• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen bonding-induced oxygen clusters and long-lived room temperature phosphorescence from amorphous polyols

    2023-03-14 06:52:08LingWngKngChenHiRuLiBoChuZishnYnHoKeZhngBinLiuShenglingHuYongzhenYng
    Chinese Chemical Letters 2023年1期

    Y-Ling Wng,Kng Chen,Hi-Ru Li,Bo Chu,Zishn Yn,Ho-Ke Zhng,Bin Liu,*,Shengling Hu,Yongzhen Yng,d,*

    a School of Energy and Power Engineering,North University of China,Taiyuan 030051,China

    b MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, China

    c Department of Polymer Science and Engineering,MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University, Hangzhou 310027, China

    d Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,Taiyuan 030032,China

    Keywords:Clusteroluminescence Through-space interactions Polymethylol Poly(3-butene-1,2-diol)Hydrogen bonding Polymerization

    ABSTRACT Developing non-conjugated luminescent polymers (NCLPs) with fluorescence and long-lived roomtemperature phosphorescence is of great significance for revealing the essence of NCLPs luminescence,which has gradually attracted the attention of researchers in recent years.Herein,polymethylol (PMO)and poly(3-butene-1,2-diol) (PBD) with polyhydroxy structures were prepared and their luminescence behaviors were investigated to reveal the clusteroluminescence (CL) mechanism.Compared with polyvinyl alcohol with non-luminescent behavior,PMO and PBD exhibit cyan-blue fluorescence with quantum yields of ca. 12% and green room-temperature phosphorescence with lifetimes of ca. 89 ms in the solid state.Both fluorescence and phosphorescence exhibit typical excitation-dependent CL behavior.Experimental and theoretical analyses show that the strong hydrogen-bonding interaction of PMO and PBD greatly promotes the formation of oxygen clusters and the through-space n-n interaction of oxygen atoms,enabling fluorescence and phosphorescence emission.Our results have enormous implications for understanding the CL mechanism of NCLPs and provide a new polymer design strategy for the rational design of novel NCLPs materials.

    Light is an essential factor for human survival,health,and development.Thereinto,fluorescence and phosphorescence play a vital role in optoelectronic devices [1],chemo-/bioprobes [2,3],biological imaging [4,5],and other fields [6,7].Conventional wisdom holds that chromophores with well-defined large conjugated groups are required to achieve fluorescence or/and phosphorescence emission [8,9].However,in recent years,numerous studies have found that many natural and synthetic polymers or small molecules,in the absence of well-defined chromophores or conjugated structures,also exhibit fluorescence or/and even room temperature phosphorescence (RTP),such as polyether [10],polyester[11,12],natural products [13],poly(maleic anhydride) derivatives[14–17],tertiary amine derivatives [18,19],poly(hydroxyurethane)[20] and polysiloxane [21].The structures of these molecules usually contain heteroatom groups (such as N,O,S),and their luminescence exhibits concentration-dependent,solid-state fluorescence,and excitation-dependent emission,belonging to typical clusterization-triggered emission (CTE) or clusteroluminescence(CL) [22,23].The classical through-bond conjugation theory is difficult to explain such non-conjugated luminescence molecules.In this case,CTE or CL has been widely recognized and concerned by researchers since it was proposed [14,24].However,owing to the inclusion of both n andπelectrons in the molecular structure,the intrinsic CL mechanism remains obscure,although it has been tentatively uncovered in previous works [10,12,25,26].Therefore,it is urgent to construct a class of typical luminescent model molecules with simple and well-defined structures to further clarify the CL mechanism.

    Fig.1.Structures and photographs of PMO,PVA and PBD taken in daylight,before and after ceasing the 365 nm UV irradiation.

    Phosphorescence is another aspect and channel to reveal the CL mechanism.But for spin-forbidden phosphorescence,the vibration and rotation of molecules and the effects of external conditions(such as oxygen and moisture) greatly limit the generation of phosphorescence,especially for RTP.Facilitating the singlet-to-triplet intersystem crossing (ISC) to populate the triplet and stabilizing the triplet excitons to inhibit the nonradiative transition pathways are key principles to achieve phosphorescence emission.The phenomenon of RTP has long been synonymous with metallic and inorganic complexes [27,28].Nonetheless,over the past few years,purely organic luminophores have gradually been endowed with long-lived RTP through precise molecular design.The main strategies to achieve its RTP are the introduction of heavy atoms (e.g.,halogens) [29],crystallization [30,31],and host-guest interactions[32].Among them,crystallization is an effective and commonly used approach to achieve RTP emission because it can induce intramolecular motion restriction to produce rigid molecular conformations,ultimately inhibiting nonradiative decay [10,25,33].However,the crystallinity of polymers tends to vary greatly depending on post-processing methods,which affects the emission intensity and lifetime of their RTPs,restricting their specific practical applications.Instead,hydrogen bonding (H-bonding) is a crystallizationlike strategy that can be readily constructed in amorphous polymers to achieve conformational rigidification.Also,many RTP systems also select polymers with multiple H-bonding as matrix,e.g.,polyvinyl alcohol (PVA) [34].However,developing amorphous RTP non-conjugated luminescent polymers (NCLPs) and revealing their luminescence mechanism remains a challenge.

    In this work,polymethylol (PMO) and poly(3-butene-1,2-diol)(PBD) with one hydroxyl group on each carbon atom in the backbone and side chain were designed and synthesized,and their luminescence properties were studied in detail to understand the CL mechanism.The extremely strong H-bonding of PMO and PBD induces the generation of oxygen clusters and through-space n-n interactions of oxygen atoms,which is the source of the strong fluorescence and long-lived RTP.Theoretical analysis shows that the distance among a large number of oxygen atoms ranges in 2.58-2.83 ?A,which is less than twice the van der Waals radius of oxygen atom (rB: 1.52 ?A;rP: 1.40 ?A).The existence of oxygen clusters and through-space n-n interactions are confirmed.The above results also fully demonstrate that even without crystallization andπelectrons,CL can be realized through the action of H-bonding.And if the H-bonding is strong enough,nonradiative decays can be suppressed to produce RTP.

    As a well-known polymer with a polyhydroxyl structure,PVA possesses one dissociative -OH group on every two carbon atoms in the backbone.In contrast to PVA,PMO and PBD have one -OH group on each carbon atom in the backbone and side chain (Fig.1),which makes it necessary to consider strong H-bonding in the study of photophysical properties.In order to synthesize PMO and PBD,poly(vinylene carbonate) (PVC) and poly(vinylethylene carbonate) (PVEC) were firstly prepared by the radical polymerization of vinylene carbonate and vinylethylene carbonate using 2,2′-azobisisobutyronitrile (AIBN) as a radical initiator,respectively (Schemes S1 and S2 in Supporting information) [35–37].The proton nuclear magnetic resonance spectroscopy (1H NMR)and gel permeation chromatography (GPC) data indicated that PVC and PVEC were successfully synthesized (Figs.S1-S4 in Supporting information).The number-averaged molecular weights (Mn)and polydispersity indexs (PDI) were 102.8 kg/mol,1.4 for PVC and 52.1 kg/mol,1.2 for PVEC,respectively.Then,PVC and PVEC were hydrolyzed in strong alkaline solution to obtain pure white PMO and PBD powers according to the reported literatures (Fig.1,Schemes S1 and S2) [38,39].Fourier transform infrared (FTIR) spectra show that the C=O stretching vibrations of the fivemembered cyclic carbonate of PVC and PVEC atca.1800 cm-1disappears completely,proving the successful synthesis of PMO and PBD (Figs.S5 and S6 in Supporting information).Also,compared with the sharp stretching vibration peak of free -OH group located at ~3600 cm-1,the broad and blue-shifted peak of -OH group indicates the presence of strong H-bonding interactions,which is further confirmed by theoretical calculation (see calculation section in Supporting information for detailed analysis).The glass transition temperatures (Tgs) of PMO and PBD reach 183.3°C and 113°C,respectively,indicating amorphous rather than crystalline states(Figs.S7 and S8 in Supporting information).However,owing to the extremely strong H-bonding,they cannot be dissolved in any solvent [40],which extremely limits the study of optical behaviors in solution.

    As shown in the structures of Fig.1,there are no other heteroatoms andπelectrons in PMO and PBD except oxygen atoms and n andσelectrons.Nonetheless,both PMO and PBD powders exhibited cyan-blue fluorescence and long-lived green RTP with a duration of 2.0 s,which belongs to the typical CL chromophores.To reveal the CL mechanism,PVA showing very weak fluorescence was chosen as a control owing to the similarity in molecule structure.The photoluminescence/phosphorescence quantum yield(QY/QYp) of PMO and PBD are 12.15%/5.32% and 12.11%/5.17%,(Figs.S9 and S10 in Supporting information) respectively,which are relatively respectable values in NCLPs with RTP,especially for some NCLP systems with only oxygen atoms [10,13,41,42].Considering that PMO and PBD have similar optical properties,here the PMO is taken as an example for detailed description.The pure white PMO powder shows distinct excitation-dependent photoluminescence (PL) properties (Fig.2a),similar to many of CL chromophores reported before [22,23,43].The spectra covered an emission band from 350 to 600 nm,with an emission peak of 438 nm excited by 360 nm (Fig.2a).The fluorescence lifetime measured at the emission peak of 438 nm was 3.95 ns (Fig.2b).Theoretically,there’s no fluorescence in PMO because there is no definite conjugation unit in the molecular structure of PMO based on the theory of throughbond conjugation [44].Although the presence of oxygen atoms results inn-σ*electronic transitions,the energy gap of the (n,σ*)transition is too high to emit visible light.For example,the energy gap of (n,σ*) transitions of methanol is around 6.7 eV [45],corresponding to light with a wavelength of 183 nm.Also,the transitions are related to the promotion of an electron from a nonbonding n orbital toσ*antibonding orbital,which are forbidden transitions and weak intensity.Therefore,the fluorescence of PMO does not originate from the (n,σ*) transition of oxygen atom.So,what is the origin of such unusual PL? Tang and Yuanet al.[22-24,46] proposed the CTE mechanism and through-space interaction (TSI) from isolated aromatic rings and heteroatoms with lonepair electrons can rationally reveal the PL origin of NCLPs.In this case,the only possibility is that the fluorescence originates from the through-space n-n interaction of oxygen.Owing to the overlap of n electrons of oxygen atoms in PMO,new orbitals with lower HOMO-LUMO gaps from oxygen clusters can be generated compared to single oxygen atoms,which can absorb and emit lowerenergy (longer-wavelength) light.Furthermore,differences in TSI degree lead to the emergence of different HOMO-LUMO gaps from diverse oxygen clusters,thus exhibiting excitation-dependent emission characteristics.Meanwhile,the green RTP emission with a maximum emission peak at 500 nm and a lifetime of 89.17 ms was observed (Figs.2c and d),which is comparable to some crystalline small molecules [47,48].Similar to the steady-state PL spectra,the phosphorescence spectra also show excitation-dependent emission in the range of 462–500 nm at excitation wavelengths from 300 to 360 nm (Figs.2e and f).This further confirms the existence of diverse oxygen clusters with different conjugation degrees.And the excitation-dependent emission provides an efficient method to realize multicolor fluorescence and RTP emission.

    Fig.2.(a) PL spectra of PMO at different excitation wavelengths in the solid state.(b) Luminescent decay curve of PMO in the solid state at 438 nm (λex=360 nm).(c)Time-resolved spectra of PMO at different delay times in the solid state (phosphorescence mode: λex=360 nm).(d) Phosphorescence decay curve of PMO in the solid state at 500 nm (λex=360 nm).(e) Time-resolved spectra of PMO at different excitation wavelengths in the solid state (delay time: 1 ms).(f) Normalized time-resolved spectra of PMO at different excitation wavelengths in the solid state.

    For such long-lived RTP emission,polymerization and extremely strong H-bonding play a key role.As reported in our previous work[49],polymerization is a very efficient method to achieve PL and RTP emission,namely polymerization-induced emission [50–52].When the degree of polymerization (DP) of the PMO is 1,2 or 3,i.e.,methanol,ethylene glycol,and glycerol,they emit no PL and RTP as we all known (Figs.S11-S13 in Supporting information).For erythritol,xylitol,D-mannitol/D-glucitol with DP of 4,5 and 6,respectively,they are all crystalline.As reported by Yuan and coworkers [10],crystalline xylitol shows weak blue fluorescence with a QY of 1.5% and an RTP,but not a long phosphorescence lifetime even at a low temperature of 77 K.This suggests that polymerization can induce stronger TSI than crystallization to boost PL and RTP to some extent.Therefore,for amorphous PMO,there must be a critical DP (CDP) to achieve CL.However,owing to the polydispersity of polymers,it is difficult to synthesize monodisperse PMO.Here,we can’t get the value of CDP experimentally,but it must exist.In fact,polymerization is only a prerequisite for the generation of oxygen clusters and TSI.Another factor that should be emphasized is H-bonding,which is the key to fluorescence and RTP,and the H-bonding strength must be strong enough.For example,for PVA with one less hydroxyl group in the building block,the very weak emission signal in the PL spectra and QY (Figs.S14 and S15 in Supporting information) is consistent with what we observed with the naked eye (Fig.1).To some extent,H-bonding strength can be reflected by solubility andTg.PVA is soluble in hot water and the highestTgcan reach up to 85 °C [53].Compared to insoluble PMO with aTgof 183.3°C,the H-bonding strength of PVA is much lower than that of PMO.Therefore,only strong Hbonding can induce the through-space n-n interactions of oxygen atoms and further orbital splitting to achieve PL emission.In addition,strong H-bonding promotes conformational rigidification and significantly blocks nonradiative deactivation channels,conferring long-lived RTP emission.Like many traditional chromophores or PL materials without RTP,RTP appears once they are diffused into PVA or other polymers with strong H-bonding [34,54].This work provides another avenue to understand the mechanism of PL and RTP.

    Fig.3.(a) PL spectra of PBD at different excitation wavelengths in the solid state.(b) Time-resolved spectra of PBD at different delay times in the solid state (phosphorescence mode: λex=360 nm).(c) Luminescent and (d) phosphorescence decay curves of PBD in the solid state at 438 and 510 nm (λex=360 nm).

    The similar optical properties were observed in PBD with neighboring hydroxyl groups in the side chain (Fig.3),confirming the significance of neighboring hydroxyl groups for fluorescence and RTP.As shown in Fig.3a,it also exhibits excitation-dependent PL emission and emits the same emission peak at 438 nm excited by 360 nm.The RTP peak position and lifetimes of fluorescence and phosphorescence are close to those of PMO (Figs.3bd).Therefore,whether the neighboring hydroxyl groups are located in the backbone or side chain has no obvious effect on their luminescent properties.The strong intra-/intermolecular H-bonding interactions of PBD also results in insolubility in most solvents.In other words,when monomers with adjacent hydroxyl groups are polymerized,strong H-bonding can induce physical crosslinking,exhibiting strong intra-/intermolecular interactions.It is further demonstrated the TSI between the oxygen atoms.

    Fig.4.Optimized conformations of (a) PMO,(b) PVA and (c) PBD based on single polymer chains with fourteen constitutional units at (DFT) B3LYP/6–31(d,p)level.Optimized conformations of (d) ethylene glycol and (e) 1,2-propanediol at(DFT) B3LYP/6–31(d,p) level.The red arrows represent the distance between oxygen atoms,and the green arrows represent the distance of H-bonding.

    To further fully confirm that the fluorescence and RTP originate from H-bonding induced through-space n-n interaction of oxygen atoms in oxygen clusters,the optimized conformations of PMO,PBD and PVA based on single polymer chains with fourteen constitutional units were calculated by density functional theory(DFT) at B3LYP/6–31(d,p) level (Figs.4a-c).Ethylene glycol and 1,2-propanediol,as repeating building blocks of PMO and PBD,were selected as controls and optimized at the same level (Figs.4d and e).Fig.4 shows that the presence of many short-range O···H in PMO and PBD,and some even below 1.72 ?A,indicating strong Hbonding interactions [55].Correspondingly,influenced by the Hbonding,intramolecular oxygen atoms aggregate to form oxygen clusters,and the distance between most of the oxygen atoms in PMO and PBD is 2.58-2.83 ?A (Figs.4a and c,Tables S1 and S2 in Supporting information),which is less than twice the van der Waals radius of the oxygen atom (dO) (rB: 1.52 ?A; rP: 1.40 ?A).But for PVA,only two short-range O···H exist at the bending site,and the rest are all larger than 4.00 ?A,far from the distance of Hbonding.This results in most of the oxygen atoms having a distance greater thandO(Fig.4b and Table S3 in Supporting information) and no oxygen clusters are produced.Furthermore,for ethylene glycol and 1,2-propanediol,the distance between adjacent hydroxyl groups is about 3.6 ?A (Figs.4d and e),which is much larger thandO.Indeed,no fluorescence was detected in ethylene glycol(Fig.S12) and 1,2-propanediol (Fig.S16 in Supporting information).The importance of polymerization for TSI is well demonstrated.The above results fully confirm that the fluorescence and RTP of PMO and PBD are ascribed to the through-space n-n interaction between oxygen atoms induced by the strong H-bonding.In this case,the overlap of electron clouds of oxygen atoms leads to the splitting and coupling of the orbitals and the generation of new molecular orbitals with smaller energy gaps for visible light emission (Fig.5).The resulting molecular orbitals correspond to the blue visible light of PMO and PBD.Owing to the difference in the distance between the oxygen atoms,the degree of electron cloud overlap and TSI is also different.As a consequence,it results in the generation of molecular orbitals with different energy gaps and the emergence of excitation-dependent PL and RTP emission.That is,the excitation-dependent PL and RTP emission are attributed to diverse oxygen clusters with different conjugated degrees,as detailed schematic diagram is shown in Fig.5.

    In summary,a novel class of amorphous polyols with fluorescence and long-lived RTP properties was prepared.Experimental results and theoretical calculations prove that the through-space n-n interaction of oxygen atoms is the fundamental cause of fluorescence and RTP.Results from controls (ethylene glycol,1,2-propanediol,and PVA) confirm that polymerization and H-bonding play key roles in the generation of oxygen clusters and TSI.The difficulty of studying the photophysical behavior of PMO and PBD in solution limits the in-depth understanding of through-space n-n interactions to a certain extent.Our ongoing efforts are to seek a soluble strong H-bonded NCLP and to develop NCLPs with better optical performance.This work not only provides a new strategy for the design and construction of fluorescence and RTP materials,but also sheds new light on the CL mechanism of NCLPs.

    Fig.5.A schematic diagram of TSI for PMO and PBD,and the orbital splitting induced by TSI,where EO is the energy gap of the oxygen and EOC is the energy gap of the oxygen cluster.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No.52003254),the Shanxi Scholarship Council of China (No.2020–051),the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD012),the Foundational Research Project of Shanxi Province (Nos.20210302123164,201901D211282,201901D211283),the Science Foundation of North University of China (No.XJJ201925) and the MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University (No.2021MSF01).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.07.027.

    制服丝袜大香蕉在线| 中文字幕久久专区| 网址你懂的国产日韩在线| 久久热精品热| 欧美精品国产亚洲| 久久午夜福利片| 国产69精品久久久久777片| 精品久久久久久久久久免费视频| 免费无遮挡裸体视频| 亚洲真实伦在线观看| 在线免费观看的www视频| 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| 久久久久精品国产欧美久久久| 特级一级黄色大片| 亚洲精品一区av在线观看| 欧美精品国产亚洲| 性色avwww在线观看| 免费看日本二区| 国产激情偷乱视频一区二区| 亚洲精品久久国产高清桃花| 国产精品永久免费网站| 成年版毛片免费区| 日韩精品有码人妻一区| 99国产精品一区二区蜜桃av| 色视频www国产| 成人欧美大片| 国产精品久久久久久久电影| 国产精品一及| 18禁裸乳无遮挡免费网站照片| 国产v大片淫在线免费观看| 成人精品一区二区免费| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区三区av在线 | 少妇人妻一区二区三区视频| 我要搜黄色片| 中出人妻视频一区二区| 国产精品乱码一区二三区的特点| 精品人妻1区二区| 长腿黑丝高跟| 午夜福利视频1000在线观看| 欧美高清性xxxxhd video| 欧美日韩国产亚洲二区| 亚洲av中文av极速乱 | 中文资源天堂在线| 2021天堂中文幕一二区在线观| 有码 亚洲区| 日本一二三区视频观看| 久久久久久久亚洲中文字幕| 夜夜看夜夜爽夜夜摸| 午夜a级毛片| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 午夜日韩欧美国产| 2021天堂中文幕一二区在线观| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 国产久久久一区二区三区| 不卡视频在线观看欧美| www日本黄色视频网| 黄色视频,在线免费观看| 简卡轻食公司| 国产精品野战在线观看| 亚洲av中文av极速乱 | 亚洲欧美日韩东京热| 免费看a级黄色片| 亚洲av日韩精品久久久久久密| 亚洲国产色片| 国产伦精品一区二区三区四那| 精品一区二区三区视频在线观看免费| 长腿黑丝高跟| 一本一本综合久久| 黄色欧美视频在线观看| 日韩欧美 国产精品| 美女黄网站色视频| 最近在线观看免费完整版| 国产 一区 欧美 日韩| 国语自产精品视频在线第100页| 18禁黄网站禁片免费观看直播| or卡值多少钱| 一进一出抽搐动态| 在线观看舔阴道视频| 一进一出抽搐gif免费好疼| 美女黄网站色视频| 国产精品一区www在线观看 | 少妇猛男粗大的猛烈进出视频 | 在线免费观看不下载黄p国产 | 亚洲七黄色美女视频| 啦啦啦啦在线视频资源| 成年版毛片免费区| 免费电影在线观看免费观看| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 精品人妻偷拍中文字幕| av在线天堂中文字幕| 99热6这里只有精品| 国产激情偷乱视频一区二区| 日韩精品青青久久久久久| 精品久久久久久久久av| 热99re8久久精品国产| 日韩一区二区视频免费看| 99久久久亚洲精品蜜臀av| 亚洲熟妇中文字幕五十中出| 俄罗斯特黄特色一大片| 国产伦人伦偷精品视频| 久久亚洲真实| 日韩欧美在线二视频| 黄色一级大片看看| 五月伊人婷婷丁香| 亚洲五月天丁香| 女的被弄到高潮叫床怎么办 | 午夜福利视频1000在线观看| 麻豆一二三区av精品| 亚洲专区国产一区二区| 成人国产一区最新在线观看| 亚洲成人中文字幕在线播放| 日日干狠狠操夜夜爽| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 久久精品夜夜夜夜夜久久蜜豆| 成人午夜高清在线视频| 99在线视频只有这里精品首页| 亚洲欧美激情综合另类| 又爽又黄a免费视频| 在线观看免费视频日本深夜| 色哟哟·www| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 国产av不卡久久| 国产成人aa在线观看| 午夜视频国产福利| 美女大奶头视频| 久久6这里有精品| 蜜桃久久精品国产亚洲av| 一级黄色大片毛片| 久久精品国产清高在天天线| 真人一进一出gif抽搐免费| 成人综合一区亚洲| 亚洲乱码一区二区免费版| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 夜夜看夜夜爽夜夜摸| 亚洲熟妇中文字幕五十中出| 少妇人妻精品综合一区二区 | 国产亚洲av嫩草精品影院| 久久人妻av系列| 一区二区三区激情视频| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 国产精品乱码一区二三区的特点| 美女高潮喷水抽搐中文字幕| 在线看三级毛片| 日韩国内少妇激情av| 搡老岳熟女国产| 日韩av在线大香蕉| 天堂网av新在线| 国产精品综合久久久久久久免费| 丰满乱子伦码专区| 校园春色视频在线观看| 国产女主播在线喷水免费视频网站 | 色哟哟·www| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 久久午夜亚洲精品久久| 老司机深夜福利视频在线观看| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| 免费av观看视频| 深夜a级毛片| 男女视频在线观看网站免费| 国产伦精品一区二区三区四那| 自拍偷自拍亚洲精品老妇| 亚洲aⅴ乱码一区二区在线播放| 级片在线观看| 欧美日本亚洲视频在线播放| 午夜老司机福利剧场| 中文字幕久久专区| 国产不卡一卡二| 99riav亚洲国产免费| 日韩大尺度精品在线看网址| 最好的美女福利视频网| 午夜免费激情av| 美女被艹到高潮喷水动态| 久久人人精品亚洲av| 嫩草影院入口| 国产精品人妻久久久久久| 美女大奶头视频| www.www免费av| 中文字幕久久专区| av在线观看视频网站免费| 午夜a级毛片| 久久久精品大字幕| 久久久久国产精品人妻aⅴ院| 在线观看av片永久免费下载| 我的女老师完整版在线观看| 亚洲狠狠婷婷综合久久图片| 最后的刺客免费高清国语| 欧美3d第一页| 中文字幕av在线有码专区| 日本-黄色视频高清免费观看| 精华霜和精华液先用哪个| 国产探花极品一区二区| 国产爱豆传媒在线观看| 国产91精品成人一区二区三区| 亚洲七黄色美女视频| 日韩 亚洲 欧美在线| 久久久久久久亚洲中文字幕| 婷婷精品国产亚洲av| www日本黄色视频网| 男女视频在线观看网站免费| 中文字幕人妻熟人妻熟丝袜美| 特级一级黄色大片| 国产精品综合久久久久久久免费| 亚洲成人中文字幕在线播放| 亚洲av日韩精品久久久久久密| 日韩欧美精品免费久久| 干丝袜人妻中文字幕| 国产成人a区在线观看| 国语自产精品视频在线第100页| 日日啪夜夜撸| 美女高潮喷水抽搐中文字幕| 一个人观看的视频www高清免费观看| 麻豆精品久久久久久蜜桃| 成人美女网站在线观看视频| 小说图片视频综合网站| 欧美性感艳星| 国产在视频线在精品| 在线观看av片永久免费下载| 亚洲精品影视一区二区三区av| 国产欧美日韩精品一区二区| 99久久精品热视频| 51国产日韩欧美| 婷婷亚洲欧美| 日日撸夜夜添| а√天堂www在线а√下载| 精品无人区乱码1区二区| 国产v大片淫在线免费观看| av专区在线播放| 不卡一级毛片| 2021天堂中文幕一二区在线观| 国产精品爽爽va在线观看网站| 午夜精品在线福利| 日韩欧美国产在线观看| 免费无遮挡裸体视频| 国产 一区精品| 乱人视频在线观看| 男人的好看免费观看在线视频| 国产久久久一区二区三区| 欧美精品啪啪一区二区三区| 日本五十路高清| 床上黄色一级片| 日韩 亚洲 欧美在线| 亚洲,欧美,日韩| 亚洲一级一片aⅴ在线观看| 桃色一区二区三区在线观看| 国产高清视频在线播放一区| 在线观看午夜福利视频| 欧美绝顶高潮抽搐喷水| 国产精品日韩av在线免费观看| 欧美另类亚洲清纯唯美| 99国产极品粉嫩在线观看| 97热精品久久久久久| 亚洲精华国产精华液的使用体验 | 老熟妇乱子伦视频在线观看| 成年女人永久免费观看视频| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄 | 日韩欧美精品v在线| 日韩高清综合在线| 欧美高清成人免费视频www| 久久久久久伊人网av| 国产亚洲欧美98| 国产熟女欧美一区二区| 免费人成视频x8x8入口观看| 免费人成视频x8x8入口观看| 国产午夜精品论理片| 免费电影在线观看免费观看| 亚洲人成网站在线播| 久久精品人妻少妇| 性色avwww在线观看| 国产精品亚洲美女久久久| 亚洲一级一片aⅴ在线观看| xxxwww97欧美| 国内少妇人妻偷人精品xxx网站| 久久亚洲真实| 国产探花极品一区二区| 精品久久国产蜜桃| 亚洲av成人精品一区久久| 成人三级黄色视频| 免费在线观看成人毛片| 成人av一区二区三区在线看| www.www免费av| 一个人看视频在线观看www免费| 免费高清视频大片| 精品日产1卡2卡| 日韩精品青青久久久久久| 性色avwww在线观看| 熟妇人妻久久中文字幕3abv| 综合色av麻豆| 99热精品在线国产| 高清日韩中文字幕在线| 亚洲精品乱码久久久v下载方式| 亚洲精品一区av在线观看| 在现免费观看毛片| 国产精品亚洲一级av第二区| 制服丝袜大香蕉在线| 99热精品在线国产| 97超视频在线观看视频| 亚洲不卡免费看| av天堂在线播放| 久久九九热精品免费| 白带黄色成豆腐渣| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av| 国产91精品成人一区二区三区| 国产精品久久久久久久久免| 免费看a级黄色片| 99在线视频只有这里精品首页| av天堂中文字幕网| 欧美在线一区亚洲| 内射极品少妇av片p| 国产成人福利小说| 成人综合一区亚洲| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式| 亚洲美女黄片视频| 99在线视频只有这里精品首页| 免费av不卡在线播放| 超碰av人人做人人爽久久| 99久久精品一区二区三区| 国产私拍福利视频在线观看| 久久久久久久久久久丰满 | 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 国内精品美女久久久久久| 国内精品一区二区在线观看| 97人妻精品一区二区三区麻豆| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| 亚洲va日本ⅴa欧美va伊人久久| 色噜噜av男人的天堂激情| 久久久久久久精品吃奶| 中文在线观看免费www的网站| 欧美日韩黄片免| АⅤ资源中文在线天堂| 亚洲av免费高清在线观看| 亚洲在线观看片| av中文乱码字幕在线| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 国产精品综合久久久久久久免费| 久久久国产成人免费| 精品不卡国产一区二区三区| 69人妻影院| 韩国av一区二区三区四区| 国产一区二区亚洲精品在线观看| 国产成人a区在线观看| 免费av毛片视频| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 久久精品国产亚洲网站| 国产精品久久久久久亚洲av鲁大| 51国产日韩欧美| 悠悠久久av| 国产亚洲精品久久久com| 在线观看66精品国产| 久久久久久久精品吃奶| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| 又黄又爽又免费观看的视频| 欧美zozozo另类| 日韩国内少妇激情av| 18禁在线播放成人免费| 国产伦一二天堂av在线观看| 深爱激情五月婷婷| 国产精品亚洲美女久久久| 噜噜噜噜噜久久久久久91| av专区在线播放| 少妇的逼好多水| 成人综合一区亚洲| 国产欧美日韩精品亚洲av| 国产高清三级在线| 88av欧美| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 国产 一区 欧美 日韩| 久久久久久伊人网av| 色尼玛亚洲综合影院| 一a级毛片在线观看| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av在线| 国产精品一区www在线观看 | 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 能在线免费观看的黄片| 国产精品一区二区性色av| 久久久久久久精品吃奶| 黄色欧美视频在线观看| 亚洲乱码一区二区免费版| 最近中文字幕高清免费大全6 | 12—13女人毛片做爰片一| 午夜精品在线福利| 日韩欧美 国产精品| 精品一区二区三区视频在线| 22中文网久久字幕| 三级毛片av免费| 97碰自拍视频| 久久99热6这里只有精品| 亚洲真实伦在线观看| xxxwww97欧美| 精品人妻视频免费看| 干丝袜人妻中文字幕| 精品久久久久久,| 亚洲一区高清亚洲精品| 欧美日本亚洲视频在线播放| 99久国产av精品| 欧美日韩精品成人综合77777| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| 精品午夜福利视频在线观看一区| 精品国产三级普通话版| 国产av一区在线观看免费| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| 国产精品一及| 淫妇啪啪啪对白视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av成人精品一区久久| 亚洲自偷自拍三级| 美女被艹到高潮喷水动态| 国国产精品蜜臀av免费| 久久久久久久久中文| 听说在线观看完整版免费高清| 91狼人影院| 免费大片18禁| 老熟妇乱子伦视频在线观看| www.www免费av| 免费观看在线日韩| 人妻少妇偷人精品九色| 此物有八面人人有两片| 成年免费大片在线观看| 亚洲精品日韩av片在线观看| 亚洲男人的天堂狠狠| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| 亚洲精品粉嫩美女一区| 亚洲成av人片在线播放无| 我要看日韩黄色一级片| 日本熟妇午夜| 毛片一级片免费看久久久久 | 国产黄色小视频在线观看| 内射极品少妇av片p| 69av精品久久久久久| 免费av不卡在线播放| 俺也久久电影网| 亚洲一区二区三区色噜噜| 国产淫片久久久久久久久| 一区二区三区高清视频在线| 无人区码免费观看不卡| 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 久久久久久伊人网av| 99热这里只有是精品50| 麻豆国产97在线/欧美| 18+在线观看网站| 免费观看人在逋| 婷婷亚洲欧美| 日本一二三区视频观看| 国产乱人视频| 国产精品伦人一区二区| 久久这里只有精品中国| 淫妇啪啪啪对白视频| 国产一区二区激情短视频| 人人妻人人看人人澡| 18禁在线播放成人免费| 免费无遮挡裸体视频| 久久久久九九精品影院| 国内少妇人妻偷人精品xxx网站| 韩国av在线不卡| 美女免费视频网站| 国内久久婷婷六月综合欲色啪| 美女高潮喷水抽搐中文字幕| 成人精品一区二区免费| 日本a在线网址| 精品福利观看| 在现免费观看毛片| 午夜福利在线在线| 一卡2卡三卡四卡精品乱码亚洲| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久免费视频| 久久久久久大精品| 亚洲欧美日韩东京热| 国产精品久久视频播放| 成年女人看的毛片在线观看| 99热6这里只有精品| 美女免费视频网站| 国产又黄又爽又无遮挡在线| 欧美日韩中文字幕国产精品一区二区三区| 日韩国内少妇激情av| videossex国产| 两个人的视频大全免费| 美女高潮的动态| 搡女人真爽免费视频火全软件 | 美女被艹到高潮喷水动态| av在线天堂中文字幕| 白带黄色成豆腐渣| 一本一本综合久久| 自拍偷自拍亚洲精品老妇| 蜜桃久久精品国产亚洲av| 亚洲自偷自拍三级| 中国美白少妇内射xxxbb| 亚洲国产精品成人综合色| 欧美人与善性xxx| 久久久精品欧美日韩精品| 国产精品野战在线观看| 精品午夜福利在线看| 亚洲不卡免费看| 婷婷色综合大香蕉| 亚洲男人的天堂狠狠| 国产成年人精品一区二区| 中文字幕av在线有码专区| 亚洲七黄色美女视频| 全区人妻精品视频| x7x7x7水蜜桃| 色噜噜av男人的天堂激情| 亚洲av成人精品一区久久| 国产一区二区三区在线臀色熟女| 亚洲色图av天堂| 午夜免费激情av| 国产三级中文精品| 亚洲久久久久久中文字幕| 国产男人的电影天堂91| 伦精品一区二区三区| 一区二区三区免费毛片| 中文字幕av成人在线电影| 特大巨黑吊av在线直播| 亚洲18禁久久av| 亚洲性久久影院| 久久久久国内视频| 男人舔奶头视频| 色av中文字幕| 亚洲自偷自拍三级| 成人永久免费在线观看视频| 亚洲精品久久国产高清桃花| 亚洲精品亚洲一区二区| 午夜福利成人在线免费观看| 亚洲av成人av| 免费看光身美女| 俺也久久电影网| 午夜福利在线在线| 久久精品国产亚洲av天美| 国产成人福利小说| 久久久久国产精品人妻aⅴ院| 午夜精品在线福利| 深夜a级毛片| 又黄又爽又刺激的免费视频.| 国产精品自产拍在线观看55亚洲| 亚洲色图av天堂| 久99久视频精品免费| 一级a爱片免费观看的视频| 99热这里只有是精品50| 亚洲av一区综合| 亚洲国产高清在线一区二区三| 97超级碰碰碰精品色视频在线观看| 男女做爰动态图高潮gif福利片| 啦啦啦观看免费观看视频高清| 在线观看美女被高潮喷水网站| 日韩中文字幕欧美一区二区| 国产亚洲欧美98| 久久中文看片网| 亚洲国产日韩欧美精品在线观看| www.www免费av| 精品人妻1区二区| 午夜久久久久精精品| 亚洲性夜色夜夜综合| av福利片在线观看| x7x7x7水蜜桃| 久久久久久久久大av| 在线播放无遮挡| 日韩欧美精品免费久久| 精品人妻1区二区| 午夜久久久久精精品| 极品教师在线免费播放| 小说图片视频综合网站| 麻豆精品久久久久久蜜桃| 国产私拍福利视频在线观看| 亚洲无线观看免费| 99久久精品国产国产毛片| 亚洲欧美日韩无卡精品| 亚洲欧美日韩高清在线视频| 狠狠狠狠99中文字幕| 国产高潮美女av| 亚洲久久久久久中文字幕| 色综合站精品国产| 婷婷精品国产亚洲av| x7x7x7水蜜桃| 国产91精品成人一区二区三区| av在线亚洲专区| 亚洲四区av| www日本黄色视频网| 美女被艹到高潮喷水动态| 夜夜爽天天搞| 久久欧美精品欧美久久欧美| 一本精品99久久精品77| 超碰av人人做人人爽久久| 欧美日韩黄片免| 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 波野结衣二区三区在线| 很黄的视频免费| 国产精品一及|