久777片| 波野结衣二区三区在线| 国产亚洲最大av| 免费看日本二区| 欧美区成人在线视频| 亚洲国产欧美人成| 亚洲人成网站在线播| h日本视频在线播放| 成人国产av品久久久| 黑人高潮一二区| 亚洲精品成人av观看孕妇| 看免费成人av毛片| 激情五月婷婷亚洲| av黄色大香蕉| av播播在线观看一区| 亚洲高清免费不卡视频| 在线观看免费视频网站a站| 精品人妻视频免费看| 午夜老司机福利剧场| 人妻 亚洲 视频| 久久国产乱子免费精品| 国产精品99久久99久久久不卡 | 亚洲精品一二三| 搡女人真爽免费视频火全软件| 老司机影院成人| 在线精品无人区一区二区三 | 另类亚洲欧美激情| 成人国产av品久久久| 国产免费一区二区三区四区乱码| 日韩视频在线欧美| 草草在线视频免费看| 国产淫片久久久久久久久| 国产成人一区二区在线| 2018国产大陆天天弄谢| 久久精品国产鲁丝片午夜精品| 久久热精品热| 美女cb高潮喷水在线观看| 人妻一区二区av| 精品一区二区免费观看| 亚洲精品日本国产第一区| 在线精品无人区一区二区三 | 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 国产乱来视频区| 成人亚洲欧美一区二区av| 精品久久久久久久久av| 国产亚洲av片在线观看秒播厂| 亚洲精品乱码久久久久久按摩| 日日摸夜夜添夜夜爱| 美女中出高潮动态图| av免费观看日本| av不卡在线播放| 国产伦在线观看视频一区| 色吧在线观看| 久久久久久久国产电影| 国产黄频视频在线观看| 国产老妇伦熟女老妇高清| 国产探花极品一区二区| 97在线视频观看| 国产久久久一区二区三区| 久久久亚洲精品成人影院| 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 欧美国产精品一级二级三级 | 黄色日韩在线| 黄色怎么调成土黄色| 精品久久久噜噜| 观看av在线不卡| 国产精品久久久久久精品电影小说 | 亚洲av成人精品一二三区| 日韩 亚洲 欧美在线| 亚洲av二区三区四区| 久久久精品94久久精品| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| av在线播放精品| 亚洲精品一区蜜桃| 大话2 男鬼变身卡| 草草在线视频免费看| 波野结衣二区三区在线| 久久久国产一区二区| 国产一级毛片在线| av天堂中文字幕网| 亚洲欧洲日产国产| 建设人人有责人人尽责人人享有的 | 成人一区二区视频在线观看| 免费人妻精品一区二区三区视频| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 日本黄大片高清| 大码成人一级视频| 亚洲精品成人av观看孕妇| 国产熟女欧美一区二区| 美女内射精品一级片tv| 精品酒店卫生间| 激情 狠狠 欧美| 国产精品麻豆人妻色哟哟久久| 日本av免费视频播放| 国产在视频线精品| 三级经典国产精品| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 国产精品秋霞免费鲁丝片| 美女高潮的动态| 黑丝袜美女国产一区| 深爱激情五月婷婷| 18+在线观看网站| 亚洲精品色激情综合| 99热这里只有精品一区| av免费观看日本| 最近的中文字幕免费完整| 亚洲电影在线观看av| av国产精品久久久久影院| 精品一品国产午夜福利视频| 欧美精品国产亚洲| 中文字幕人妻熟人妻熟丝袜美| 日本av免费视频播放| 亚洲欧美一区二区三区国产| 欧美精品一区二区大全| videossex国产| 在线精品无人区一区二区三 | 国产在线免费精品| 一级毛片久久久久久久久女| 小蜜桃在线观看免费完整版高清| 一级a做视频免费观看| 97在线人人人人妻| 亚洲怡红院男人天堂| 性色av一级| 国产永久视频网站| 丝袜脚勾引网站| 国产在线视频一区二区| 青青草视频在线视频观看| h视频一区二区三区| 日日撸夜夜添| 亚洲图色成人| 国产精品av视频在线免费观看| 国产精品一二三区在线看| av在线蜜桃| 久久韩国三级中文字幕| 亚洲国产日韩一区二区| 一级二级三级毛片免费看| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| 亚洲国产色片| 男的添女的下面高潮视频| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 一区二区三区免费毛片| 欧美日韩综合久久久久久| 免费观看无遮挡的男女| 九草在线视频观看| 国产成人免费无遮挡视频| 在线播放无遮挡| 麻豆国产97在线/欧美| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 尤物成人国产欧美一区二区三区| 少妇人妻久久综合中文| av在线app专区| 搡女人真爽免费视频火全软件| 嘟嘟电影网在线观看| 免费人妻精品一区二区三区视频| 国产亚洲一区二区精品| 国产精品无大码| 麻豆精品久久久久久蜜桃| 中文天堂在线官网| 狂野欧美激情性bbbbbb| 亚洲av国产av综合av卡| 韩国av在线不卡| 日韩av在线免费看完整版不卡| 亚洲国产色片| av在线蜜桃| 2021少妇久久久久久久久久久| 插逼视频在线观看| 日本一二三区视频观看| 日本黄大片高清| 国产精品久久久久成人av| 插逼视频在线观看| av不卡在线播放| 夜夜看夜夜爽夜夜摸| 午夜老司机福利剧场| 国产高清不卡午夜福利| 丰满少妇做爰视频| av天堂中文字幕网| 亚洲欧美清纯卡通| 身体一侧抽搐| 国产精品99久久99久久久不卡 | 亚洲欧美精品自产自拍| 国产片特级美女逼逼视频| 亚洲国产高清在线一区二区三| 好男人视频免费观看在线| 黄色一级大片看看| 免费观看无遮挡的男女| 久久女婷五月综合色啪小说| 18禁裸乳无遮挡免费网站照片| 大陆偷拍与自拍| av国产久精品久网站免费入址| h日本视频在线播放| 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 亚洲,一卡二卡三卡| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜爱| 久久久久国产网址| 国精品久久久久久国模美| 欧美激情极品国产一区二区三区 | 日本黄大片高清| 99久国产av精品国产电影| 高清午夜精品一区二区三区| 在线 av 中文字幕| 国产免费一级a男人的天堂| 成年人午夜在线观看视频| 边亲边吃奶的免费视频| 欧美xxxx性猛交bbbb| 亚洲一区二区三区欧美精品| 久久精品久久久久久久性| 91aial.com中文字幕在线观看| 亚洲av综合色区一区| 一区在线观看完整版| 一级av片app| 3wmmmm亚洲av在线观看| av线在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 久久久a久久爽久久v久久| 黑人高潮一二区| 国产免费又黄又爽又色| 多毛熟女@视频| 国产精品国产av在线观看| 噜噜噜噜噜久久久久久91| 中文资源天堂在线| 观看美女的网站| 久久精品国产亚洲av涩爱| 国产av国产精品国产| www.av在线官网国产| 91精品伊人久久大香线蕉| 老司机影院毛片| 午夜福利影视在线免费观看| 国产女主播在线喷水免费视频网站| 国产精品一区www在线观看| 亚洲av欧美aⅴ国产| 免费黄色在线免费观看| 成人黄色视频免费在线看| 国产91av在线免费观看| 国产精品一及| 国产欧美日韩精品一区二区| 国国产精品蜜臀av免费| 国产精品不卡视频一区二区| 国产高清有码在线观看视频| 最近中文字幕2019免费版| 久久国内精品自在自线图片| 91午夜精品亚洲一区二区三区| 51国产日韩欧美| 国产亚洲5aaaaa淫片| 男人狂女人下面高潮的视频| 久久99热这里只有精品18| av黄色大香蕉| 一级a做视频免费观看| 亚洲精品一二三| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 18禁在线无遮挡免费观看视频| 全区人妻精品视频| 下体分泌物呈黄色| 国产精品福利在线免费观看| 国产欧美日韩一区二区三区在线 | 观看av在线不卡| 国产久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 日韩电影二区| 超碰av人人做人人爽久久| 国产一区二区三区综合在线观看 | 亚洲精品乱码久久久久久按摩| 韩国高清视频一区二区三区| 国内揄拍国产精品人妻在线| 国产成人a区在线观看| 欧美国产精品一级二级三级 | 亚洲天堂av无毛| 午夜精品国产一区二区电影| 美女国产视频在线观看| 男人添女人高潮全过程视频| 深爱激情五月婷婷| 人人妻人人澡人人爽人人夜夜| 久久国内精品自在自线图片| 国产黄色免费在线视频| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 久久这里有精品视频免费| 超碰av人人做人人爽久久| 国产白丝娇喘喷水9色精品| 免费观看的影片在线观看| 22中文网久久字幕| 嘟嘟电影网在线观看| 少妇人妻 视频| 国产日韩欧美在线精品| 亚洲国产精品一区三区| 亚洲色图av天堂| 久久国内精品自在自线图片| 日日啪夜夜撸| 在线亚洲精品国产二区图片欧美 | 日韩中字成人| 国产精品女同一区二区软件| 国产探花极品一区二区| 亚洲综合精品二区| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 国产精品秋霞免费鲁丝片| 日韩视频在线欧美| 天堂8中文在线网| 老司机影院毛片| 精品一区二区三区视频在线| 深夜a级毛片| 97在线人人人人妻| 成人特级av手机在线观看| 日韩,欧美,国产一区二区三区| 性色avwww在线观看| 亚洲精品aⅴ在线观看| 国产亚洲一区二区精品| 久久久久久伊人网av| 99久久精品一区二区三区| 在线观看美女被高潮喷水网站| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说| 国产一区二区三区av在线| 久久精品国产鲁丝片午夜精品| 九色成人免费人妻av| 色5月婷婷丁香| 国模一区二区三区四区视频| 日韩av在线免费看完整版不卡| 亚洲av不卡在线观看| 色吧在线观看| 日韩成人伦理影院| 好男人视频免费观看在线| 久久久久久九九精品二区国产| 热re99久久精品国产66热6| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片aaaaaa免费看小| 精品少妇久久久久久888优播| 精品国产一区二区三区久久久樱花 | 一个人免费看片子| 国产精品一区二区在线不卡| 黄色日韩在线| 97精品久久久久久久久久精品| 日韩中字成人| 免费人成在线观看视频色| 亚洲精品久久午夜乱码| 精品熟女少妇av免费看| 亚洲成人一二三区av| 中国三级夫妇交换| 欧美老熟妇乱子伦牲交| 欧美日韩国产mv在线观看视频 | 最近手机中文字幕大全| 全区人妻精品视频| 男的添女的下面高潮视频| 王馨瑶露胸无遮挡在线观看| 伊人久久精品亚洲午夜| 精品少妇久久久久久888优播| 五月开心婷婷网| 免费观看无遮挡的男女| 欧美激情极品国产一区二区三区 | 少妇精品久久久久久久| 色哟哟·www| 亚洲性久久影院| 欧美成人a在线观看| 亚洲欧美精品自产自拍| 在线免费观看不下载黄p国产| av免费观看日本| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 99久久人妻综合| 少妇人妻久久综合中文| 日本欧美视频一区| 久久99热这里只频精品6学生| 日本黄大片高清| 极品教师在线视频| 九色成人免费人妻av| 国产成人精品福利久久| 成年人午夜在线观看视频| 日韩中字成人| av专区在线播放| 91精品伊人久久大香线蕉| 在线观看av片永久免费下载| 高清毛片免费看| 国产亚洲最大av| 色网站视频免费| 少妇 在线观看| www.色视频.com| 欧美日本视频| 我要看黄色一级片免费的| 黄片无遮挡物在线观看| 久久国产精品男人的天堂亚洲 | 三级国产精品欧美在线观看| 亚洲av不卡在线观看| 一级a做视频免费观看| 成人亚洲精品一区在线观看 | 高清黄色对白视频在线免费看 | 黑丝袜美女国产一区| 免费在线观看成人毛片| 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 久久久久精品久久久久真实原创| 人妻 亚洲 视频| videossex国产| 国产精品福利在线免费观看| 黄色欧美视频在线观看| 国产免费视频播放在线视频| 亚洲av国产av综合av卡| av在线老鸭窝| 亚洲,一卡二卡三卡| 中文字幕av成人在线电影| 高清在线视频一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲电影在线观看av| 特大巨黑吊av在线直播| 黑人猛操日本美女一级片| 美女脱内裤让男人舔精品视频| 亚洲成人一二三区av| 九色成人免费人妻av| 欧美最新免费一区二区三区| 日本黄色片子视频| 国产国拍精品亚洲av在线观看| 成人亚洲精品一区在线观看 | 中文字幕av成人在线电影| 97在线人人人人妻| 欧美日韩视频高清一区二区三区二| 成人毛片60女人毛片免费| 久久精品国产亚洲av天美| 国产精品精品国产色婷婷| 国产有黄有色有爽视频| 18禁动态无遮挡网站| 国产亚洲午夜精品一区二区久久| 最近中文字幕2019免费版| 蜜桃亚洲精品一区二区三区| 少妇的逼好多水| 大陆偷拍与自拍| 国产v大片淫在线免费观看| 亚洲国产欧美人成| 在线天堂最新版资源| 极品教师在线视频| 精品一区在线观看国产| 日本-黄色视频高清免费观看| 国产91av在线免费观看| 99九九线精品视频在线观看视频| 国产免费一级a男人的天堂| 九九爱精品视频在线观看| 国产精品女同一区二区软件| 中文天堂在线官网| 涩涩av久久男人的天堂| 亚洲色图综合在线观看| 2022亚洲国产成人精品| 青春草视频在线免费观看| 嫩草影院入口|