• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen bonding-induced oxygen clusters and long-lived room temperature phosphorescence from amorphous polyols

    2023-03-14 06:52:08LingWngKngChenHiRuLiBoChuZishnYnHoKeZhngBinLiuShenglingHuYongzhenYng
    Chinese Chemical Letters 2023年1期

    Y-Ling Wng,Kng Chen,Hi-Ru Li,Bo Chu,Zishn Yn,Ho-Ke Zhng,Bin Liu,*,Shengling Hu,Yongzhen Yng,d,*

    a School of Energy and Power Engineering,North University of China,Taiyuan 030051,China

    b MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, China

    c Department of Polymer Science and Engineering,MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University, Hangzhou 310027, China

    d Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,Taiyuan 030032,China

    Keywords:Clusteroluminescence Through-space interactions Polymethylol Poly(3-butene-1,2-diol)Hydrogen bonding Polymerization

    ABSTRACT Developing non-conjugated luminescent polymers (NCLPs) with fluorescence and long-lived roomtemperature phosphorescence is of great significance for revealing the essence of NCLPs luminescence,which has gradually attracted the attention of researchers in recent years.Herein,polymethylol (PMO)and poly(3-butene-1,2-diol) (PBD) with polyhydroxy structures were prepared and their luminescence behaviors were investigated to reveal the clusteroluminescence (CL) mechanism.Compared with polyvinyl alcohol with non-luminescent behavior,PMO and PBD exhibit cyan-blue fluorescence with quantum yields of ca. 12% and green room-temperature phosphorescence with lifetimes of ca. 89 ms in the solid state.Both fluorescence and phosphorescence exhibit typical excitation-dependent CL behavior.Experimental and theoretical analyses show that the strong hydrogen-bonding interaction of PMO and PBD greatly promotes the formation of oxygen clusters and the through-space n-n interaction of oxygen atoms,enabling fluorescence and phosphorescence emission.Our results have enormous implications for understanding the CL mechanism of NCLPs and provide a new polymer design strategy for the rational design of novel NCLPs materials.

    Light is an essential factor for human survival,health,and development.Thereinto,fluorescence and phosphorescence play a vital role in optoelectronic devices [1],chemo-/bioprobes [2,3],biological imaging [4,5],and other fields [6,7].Conventional wisdom holds that chromophores with well-defined large conjugated groups are required to achieve fluorescence or/and phosphorescence emission [8,9].However,in recent years,numerous studies have found that many natural and synthetic polymers or small molecules,in the absence of well-defined chromophores or conjugated structures,also exhibit fluorescence or/and even room temperature phosphorescence (RTP),such as polyether [10],polyester[11,12],natural products [13],poly(maleic anhydride) derivatives[14–17],tertiary amine derivatives [18,19],poly(hydroxyurethane)[20] and polysiloxane [21].The structures of these molecules usually contain heteroatom groups (such as N,O,S),and their luminescence exhibits concentration-dependent,solid-state fluorescence,and excitation-dependent emission,belonging to typical clusterization-triggered emission (CTE) or clusteroluminescence(CL) [22,23].The classical through-bond conjugation theory is difficult to explain such non-conjugated luminescence molecules.In this case,CTE or CL has been widely recognized and concerned by researchers since it was proposed [14,24].However,owing to the inclusion of both n andπelectrons in the molecular structure,the intrinsic CL mechanism remains obscure,although it has been tentatively uncovered in previous works [10,12,25,26].Therefore,it is urgent to construct a class of typical luminescent model molecules with simple and well-defined structures to further clarify the CL mechanism.

    Fig.1.Structures and photographs of PMO,PVA and PBD taken in daylight,before and after ceasing the 365 nm UV irradiation.

    Phosphorescence is another aspect and channel to reveal the CL mechanism.But for spin-forbidden phosphorescence,the vibration and rotation of molecules and the effects of external conditions(such as oxygen and moisture) greatly limit the generation of phosphorescence,especially for RTP.Facilitating the singlet-to-triplet intersystem crossing (ISC) to populate the triplet and stabilizing the triplet excitons to inhibit the nonradiative transition pathways are key principles to achieve phosphorescence emission.The phenomenon of RTP has long been synonymous with metallic and inorganic complexes [27,28].Nonetheless,over the past few years,purely organic luminophores have gradually been endowed with long-lived RTP through precise molecular design.The main strategies to achieve its RTP are the introduction of heavy atoms (e.g.,halogens) [29],crystallization [30,31],and host-guest interactions[32].Among them,crystallization is an effective and commonly used approach to achieve RTP emission because it can induce intramolecular motion restriction to produce rigid molecular conformations,ultimately inhibiting nonradiative decay [10,25,33].However,the crystallinity of polymers tends to vary greatly depending on post-processing methods,which affects the emission intensity and lifetime of their RTPs,restricting their specific practical applications.Instead,hydrogen bonding (H-bonding) is a crystallizationlike strategy that can be readily constructed in amorphous polymers to achieve conformational rigidification.Also,many RTP systems also select polymers with multiple H-bonding as matrix,e.g.,polyvinyl alcohol (PVA) [34].However,developing amorphous RTP non-conjugated luminescent polymers (NCLPs) and revealing their luminescence mechanism remains a challenge.

    In this work,polymethylol (PMO) and poly(3-butene-1,2-diol)(PBD) with one hydroxyl group on each carbon atom in the backbone and side chain were designed and synthesized,and their luminescence properties were studied in detail to understand the CL mechanism.The extremely strong H-bonding of PMO and PBD induces the generation of oxygen clusters and through-space n-n interactions of oxygen atoms,which is the source of the strong fluorescence and long-lived RTP.Theoretical analysis shows that the distance among a large number of oxygen atoms ranges in 2.58-2.83 ?A,which is less than twice the van der Waals radius of oxygen atom (rB: 1.52 ?A;rP: 1.40 ?A).The existence of oxygen clusters and through-space n-n interactions are confirmed.The above results also fully demonstrate that even without crystallization andπelectrons,CL can be realized through the action of H-bonding.And if the H-bonding is strong enough,nonradiative decays can be suppressed to produce RTP.

    As a well-known polymer with a polyhydroxyl structure,PVA possesses one dissociative -OH group on every two carbon atoms in the backbone.In contrast to PVA,PMO and PBD have one -OH group on each carbon atom in the backbone and side chain (Fig.1),which makes it necessary to consider strong H-bonding in the study of photophysical properties.In order to synthesize PMO and PBD,poly(vinylene carbonate) (PVC) and poly(vinylethylene carbonate) (PVEC) were firstly prepared by the radical polymerization of vinylene carbonate and vinylethylene carbonate using 2,2′-azobisisobutyronitrile (AIBN) as a radical initiator,respectively (Schemes S1 and S2 in Supporting information) [35–37].The proton nuclear magnetic resonance spectroscopy (1H NMR)and gel permeation chromatography (GPC) data indicated that PVC and PVEC were successfully synthesized (Figs.S1-S4 in Supporting information).The number-averaged molecular weights (Mn)and polydispersity indexs (PDI) were 102.8 kg/mol,1.4 for PVC and 52.1 kg/mol,1.2 for PVEC,respectively.Then,PVC and PVEC were hydrolyzed in strong alkaline solution to obtain pure white PMO and PBD powers according to the reported literatures (Fig.1,Schemes S1 and S2) [38,39].Fourier transform infrared (FTIR) spectra show that the C=O stretching vibrations of the fivemembered cyclic carbonate of PVC and PVEC atca.1800 cm-1disappears completely,proving the successful synthesis of PMO and PBD (Figs.S5 and S6 in Supporting information).Also,compared with the sharp stretching vibration peak of free -OH group located at ~3600 cm-1,the broad and blue-shifted peak of -OH group indicates the presence of strong H-bonding interactions,which is further confirmed by theoretical calculation (see calculation section in Supporting information for detailed analysis).The glass transition temperatures (Tgs) of PMO and PBD reach 183.3°C and 113°C,respectively,indicating amorphous rather than crystalline states(Figs.S7 and S8 in Supporting information).However,owing to the extremely strong H-bonding,they cannot be dissolved in any solvent [40],which extremely limits the study of optical behaviors in solution.

    As shown in the structures of Fig.1,there are no other heteroatoms andπelectrons in PMO and PBD except oxygen atoms and n andσelectrons.Nonetheless,both PMO and PBD powders exhibited cyan-blue fluorescence and long-lived green RTP with a duration of 2.0 s,which belongs to the typical CL chromophores.To reveal the CL mechanism,PVA showing very weak fluorescence was chosen as a control owing to the similarity in molecule structure.The photoluminescence/phosphorescence quantum yield(QY/QYp) of PMO and PBD are 12.15%/5.32% and 12.11%/5.17%,(Figs.S9 and S10 in Supporting information) respectively,which are relatively respectable values in NCLPs with RTP,especially for some NCLP systems with only oxygen atoms [10,13,41,42].Considering that PMO and PBD have similar optical properties,here the PMO is taken as an example for detailed description.The pure white PMO powder shows distinct excitation-dependent photoluminescence (PL) properties (Fig.2a),similar to many of CL chromophores reported before [22,23,43].The spectra covered an emission band from 350 to 600 nm,with an emission peak of 438 nm excited by 360 nm (Fig.2a).The fluorescence lifetime measured at the emission peak of 438 nm was 3.95 ns (Fig.2b).Theoretically,there’s no fluorescence in PMO because there is no definite conjugation unit in the molecular structure of PMO based on the theory of throughbond conjugation [44].Although the presence of oxygen atoms results inn-σ*electronic transitions,the energy gap of the (n,σ*)transition is too high to emit visible light.For example,the energy gap of (n,σ*) transitions of methanol is around 6.7 eV [45],corresponding to light with a wavelength of 183 nm.Also,the transitions are related to the promotion of an electron from a nonbonding n orbital toσ*antibonding orbital,which are forbidden transitions and weak intensity.Therefore,the fluorescence of PMO does not originate from the (n,σ*) transition of oxygen atom.So,what is the origin of such unusual PL? Tang and Yuanet al.[22-24,46] proposed the CTE mechanism and through-space interaction (TSI) from isolated aromatic rings and heteroatoms with lonepair electrons can rationally reveal the PL origin of NCLPs.In this case,the only possibility is that the fluorescence originates from the through-space n-n interaction of oxygen.Owing to the overlap of n electrons of oxygen atoms in PMO,new orbitals with lower HOMO-LUMO gaps from oxygen clusters can be generated compared to single oxygen atoms,which can absorb and emit lowerenergy (longer-wavelength) light.Furthermore,differences in TSI degree lead to the emergence of different HOMO-LUMO gaps from diverse oxygen clusters,thus exhibiting excitation-dependent emission characteristics.Meanwhile,the green RTP emission with a maximum emission peak at 500 nm and a lifetime of 89.17 ms was observed (Figs.2c and d),which is comparable to some crystalline small molecules [47,48].Similar to the steady-state PL spectra,the phosphorescence spectra also show excitation-dependent emission in the range of 462–500 nm at excitation wavelengths from 300 to 360 nm (Figs.2e and f).This further confirms the existence of diverse oxygen clusters with different conjugation degrees.And the excitation-dependent emission provides an efficient method to realize multicolor fluorescence and RTP emission.

    Fig.2.(a) PL spectra of PMO at different excitation wavelengths in the solid state.(b) Luminescent decay curve of PMO in the solid state at 438 nm (λex=360 nm).(c)Time-resolved spectra of PMO at different delay times in the solid state (phosphorescence mode: λex=360 nm).(d) Phosphorescence decay curve of PMO in the solid state at 500 nm (λex=360 nm).(e) Time-resolved spectra of PMO at different excitation wavelengths in the solid state (delay time: 1 ms).(f) Normalized time-resolved spectra of PMO at different excitation wavelengths in the solid state.

    For such long-lived RTP emission,polymerization and extremely strong H-bonding play a key role.As reported in our previous work[49],polymerization is a very efficient method to achieve PL and RTP emission,namely polymerization-induced emission [50–52].When the degree of polymerization (DP) of the PMO is 1,2 or 3,i.e.,methanol,ethylene glycol,and glycerol,they emit no PL and RTP as we all known (Figs.S11-S13 in Supporting information).For erythritol,xylitol,D-mannitol/D-glucitol with DP of 4,5 and 6,respectively,they are all crystalline.As reported by Yuan and coworkers [10],crystalline xylitol shows weak blue fluorescence with a QY of 1.5% and an RTP,but not a long phosphorescence lifetime even at a low temperature of 77 K.This suggests that polymerization can induce stronger TSI than crystallization to boost PL and RTP to some extent.Therefore,for amorphous PMO,there must be a critical DP (CDP) to achieve CL.However,owing to the polydispersity of polymers,it is difficult to synthesize monodisperse PMO.Here,we can’t get the value of CDP experimentally,but it must exist.In fact,polymerization is only a prerequisite for the generation of oxygen clusters and TSI.Another factor that should be emphasized is H-bonding,which is the key to fluorescence and RTP,and the H-bonding strength must be strong enough.For example,for PVA with one less hydroxyl group in the building block,the very weak emission signal in the PL spectra and QY (Figs.S14 and S15 in Supporting information) is consistent with what we observed with the naked eye (Fig.1).To some extent,H-bonding strength can be reflected by solubility andTg.PVA is soluble in hot water and the highestTgcan reach up to 85 °C [53].Compared to insoluble PMO with aTgof 183.3°C,the H-bonding strength of PVA is much lower than that of PMO.Therefore,only strong Hbonding can induce the through-space n-n interactions of oxygen atoms and further orbital splitting to achieve PL emission.In addition,strong H-bonding promotes conformational rigidification and significantly blocks nonradiative deactivation channels,conferring long-lived RTP emission.Like many traditional chromophores or PL materials without RTP,RTP appears once they are diffused into PVA or other polymers with strong H-bonding [34,54].This work provides another avenue to understand the mechanism of PL and RTP.

    Fig.3.(a) PL spectra of PBD at different excitation wavelengths in the solid state.(b) Time-resolved spectra of PBD at different delay times in the solid state (phosphorescence mode: λex=360 nm).(c) Luminescent and (d) phosphorescence decay curves of PBD in the solid state at 438 and 510 nm (λex=360 nm).

    The similar optical properties were observed in PBD with neighboring hydroxyl groups in the side chain (Fig.3),confirming the significance of neighboring hydroxyl groups for fluorescence and RTP.As shown in Fig.3a,it also exhibits excitation-dependent PL emission and emits the same emission peak at 438 nm excited by 360 nm.The RTP peak position and lifetimes of fluorescence and phosphorescence are close to those of PMO (Figs.3bd).Therefore,whether the neighboring hydroxyl groups are located in the backbone or side chain has no obvious effect on their luminescent properties.The strong intra-/intermolecular H-bonding interactions of PBD also results in insolubility in most solvents.In other words,when monomers with adjacent hydroxyl groups are polymerized,strong H-bonding can induce physical crosslinking,exhibiting strong intra-/intermolecular interactions.It is further demonstrated the TSI between the oxygen atoms.

    Fig.4.Optimized conformations of (a) PMO,(b) PVA and (c) PBD based on single polymer chains with fourteen constitutional units at (DFT) B3LYP/6–31(d,p)level.Optimized conformations of (d) ethylene glycol and (e) 1,2-propanediol at(DFT) B3LYP/6–31(d,p) level.The red arrows represent the distance between oxygen atoms,and the green arrows represent the distance of H-bonding.

    To further fully confirm that the fluorescence and RTP originate from H-bonding induced through-space n-n interaction of oxygen atoms in oxygen clusters,the optimized conformations of PMO,PBD and PVA based on single polymer chains with fourteen constitutional units were calculated by density functional theory(DFT) at B3LYP/6–31(d,p) level (Figs.4a-c).Ethylene glycol and 1,2-propanediol,as repeating building blocks of PMO and PBD,were selected as controls and optimized at the same level (Figs.4d and e).Fig.4 shows that the presence of many short-range O···H in PMO and PBD,and some even below 1.72 ?A,indicating strong Hbonding interactions [55].Correspondingly,influenced by the Hbonding,intramolecular oxygen atoms aggregate to form oxygen clusters,and the distance between most of the oxygen atoms in PMO and PBD is 2.58-2.83 ?A (Figs.4a and c,Tables S1 and S2 in Supporting information),which is less than twice the van der Waals radius of the oxygen atom (dO) (rB: 1.52 ?A; rP: 1.40 ?A).But for PVA,only two short-range O···H exist at the bending site,and the rest are all larger than 4.00 ?A,far from the distance of Hbonding.This results in most of the oxygen atoms having a distance greater thandO(Fig.4b and Table S3 in Supporting information) and no oxygen clusters are produced.Furthermore,for ethylene glycol and 1,2-propanediol,the distance between adjacent hydroxyl groups is about 3.6 ?A (Figs.4d and e),which is much larger thandO.Indeed,no fluorescence was detected in ethylene glycol(Fig.S12) and 1,2-propanediol (Fig.S16 in Supporting information).The importance of polymerization for TSI is well demonstrated.The above results fully confirm that the fluorescence and RTP of PMO and PBD are ascribed to the through-space n-n interaction between oxygen atoms induced by the strong H-bonding.In this case,the overlap of electron clouds of oxygen atoms leads to the splitting and coupling of the orbitals and the generation of new molecular orbitals with smaller energy gaps for visible light emission (Fig.5).The resulting molecular orbitals correspond to the blue visible light of PMO and PBD.Owing to the difference in the distance between the oxygen atoms,the degree of electron cloud overlap and TSI is also different.As a consequence,it results in the generation of molecular orbitals with different energy gaps and the emergence of excitation-dependent PL and RTP emission.That is,the excitation-dependent PL and RTP emission are attributed to diverse oxygen clusters with different conjugated degrees,as detailed schematic diagram is shown in Fig.5.

    In summary,a novel class of amorphous polyols with fluorescence and long-lived RTP properties was prepared.Experimental results and theoretical calculations prove that the through-space n-n interaction of oxygen atoms is the fundamental cause of fluorescence and RTP.Results from controls (ethylene glycol,1,2-propanediol,and PVA) confirm that polymerization and H-bonding play key roles in the generation of oxygen clusters and TSI.The difficulty of studying the photophysical behavior of PMO and PBD in solution limits the in-depth understanding of through-space n-n interactions to a certain extent.Our ongoing efforts are to seek a soluble strong H-bonded NCLP and to develop NCLPs with better optical performance.This work not only provides a new strategy for the design and construction of fluorescence and RTP materials,but also sheds new light on the CL mechanism of NCLPs.

    Fig.5.A schematic diagram of TSI for PMO and PBD,and the orbital splitting induced by TSI,where EO is the energy gap of the oxygen and EOC is the energy gap of the oxygen cluster.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No.52003254),the Shanxi Scholarship Council of China (No.2020–051),the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD012),the Foundational Research Project of Shanxi Province (Nos.20210302123164,201901D211282,201901D211283),the Science Foundation of North University of China (No.XJJ201925) and the MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University (No.2021MSF01).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.07.027.

    色吧在线观看| 天天躁夜夜躁狠狠久久av| 人人妻人人看人人澡| 中文资源天堂在线| 80岁老熟妇乱子伦牲交| 成人一区二区视频在线观看| 在线观看人妻少妇| 全区人妻精品视频| 在现免费观看毛片| 国产黄片视频在线免费观看| 免费大片18禁| 亚洲色图综合在线观看| 丰满少妇做爰视频| 色视频在线一区二区三区| 丰满迷人的少妇在线观看| 爱豆传媒免费全集在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 全区人妻精品视频| 欧美精品人与动牲交sv欧美| 午夜福利在线观看免费完整高清在| 波野结衣二区三区在线| 久久久欧美国产精品| 内射极品少妇av片p| 少妇高潮的动态图| 交换朋友夫妻互换小说| 国产午夜精品久久久久久一区二区三区| 99久久精品热视频| 亚洲美女视频黄频| 午夜激情久久久久久久| 男女边吃奶边做爰视频| 天美传媒精品一区二区| 亚洲国产最新在线播放| 国产美女午夜福利| 蜜桃久久精品国产亚洲av| 精品人妻一区二区三区麻豆| 80岁老熟妇乱子伦牲交| 国产精品.久久久| 亚洲欧美精品自产自拍| 国产极品天堂在线| av国产免费在线观看| 欧美精品一区二区免费开放| 黄片无遮挡物在线观看| av在线蜜桃| 男女免费视频国产| 亚洲av国产av综合av卡| 日本wwww免费看| 久久国产乱子免费精品| 色婷婷av一区二区三区视频| 国产综合精华液| 久久国内精品自在自线图片| 国产精品伦人一区二区| 国产大屁股一区二区在线视频| 久久毛片免费看一区二区三区| 久久鲁丝午夜福利片| 制服丝袜香蕉在线| 免费观看a级毛片全部| 亚洲国产精品专区欧美| 黄片wwwwww| 欧美bdsm另类| 国产高清国产精品国产三级 | 啦啦啦啦在线视频资源| 在线 av 中文字幕| 天天躁日日操中文字幕| av在线播放精品| 国精品久久久久久国模美| 亚洲综合精品二区| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 观看免费一级毛片| 精品视频人人做人人爽| 黄色配什么色好看| 成人免费观看视频高清| 久久热精品热| 日本午夜av视频| 欧美日韩综合久久久久久| 国产在线男女| 久久毛片免费看一区二区三区| 日日啪夜夜爽| 少妇的逼水好多| 女人久久www免费人成看片| 成人毛片60女人毛片免费| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看人妻少妇| 国产女主播在线喷水免费视频网站| 大码成人一级视频| 久久久久网色| 日日摸夜夜添夜夜添av毛片| 日韩不卡一区二区三区视频在线| 久久久色成人| 久久亚洲国产成人精品v| 少妇人妻一区二区三区视频| 毛片一级片免费看久久久久| 日本欧美视频一区| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 亚洲av综合色区一区| 国产在线视频一区二区| 最黄视频免费看| 亚洲婷婷狠狠爱综合网| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 亚洲自偷自拍三级| 麻豆精品久久久久久蜜桃| 欧美+日韩+精品| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久| 国产成人精品一,二区| 99视频精品全部免费 在线| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 青春草视频在线免费观看| 久久精品人妻少妇| 天堂8中文在线网| 91精品国产九色| 亚洲中文av在线| 久久99热6这里只有精品| 80岁老熟妇乱子伦牲交| 久久久久精品久久久久真实原创| 精品久久久精品久久久| 久久这里有精品视频免费| freevideosex欧美| 嫩草影院入口| 精品一区二区三卡| 国产黄频视频在线观看| 一二三四中文在线观看免费高清| 在线观看一区二区三区激情| 中文欧美无线码| 一区二区三区四区激情视频| 久久精品国产a三级三级三级| 老司机影院毛片| 爱豆传媒免费全集在线观看| 成年免费大片在线观看| 国产精品.久久久| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 黄色配什么色好看| 国产精品免费大片| 香蕉精品网在线| 国产精品一区二区在线观看99| 精品午夜福利在线看| 简卡轻食公司| 亚洲色图av天堂| 色吧在线观看| 国产成人aa在线观看| kizo精华| 精品久久久久久久久亚洲| 美女内射精品一级片tv| 国产精品人妻久久久久久| 在线观看免费日韩欧美大片 | 在线观看国产h片| 男人狂女人下面高潮的视频| 女人久久www免费人成看片| 精品一区二区免费观看| 97精品久久久久久久久久精品| 亚洲性久久影院| 在线观看一区二区三区| 在线免费十八禁| 在线精品无人区一区二区三 | 亚洲三级黄色毛片| 免费观看a级毛片全部| 午夜老司机福利剧场| 99久久精品一区二区三区| 街头女战士在线观看网站| 啦啦啦中文免费视频观看日本| 国产大屁股一区二区在线视频| 日韩人妻高清精品专区| 美女内射精品一级片tv| 18+在线观看网站| 国产 一区精品| 久久韩国三级中文字幕| 亚洲av中文字字幕乱码综合| 亚洲综合色惰| 国产69精品久久久久777片| h日本视频在线播放| 亚洲精品色激情综合| 亚洲精品第二区| 亚洲在久久综合| 精品久久久久久电影网| 麻豆乱淫一区二区| 女性生殖器流出的白浆| 噜噜噜噜噜久久久久久91| 嘟嘟电影网在线观看| 久久久久久久久久久免费av| 亚洲精品日韩在线中文字幕| 午夜福利视频精品| 伊人久久国产一区二区| 日韩一本色道免费dvd| 亚洲精品久久午夜乱码| 精品一品国产午夜福利视频| 视频区图区小说| 在线 av 中文字幕| 波野结衣二区三区在线| 视频中文字幕在线观看| videos熟女内射| 午夜福利在线在线| 一本一本综合久久| 成人亚洲精品一区在线观看 | 丝袜喷水一区| 欧美日韩视频精品一区| 亚洲综合精品二区| 欧美激情极品国产一区二区三区 | 久久久久久久久久成人| 亚洲精品色激情综合| 久久久色成人| 亚洲第一av免费看| 国产淫语在线视频| 好男人视频免费观看在线| 成人二区视频| 日韩国内少妇激情av| 26uuu在线亚洲综合色| 亚洲婷婷狠狠爱综合网| 在线观看人妻少妇| 精品国产露脸久久av麻豆| 各种免费的搞黄视频| 亚洲综合精品二区| 精品人妻一区二区三区麻豆| 交换朋友夫妻互换小说| 日韩成人av中文字幕在线观看| 国产69精品久久久久777片| 插逼视频在线观看| 精品国产三级普通话版| 久久久久久久精品精品| 在线免费观看不下载黄p国产| 国产色婷婷99| av在线蜜桃| 美女主播在线视频| 精品一区在线观看国产| 亚洲成人手机| 久久久久国产精品人妻一区二区| 新久久久久国产一级毛片| 日日摸夜夜添夜夜添av毛片| 这个男人来自地球电影免费观看 | 亚洲欧美清纯卡通| 99热这里只有精品一区| 国产精品.久久久| 我的女老师完整版在线观看| 干丝袜人妻中文字幕| 国产av码专区亚洲av| 国产成人免费观看mmmm| 人妻系列 视频| 久久国产精品大桥未久av | 偷拍熟女少妇极品色| 亚洲精品456在线播放app| 精品国产露脸久久av麻豆| 天堂8中文在线网| 青春草视频在线免费观看| 免费播放大片免费观看视频在线观看| 免费看av在线观看网站| 婷婷色麻豆天堂久久| 日韩欧美精品免费久久| 三级经典国产精品| 一级毛片久久久久久久久女| 久热这里只有精品99| 亚洲国产av新网站| 欧美极品一区二区三区四区| av播播在线观看一区| 精品一区二区三区视频在线| 夜夜看夜夜爽夜夜摸| 观看美女的网站| 午夜免费观看性视频| 草草在线视频免费看| 少妇人妻精品综合一区二区| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 国产成人一区二区在线| 国产高清国产精品国产三级 | 国产高清国产精品国产三级 | 青春草亚洲视频在线观看| 蜜桃亚洲精品一区二区三区| 在线观看av片永久免费下载| 国产老妇伦熟女老妇高清| 色综合色国产| 校园人妻丝袜中文字幕| 91狼人影院| 男女边吃奶边做爰视频| 精品视频人人做人人爽| 亚州av有码| 欧美极品一区二区三区四区| 亚洲天堂av无毛| 国产成人aa在线观看| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 青春草视频在线免费观看| 亚洲综合色惰| 日日啪夜夜爽| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 久久精品人妻少妇| av女优亚洲男人天堂| av天堂中文字幕网| 卡戴珊不雅视频在线播放| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 国产精品久久久久久久久免| 久久国产乱子免费精品| 一级av片app| 男的添女的下面高潮视频| 亚洲国产最新在线播放| 网址你懂的国产日韩在线| 久久久久人妻精品一区果冻| 亚洲av中文字字幕乱码综合| 男女边吃奶边做爰视频| 一级毛片电影观看| 青春草国产在线视频| 欧美xxⅹ黑人| 97热精品久久久久久| 国产探花极品一区二区| 美女xxoo啪啪120秒动态图| 亚洲av成人精品一区久久| 成人黄色视频免费在线看| 久久久久国产精品人妻一区二区| 成人毛片60女人毛片免费| 亚洲精品国产av成人精品| 伊人久久精品亚洲午夜| 少妇裸体淫交视频免费看高清| 国产成人午夜福利电影在线观看| 亚洲精品国产色婷婷电影| 国产免费又黄又爽又色| 亚州av有码| 精品人妻一区二区三区麻豆| 日日撸夜夜添| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| av免费观看日本| 国产精品国产三级国产专区5o| 亚洲精品aⅴ在线观看| 一级毛片我不卡| 少妇高潮的动态图| 久久 成人 亚洲| 久久鲁丝午夜福利片| 超碰av人人做人人爽久久| 97超碰精品成人国产| 一边亲一边摸免费视频| 日韩电影二区| 久久久国产一区二区| 老师上课跳d突然被开到最大视频| 少妇丰满av| 如何舔出高潮| 欧美日韩精品成人综合77777| 超碰97精品在线观看| 国产黄色免费在线视频| a级毛色黄片| 日日啪夜夜撸| 国产乱来视频区| 日韩av不卡免费在线播放| 色婷婷久久久亚洲欧美| 大话2 男鬼变身卡| 人妻少妇偷人精品九色| 91午夜精品亚洲一区二区三区| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 久久99蜜桃精品久久| a级毛色黄片| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 精品久久久久久久久亚洲| 极品教师在线视频| 久久精品国产自在天天线| 91精品国产九色| 免费观看a级毛片全部| 亚洲精品456在线播放app| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合| 久久精品国产自在天天线| 欧美日韩亚洲高清精品| 日韩精品有码人妻一区| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 亚洲国产毛片av蜜桃av| 有码 亚洲区| 男女无遮挡免费网站观看| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看 | 丝袜脚勾引网站| 1000部很黄的大片| 水蜜桃什么品种好| av在线观看视频网站免费| 久久精品久久久久久久性| 欧美日韩在线观看h| 水蜜桃什么品种好| 久久女婷五月综合色啪小说| 18禁在线播放成人免费| 80岁老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 51国产日韩欧美| 久久女婷五月综合色啪小说| av国产久精品久网站免费入址| 亚洲中文av在线| 99久久综合免费| 波野结衣二区三区在线| 国产亚洲精品久久久com| 免费观看在线日韩| 简卡轻食公司| 国产精品福利在线免费观看| 欧美 日韩 精品 国产| 精品久久久久久久久亚洲| 国产91av在线免费观看| 色吧在线观看| h视频一区二区三区| 亚洲精品国产色婷婷电影| 欧美日本视频| 最近中文字幕高清免费大全6| 国产在线免费精品| 国模一区二区三区四区视频| 久久人妻熟女aⅴ| 一本一本综合久久| 国产黄色免费在线视频| 欧美 日韩 精品 国产| 精品国产三级普通话版| 又黄又爽又刺激的免费视频.| 国产亚洲91精品色在线| 日韩在线高清观看一区二区三区| 午夜免费鲁丝| 女性生殖器流出的白浆| 99久久精品国产国产毛片| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 国产精品福利在线免费观看| 久久久久久人妻| 我的女老师完整版在线观看| 精品一品国产午夜福利视频| 久久人人爽av亚洲精品天堂 | 欧美日韩视频高清一区二区三区二| 人妻制服诱惑在线中文字幕| 亚洲成人手机| 身体一侧抽搐| 国产乱来视频区| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 免费不卡的大黄色大毛片视频在线观看| 在线观看一区二区三区激情| 一边亲一边摸免费视频| 精品亚洲成国产av| 久久久成人免费电影| 97精品久久久久久久久久精品| 肉色欧美久久久久久久蜜桃| 99久久综合免费| kizo精华| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 日本黄大片高清| 国产成人免费无遮挡视频| 日日摸夜夜添夜夜添av毛片| 国产精品欧美亚洲77777| 国产成人精品一,二区| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 午夜福利在线在线| 熟女人妻精品中文字幕| 免费观看av网站的网址| 久久久久视频综合| 精品一区二区三卡| 久久综合国产亚洲精品| 三级经典国产精品| 国产淫片久久久久久久久| 亚洲精品自拍成人| 国产视频内射| 日韩不卡一区二区三区视频在线| 精品久久久噜噜| 我要看日韩黄色一级片| 少妇高潮的动态图| 亚洲精品日本国产第一区| 久久99精品国语久久久| 亚洲国产精品国产精品| 男女边吃奶边做爰视频| 九草在线视频观看| 国产精品嫩草影院av在线观看| 中文天堂在线官网| av女优亚洲男人天堂| 亚洲在久久综合| 国产一区二区三区综合在线观看 | 视频中文字幕在线观看| 久久精品国产亚洲av涩爱| 欧美性感艳星| 欧美人与善性xxx| 偷拍熟女少妇极品色| 中文资源天堂在线| 有码 亚洲区| 久热这里只有精品99| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 2018国产大陆天天弄谢| 99热这里只有是精品50| 777米奇影视久久| 亚洲三级黄色毛片| 国产精品免费大片| 欧美变态另类bdsm刘玥| 久久影院123| 欧美变态另类bdsm刘玥| 一区二区av电影网| 中文字幕制服av| av国产免费在线观看| 91精品国产九色| 日韩精品有码人妻一区| 纯流量卡能插随身wifi吗| 日韩中字成人| 婷婷色av中文字幕| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩另类电影网站 | 18禁在线播放成人免费| 熟女av电影| 免费大片18禁| 高清视频免费观看一区二区| 久久精品久久精品一区二区三区| 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 国产欧美亚洲国产| 啦啦啦在线观看免费高清www| 妹子高潮喷水视频| 亚洲欧美精品专区久久| 亚洲精品第二区| 亚洲激情五月婷婷啪啪| 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av| 亚洲激情五月婷婷啪啪| 青青草视频在线视频观看| 尾随美女入室| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美精品专区久久| 免费看av在线观看网站| 亚洲天堂av无毛| 国产精品蜜桃在线观看| 五月伊人婷婷丁香| 中文字幕亚洲精品专区| 日韩不卡一区二区三区视频在线| 国产久久久一区二区三区| 日本wwww免费看| 涩涩av久久男人的天堂| 各种免费的搞黄视频| 欧美97在线视频| 国产亚洲午夜精品一区二区久久| 久久精品熟女亚洲av麻豆精品| 亚洲内射少妇av| 午夜免费观看性视频| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| av在线播放精品| 国产高清不卡午夜福利| 国内精品宾馆在线| 日韩一本色道免费dvd| 亚洲不卡免费看| 国产一区亚洲一区在线观看| 午夜视频国产福利| 少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影| 精品视频人人做人人爽| 激情 狠狠 欧美| 日韩国内少妇激情av| 好男人视频免费观看在线| 大话2 男鬼变身卡| 国产精品一区www在线观看| 亚洲精品自拍成人| 如何舔出高潮| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99| 天美传媒精品一区二区| 国产欧美亚洲国产| 最后的刺客免费高清国语| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 精品国产三级普通话版| 国产精品麻豆人妻色哟哟久久| 日韩强制内射视频| 黄色配什么色好看| av不卡在线播放| 亚洲av国产av综合av卡| 晚上一个人看的免费电影| 国产精品一及| 小蜜桃在线观看免费完整版高清| 日韩成人av中文字幕在线观看| 夫妻性生交免费视频一级片| 我要看黄色一级片免费的| 1000部很黄的大片| 久久精品国产亚洲网站| 精品国产三级普通话版| 久久久久久久亚洲中文字幕| 欧美少妇被猛烈插入视频| 亚洲国产日韩一区二区| 能在线免费看毛片的网站| 永久免费av网站大全| 免费黄色在线免费观看| 男人舔奶头视频| 国产v大片淫在线免费观看| 99久久精品热视频| 美女中出高潮动态图| 亚洲精品国产成人久久av| 亚洲在久久综合| 午夜老司机福利剧场| 国产高潮美女av| 亚洲成人一二三区av| 99久久精品热视频| 国产 精品1| 老司机影院毛片| 国产淫片久久久久久久久| 国产黄频视频在线观看| 久久精品国产a三级三级三级| 国产精品人妻久久久影院| 亚洲精品一二三| 亚洲色图综合在线观看| 全区人妻精品视频| 一级黄片播放器| 日韩中字成人| 99热这里只有是精品50| 狂野欧美激情性xxxx在线观看| 精品少妇黑人巨大在线播放|