• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Substrate specificity and reaction directionality of a three-residue cyclophane forming enzyme PauB

    2023-03-14 06:52:32YuanjunHanSuzeMaQiZhang
    Chinese Chemical Letters 2023年1期

    Yuanjun Han,Suze Ma,Qi Zhang

    Department of Chemistry,Fudan University,Shanghai 200433,China

    Keywords:Cyclophane Biosynthesis Radical SAM Enzyme catalysis Peptide Natural product

    ABSTRACT Three-residue cyclophane-forming enzymes (3-CyFEs) are a group of radical S-adenosylmethionine (SAM)enzymes involved in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs).3-CyFE catalyzes the crosslinking between an aromatic residue (Ω1) and a non-aromatic residue (X3) in a Ω1-X2-X3 motif to produce a cyclophane ring,a key step in the biosynthesis of the RiPP natural product triceptide.In this study,we perform a genome-wide search for the Xye-type triceptides,showing these RiPPs are likely class-specific and only present in gamma-proteobacteria.The 3-CyFE PauB from Photorhabdus australis exhibits a relaxed substrate specificity on the X3 position,but glycine in this position is not suitable for cyclophane formation.We also reconstituted the activity of PauB in vitro,showing it produces the N-terminal cyclophane firstly,and then the C-terminal ring,whereas the middle cyclophane is produced in the last step.

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing superfamily of peptide natural products that are found in all domains of life [1,2].These compounds are derived from a gene-encoded precursor peptide and are produced by a series of posttranslational modifications.Owing to the increasingly expanding genome sequences and the vast diversity of the RiPP superfamily,mining of these natural products provided to be fruitful for discovering novel biochemistries as well as compounds with unique structures [1,2].Of particular interests in RiPP biosynthesis are radical S-adenosylmethionine (rSAM)enzymes,one of the largest enzyme superfamilies thus far containing more than 700,000 members [3,4].rSAM enzymes are extensively involved in RiPP biosynthesis and catalyze strikingly diverse reactions [5–9].The rSAM-dependent RiPPs include sactipeptide (α-thioether linkage) [10–14],ranthipeptide (βorγ-thioether linkage) [15–17],streptide (C-C crosslink between Lys and Trp)[18],rotapeptide (C-O crosslink between Thr and Gln) [19],ryptide (C-C crosslink between Arg and Tyr) [20],daropeptide (C-O-C crosslink) [21–23],and poly-cyclopropylglycine-containing peptides[24],among others (Fig.1).In these reactions,the rSAM enzymes utilize a strictly conserved [4Fe-4S] cluster to reductively cleave S-adenosylmethionine (SAM),and the resulting 5′-deoxyadenosyl(dAdo) radical then abstracts a hydrogen atom from the substrate to initiate a variety of oxidation reactions [25,26].

    A growing group of rSAM enzymes involved in RiPP biosynthesis is three-residue cyclophane-forming enzymes (3-CyFEs),which catalyze the crosslinking between an aromatic residue (Ω1) and a non-aromatic residue (X3) in aΩ1-X2-X3 motif to produce a cyclophane moiety (Fig.1),and the mature RiPPs are designated as triceptide (three-residue in cyclophane peptides) [27].3-CyFEs are abundant in diverse bacterial phyla and can be further classified into different clades based on the characteristic motif of the substrate,such as Xye,Grr and Fxs [27,28].The Xye subfamily of triceptides is named because their biosynthetic gene clusters are mainly found inXenorhabdus,YersiniaandErwinia.These compounds contain three cyclophane rings,including two Trp-derived rings in the N- and C-termini,and a Phe-derived ring in the middle(Fig.1) [27].The precursor peptide XyeA is roughly 50 amino acids long,consisting of a C-terminal core peptide composed of 12–15 amino acids,and an N-terminal leader peptide ended with a characteristic Gly-Gly motif,which is predicted to be the proteolytic cleavage site to remove the leader peptide [29,30].

    To explore the structural diversity of the Xye-type triceptide and their biosynthetic chemistry,a genome-wide search was carried out in the NCBI database for the biosynthetic gene clusters (BGCs) of the Xye-type triceptide.We performed multiple rounds of position-specific iterated (PSI)-BLAST search,and then a combination of EFI genome neighborhood tool (EFI-GNT) analysis[31] and rapid ORF description & evaluation online (RODEO) analysis [32].These analyzes revealed 48 unique precursor peptides,which are characteristic of the Xye-type precursors and distinct from those of other triceptide subfamilies such as Grr and Fxs.The identified BGCs are all fromγ-proteobacteria,suggesting these RiPPs are likely class-specific.Sequence similarity network (SSN)analysis of the pooled XyeA sequences showed that,in contrast to the hypervariable Fxs precursors shown in our previous analysis[28],Xye precursors are relatively conserved in sequence and can be grouped into two types with a relatively stringent criterion (i.e.,E=10-16) (Fig.2A).The two types of XyeAs are highly divergent in leader peptide region but share a common LX4LX4GG motif (X denotes any other residues) (Fig.2B),which is a recognition sequence of peptidase-containing ATP-binding transporter [29].Type I XyeAs are mainly from the genus Yersinia and Phtorhabdus,and the mature products likely contain an extra N-terminal Ala-Gly motif,which is not present in the product of type II XyeA that are mainly from Serratia,Xenorhabdus,Erwinia and Vibrio.Unlike the conserved C-terminal Ser-Phe motif in the type I XyeA,the Cterminal sequences in the type II precursors are more variable (Fig.2B).Besides the precursor peptide XyeA and the 3-CyFE XyeB,the Xye BGCs also encodes a HlyD family secretion protein (XyeC),an ABC transporter fused with an N-terminal C39 peptidase domain(XyeD),and an aspartyl protease (XyeE) (Fig.3A).

    Fig.1.Chemical structure of selected rSAM-dependent RiPPs.The crosslinks introduced by rSAM enzymes are highlighted in red.

    Fig.2.Sequence diversity of the Xye-type tricepeptide.(A) Sequence similarity network (SSN) of 48 XyeA sequences.(B) Sequence logos of the two XyeA subgroups.

    Fig.3.Triceptide biosynthesis in Photorhabdus australis.(A) The pau BGC encodes a precursor peptide PauA,a 3-CyFE PauB,a HlyD family secretion protein PauC,an ABC transporter fused with a C39 peptidase PauD,and an aspartyl protease PauE.(B) HR-MS characterization of (i) PauA expressed alone and (ii) PauA modified by PauB in vivo.PauA with -6 Da modification (PauA-1) is a result of the formation of three cyclophane rings.(C) HR-MS spectrum of the tryptic fragment PauA(-4-12),which has three cyclophane rings formed between W1 and N3,Y5 and R7,and W8 and N10,respectively.LP denotes leader peptide.

    We focus on a type II Xye BGC fromPhotorhabdus australis.To validate the enzyme activity of 3-CyFE encoded by this gene cluster,the precursor peptide PauA was coexpressed with the rSAM enzyme PauB inE.coli.In this analysis,PauA was expressed as a fusion protein,which contains an N-terminal hexa-histidine (His6)tag,a following maltose-binding protein (MBP),and a TEV protease cleavage site that separates MBP from PauA in the C-terminus[33].To facilitate downstream analysis and characterization,Gln at the -5 position in the leader peptide was mutated to Lys for tryptic digestion (according to the RiPP nomenclature [1,2],here the core peptide is labeled with positive numbers starting from the first residue of the predicted core sequence,and the leader peptide with negative numbers in a C-to-N order) (Fig.3A).The resulting fusedpauAconstruct was then coexpressed withpauBinE.coli,and the modified PauA peptide was purified by Niaffinity chromatography followed by TEV protease digestion to remove the N-terminal His6and MBP tags.Liquid chromatography with high-resolution mass spectrometry (LC-HRMS) analysis showed the resulting PauA is 6 Da less ([M+7H]7+= 977.06)compared to the unmodified PauA obtained by expressing PauA alone ([M+7H]7+=977.93) (Fig.3B),suggesting three cyclophane crosslinks were formed in PauA.The resulting peptide was then digested by trypsin and analyzed by LC-HRMS,which revealed the expected peptide fragment PauA(-4-12)containing three cyclophane crosslinks (Fig.3C).Detailed HR-MS/MS clearly showed the three crosslinks are formed,respectively between Trp1 and Asn3,Tyr5 and Arg7,and Trp8 and Asn10,and this result is consistent with the expected 3-residue cyclophane structures of the Xye-type triceptides (Fig.S1 in Supporting information).We hereafter refer to the fully modified PauA (which contains three cyclophane rings) as 1,and the tryptic fragment was accordingly termed PauA(-4-12)-1.

    Sequence analysis of the putative Xye precursor peptide showed that the to-be-cyclized X3 residues in theΩ1-X2-X3 motif is relatively conserved,which appear as Asn,Lys or Arg (Fig.2B).To determine whether the enzyme can also act on other residues,we,respectively changed Asn3,Arg7,and Asn10 to Ser,a natural substrate of the Fxs type 3-CyFEs [27,28].The three PauA mutants (i.e.,N3S,R7S,N10S) were then co-expressed with PauB,and the resulting peptides were purified,digested by TEV protease,and analyzed in a way similar that of PauA with the wild type core as discussed above.LC-HRMS analysis of the resulting peptides showed that all the three Ser-based mutants were fully modified to the corresponding -6 Da products (Fig.4A),and this observation is consistent with the formation of the complete set of three cyclophane crosslinks in the three mutants.HR-MS/MS analysis of the corresponding tryptic fragments of the three mutants clearly revealed the crosslink between newly-introduced Ser residues and the correspondingΩ1 residue,besides the other two cyclophane rings (Figs.S2–S4 in Supporting information).We also constructed three Ala-based mutants (i.e.,N3A,R7A,N10A),and each of these mutants was coexpressed with PauB followed by purification and proteolytic digestion.Subsequent LC-HRMS and HR-MS/MS analysis revealed that,similar to those of the Ser-based mutants,complete sets of cyclophane crosslinks were formed for all the three Alabased mutants (Fig.4B and Figs.S5–S7 in Supporting information).These results indicate that both Ser and Ala are efficient substrates of PauB for cyclophane formation in triceptide biosynthesis.

    We next set out to test whether biosynthesis of the three cyclophane rings are independent of each other.Because the crosslinks introduced by 3-CyFEs are formedviatheβ-carbon of X3,we reasoned that changing X3 to Gly (which does not have aβ-carbon)would abolish cyclophane formation at the mutation site.This mutagenesis would also impede the formation of other cycylophanes if formation of one cyclophane ring is neccessary for the the latter.We hence generated three Gly-based PauA mutants (i.e.,N3G,R7G,N10G) and analyzed these peptides after coexpression with PauB.LC-HRMS analysis showed that only two cyclophanes were formed for all the Gly-based mutants.Following HR-MSMS analysis of the corresponding tryptic fragments of the mutants showed no crosslink is formed at the mutation site,whereas other two cyclophanes were installed succesfully (Fig.4C and Figs.S8–S10 in Supporting information).These observations indicate that cyclophane produced by 3-CyFE can only be formedviatheβcarbon of the side chain.Although three cyclophane rings are produced in the precurosr peptide,formation of each crosslink is independent of other two rings.

    To further investigate the PauB-catalyzed cyclophane formation,we purified PauB as an N-terminal His6tagged form,and reconstituted the [4Fe-4S] cluster under a strict anaerobic condition,in a way similar to our previous analysis with other radical SAM enzymes [34–37].Quantification analysis showed that each enzyme contains 8.2 ± 0.4 iron and 9.1 ± 0.5 labile sulfide,suggesting PauB harbors two [4Fe-4S] clusters.This observation is consistent with the fact that 3-CyFEs contains a C-terminal SPASM/twitch domain,which binds additional [4Fe-4S] clusters,with roles suggestive of peptide binding and/or electron transfer [38,39].We then treated the reconsituted PauB with sodium dithionite (DTH),a strong reductant that has been commonly used in converting [4Fe-4S] from the inactive +2 to the active +1 state [26].Incubation of the reconstituted PauB with DTH and SAM resulted in apparent production of 5′-deoxyadenosine (dAdoH) (Fig.S11 in Supporting information),indicating that PauB is indeed a rSAM protein.In contrast to many other rSAM enzymes that do not require external reductant for activity [40–45],DTH appears to be strictly essential for enzyme activity (Fig.S11).The assay was then performed by incubation of PauA with PauB in the presence of SAM and DTH under strictly anaerobic condition.LC-HRMS analysis of the reaction mixture clearly revealed production of the fully modified PauA(PauA-1) carrying three cyclophanes (Fig.5A),which was further validated by HR-MSMS analysis (Fig.S12 in Supporting information).We did not observed any signals corresponding to the noncyclized fragment of the -6 Da product (Fig.S12),suggesting that PauB specifically catalyzed cyclophane formation on PauA,distinct from the remarkable catalytic promiscuity of the Fxs-type 3-CyFE SjiB observed in our previous analysis [28].

    We next interrogated the reaction order in the formation of the three cyclophane rings.To this end,we performed the reaction and monitored the time course ofin vitroPauA modification.This analysis showed the main product in 1 h reaction carries only one cyclophane ring (hereafter reffered as to PauA-2) (Fig.5A,trace ii).The product carrying two cyclophane rings (i.e.PauA-3) culminated around 3 h (Fig.5A,trace iii),whereas the fully modified product PauA-1 appeared as the major product after 6 h reaction (Fig.5A,trace iv).These observation strongly indicates that the PauBcatalyzed multiple cyclophane production on PauA is a distributive process,an observation consistent with most (if not all) RiPP biosynthesis enzymes [46].

    Fig.4.HR-MS analysis of PauA mutants modified by PauB,showing the HR-MS spectra of (A) three Ser-based mutants,(B) three Ala-based mutants,and (C) three Gly-based mutants.The molecular weights were calculated based on the unmodified products,and -6 Da and -4 Da correspond to the formation of three and two cyclophane rings,respectively.

    Fig.5. In vitro reconstitution of cyclophane formation by PauB.(A) Time-dependent formation of the three cyclophane rings on PauA.(B) The HR-MS spectra of the tryptic fragments of PauA-2 obtained by treating the 1 h reaction mixture with trypsin.(C) The proposed reaction order of the PauB-catalyzed cyclophane formation on PauA.(D) The HR-MS spectra of the tryptic fragments the PauA-3 obtained by treating the 3 h reaction mixture with trypsin.

    We then treated the PauA product from 1 h reaction by trypsin and analyzed it by LC-HRMS.Because cyclophane formation between Tyr5 and Arg7 would completely block trypsin digestion,as shown for PauA(-4-12)-1,it is expected that an intact fragment PauA(-4-12)carrying a -2 Da modification would be found if the first cyclophane was formed between Tyr5 and Arg7.However,such a PauA(-4-12)fragment was not observed in our analysis.Instead,the fragment PauA(-4-7)carrying a -2 Da modification (i.e.PauA(-4-7)-2) and the unmodified PauA(8-12)were observed in the assay (Fig.5B),which has been further validated by HR-MSMS analysis (Figs.S13 and S14 in Supporting information).In contrast,the modified PauA(8-12)fragment carrying a -2 Da modification was barely observed in the reaction.These results clearly demonstrated that the N-terminal cyclophane produced from Trp1 and Asn3 is the first ring produced in PauB reaction (Fig.5C).

    LC-HRMS analysis of the 3 h reaction product pre-treated with trypsin revealed two fragments PauA(-4-7)-3 (which is same to PauA(-4-7)-2) and the PauA(8-12)-3.This two fragments both carry a -2 Da modification (Fig.5D),which have been further validated by HR-MSMS analysis (Figs.S15 and S16 in Supporting information).In contrast,the intact PauA(-4-12)carrying a -4 Da modification was not found in the assay.These results indicates that the second crosslink catalyzed by PauB is the C-terminal cycphophane produced between Trp8 and Asn11,and the middle cycophane is produced lastly in PauB catalysis (Fig.5C).

    In summary,we show the BGCs of the Xye-type triceptides are present in a variety of gamma-proteobacteria.Although the motifs involved in cylcophane formation have characterstic features,and only three residues (i.e.Asn,Lys and Arg) are found at the X3 position,other residues such as Ser and Ala can also be recognized and modified for cylophane formtion.Although Gly at the X3 position cannot be modified,blocking cyclophane formation by the Gly-based mutagenesis does not have any observable impacts on the production of other two cyclophanes,suggesting that the three cyclophanes in the Xye system are produced independently.We also reconsituted thein vitroactivity of PauB,showing it is fully active to install the complete set of cyclophane rings on PauA.Moreover,we showed in PauB catalysis,the N-terminal cyclophane is produced firstly,which is followed by the formation of the Cterminal ring,whereas the middle cyclophane formed from Phe5 and Arg7 is produced in the last step (Fig.5C).Our study paves the way for future biosynthetic and engineering study of triceptides,and also contributes to the rapidly expanding knowledge the rSAM superfamily enzymes and the rSAM-dependent RiPP natural products.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by grants from the National Key Research and Development Program (Nos.2018YFA0900402 and 2021YFA0910501),from the National Natural Science Foundation of China (Nos.21822703,21921003,and 32070050),from the funding of Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (No.ZDSYS14005),and from West Light Foundation of the Chinese Academy of Sciences (No.xbzgzdsys-202105).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.06.012.

    午夜福利成人在线免费观看| 性插视频无遮挡在线免费观看| 亚洲精品日韩在线中文字幕 | 精品无人区乱码1区二区| 久久午夜福利片| 免费看美女性在线毛片视频| 国产一区二区在线av高清观看| 我要搜黄色片| 午夜激情欧美在线| 美女被艹到高潮喷水动态| 中文字幕av在线有码专区| 99视频精品全部免费 在线| 久久人人精品亚洲av| 免费电影在线观看免费观看| 日日干狠狠操夜夜爽| 久久久色成人| 又黄又爽又刺激的免费视频.| 亚洲三级黄色毛片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲自拍偷在线| 又粗又爽又猛毛片免费看| 亚洲国产精品合色在线| 午夜日韩欧美国产| 中文在线观看免费www的网站| 亚洲第一电影网av| 精品日产1卡2卡| 一级黄片播放器| 亚洲成人久久爱视频| 国产精品一区www在线观看| 亚洲av免费高清在线观看| 国产美女午夜福利| 久久人妻av系列| 欧美激情久久久久久爽电影| 久久亚洲精品不卡| 俺也久久电影网| 校园春色视频在线观看| 国语自产精品视频在线第100页| 最好的美女福利视频网| 乱人视频在线观看| 精品一区二区三区视频在线| 啦啦啦韩国在线观看视频| 九九在线视频观看精品| 亚洲精品色激情综合| 亚洲婷婷狠狠爱综合网| 99热这里只有精品一区| 欧美激情国产日韩精品一区| 午夜影院日韩av| 九色成人免费人妻av| 一个人观看的视频www高清免费观看| 成人鲁丝片一二三区免费| av专区在线播放| 亚洲人成网站在线播放欧美日韩| 美女黄网站色视频| 亚洲最大成人手机在线| 男女那种视频在线观看| 免费观看在线日韩| 免费高清视频大片| 在现免费观看毛片| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 午夜日韩欧美国产| av中文乱码字幕在线| 欧美一区二区国产精品久久精品| 成人鲁丝片一二三区免费| 熟妇人妻久久中文字幕3abv| avwww免费| 亚洲av美国av| 成人无遮挡网站| 亚洲精品乱码久久久v下载方式| 久久久久国产精品人妻aⅴ院| 97人妻精品一区二区三区麻豆| 一级毛片久久久久久久久女| 欧美色欧美亚洲另类二区| 午夜日韩欧美国产| 最新中文字幕久久久久| 高清毛片免费观看视频网站| 国内精品久久久久精免费| 精品熟女少妇av免费看| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 午夜免费男女啪啪视频观看 | 亚洲四区av| 国产色爽女视频免费观看| 在线观看66精品国产| 热99在线观看视频| 最近手机中文字幕大全| 大又大粗又爽又黄少妇毛片口| 精品一区二区三区人妻视频| 亚洲av成人av| 免费在线观看成人毛片| 日韩精品中文字幕看吧| 深夜精品福利| 少妇人妻精品综合一区二区 | av专区在线播放| 午夜福利高清视频| 男女之事视频高清在线观看| 尤物成人国产欧美一区二区三区| av在线蜜桃| 国产欧美日韩精品亚洲av| 久久久色成人| 久久久久久久久久成人| 搡女人真爽免费视频火全软件 | 日韩国内少妇激情av| 一a级毛片在线观看| 夜夜爽天天搞| 精品久久久久久久久久免费视频| 22中文网久久字幕| 成人午夜高清在线视频| 老女人水多毛片| 1000部很黄的大片| 国产精品女同一区二区软件| 一卡2卡三卡四卡精品乱码亚洲| 少妇高潮的动态图| АⅤ资源中文在线天堂| 国产69精品久久久久777片| 国产又黄又爽又无遮挡在线| 成人特级黄色片久久久久久久| 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| 天天一区二区日本电影三级| 国产亚洲91精品色在线| 极品教师在线视频| 永久网站在线| 校园人妻丝袜中文字幕| 久久人妻av系列| 午夜福利高清视频| 偷拍熟女少妇极品色| 精品99又大又爽又粗少妇毛片| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 久久草成人影院| 白带黄色成豆腐渣| 99久久中文字幕三级久久日本| 1024手机看黄色片| 久久鲁丝午夜福利片| 精品一区二区免费观看| 在线免费观看不下载黄p国产| 日韩在线高清观看一区二区三区| 搡女人真爽免费视频火全软件 | 国产精品1区2区在线观看.| 我的女老师完整版在线观看| 99热全是精品| 亚洲精品一卡2卡三卡4卡5卡| 高清日韩中文字幕在线| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 亚洲五月天丁香| 亚洲在线自拍视频| eeuss影院久久| 18禁裸乳无遮挡免费网站照片| 日韩大尺度精品在线看网址| www日本黄色视频网| 久久久久国内视频| 国产伦精品一区二区三区四那| 亚洲精品一区av在线观看| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 国产精品久久久久久久久免| 日本黄色视频三级网站网址| 我要搜黄色片| 丝袜喷水一区| 亚洲欧美日韩无卡精品| 欧美色视频一区免费| 国产亚洲精品av在线| 久久这里只有精品中国| 国内精品宾馆在线| 18+在线观看网站| 国内揄拍国产精品人妻在线| 国产片特级美女逼逼视频| 国产亚洲精品av在线| 国产伦精品一区二区三区视频9| av女优亚洲男人天堂| 色5月婷婷丁香| 久久婷婷人人爽人人干人人爱| 亚洲国产色片| 伦理电影大哥的女人| 久久久久久久久久黄片| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 嫩草影院精品99| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 舔av片在线| 99久久成人亚洲精品观看| 国产高潮美女av| 在线观看美女被高潮喷水网站| 国产精品永久免费网站| 色在线成人网| 在现免费观看毛片| 成人高潮视频无遮挡免费网站| 久久久久久久久久黄片| 内地一区二区视频在线| 日本五十路高清| 18禁在线无遮挡免费观看视频 | 欧美性感艳星| 久久久精品大字幕| 国产伦精品一区二区三区视频9| 国产美女午夜福利| 欧美三级亚洲精品| 欧美zozozo另类| 亚洲三级黄色毛片| 在线观看一区二区三区| 成年免费大片在线观看| av在线蜜桃| 亚洲av熟女| 欧美一级a爱片免费观看看| 自拍偷自拍亚洲精品老妇| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 草草在线视频免费看| 别揉我奶头~嗯~啊~动态视频| 久久精品国产亚洲av涩爱 | 毛片女人毛片| 色综合色国产| 嫩草影院精品99| 国产综合懂色| 成人国产麻豆网| 午夜福利视频1000在线观看| 久久亚洲国产成人精品v| 国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 免费av观看视频| 日韩欧美一区二区三区在线观看| 晚上一个人看的免费电影| 精品一区二区三区人妻视频| 一级毛片我不卡| 久久久久免费精品人妻一区二区| 国产成人福利小说| 亚洲精品456在线播放app| 熟妇人妻久久中文字幕3abv| 久久热精品热| 欧美日本视频| 免费无遮挡裸体视频| 五月伊人婷婷丁香| 成人无遮挡网站| 亚洲三级黄色毛片| 国产三级中文精品| 日日啪夜夜撸| 九九热线精品视视频播放| 在线看三级毛片| 久久久精品大字幕| 一级黄色大片毛片| 美女免费视频网站| 国产黄色小视频在线观看| 非洲黑人性xxxx精品又粗又长| 真人做人爱边吃奶动态| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇熟女久久| 在线免费十八禁| 99精品在免费线老司机午夜| 日本黄色视频三级网站网址| 男女做爰动态图高潮gif福利片| 夜夜爽天天搞| 国产91av在线免费观看| 欧美不卡视频在线免费观看| 国产精品福利在线免费观看| 床上黄色一级片| 男人和女人高潮做爰伦理| 国产探花在线观看一区二区| 久久热精品热| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| av国产免费在线观看| 国产人妻一区二区三区在| 免费av不卡在线播放| 国产精品人妻久久久影院| 久久久色成人| 亚洲人成网站在线播放欧美日韩| 超碰av人人做人人爽久久| 亚洲一区高清亚洲精品| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 久久久久国产网址| 免费大片18禁| 国产亚洲精品综合一区在线观看| 国产av不卡久久| 亚洲精品乱码久久久v下载方式| 午夜影院日韩av| 人妻少妇偷人精品九色| 国产精品一区二区性色av| 国产精品久久视频播放| 成年版毛片免费区| 丝袜美腿在线中文| 国内精品一区二区在线观看| 亚洲av一区综合| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 黄色欧美视频在线观看| 亚洲18禁久久av| 九九爱精品视频在线观看| 亚洲真实伦在线观看| 久久久色成人| 国内精品美女久久久久久| 亚洲av熟女| 啦啦啦啦在线视频资源| 亚洲五月天丁香| 午夜精品国产一区二区电影 | 成人国产麻豆网| 91在线精品国自产拍蜜月| 中文字幕精品亚洲无线码一区| 亚洲性久久影院| 欧美+亚洲+日韩+国产| 日韩强制内射视频| 成年女人毛片免费观看观看9| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看| 午夜免费激情av| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 欧美激情在线99| 午夜精品一区二区三区免费看| 美女免费视频网站| 欧美成人精品欧美一级黄| 国产av在哪里看| 乱系列少妇在线播放| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 黄色日韩在线| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 久久综合国产亚洲精品| 亚洲性久久影院| a级毛片a级免费在线| 啦啦啦韩国在线观看视频| 亚洲自偷自拍三级| 国产aⅴ精品一区二区三区波| 男女下面进入的视频免费午夜| 欧美中文日本在线观看视频| 深夜a级毛片| 夜夜夜夜夜久久久久| 男人舔奶头视频| 可以在线观看的亚洲视频| av.在线天堂| 国产精品久久视频播放| 亚洲成人av在线免费| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| av卡一久久| 免费无遮挡裸体视频| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 日韩精品中文字幕看吧| 美女内射精品一级片tv| 免费av不卡在线播放| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 91久久精品国产一区二区成人| 成人高潮视频无遮挡免费网站| 国产黄色小视频在线观看| 国产精品99久久久久久久久| 一个人免费在线观看电影| 伦精品一区二区三区| 偷拍熟女少妇极品色| 国产午夜精品论理片| 偷拍熟女少妇极品色| 色5月婷婷丁香| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 成人漫画全彩无遮挡| 亚洲人成网站在线观看播放| 国产精品精品国产色婷婷| 国产成人a∨麻豆精品| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 午夜免费男女啪啪视频观看 | 少妇高潮的动态图| 嫩草影院入口| 成年版毛片免费区| 嫩草影院入口| 亚洲国产高清在线一区二区三| 一边摸一边抽搐一进一小说| 午夜福利在线观看免费完整高清在 | 美女内射精品一级片tv| 亚洲人成网站在线播放欧美日韩| 在现免费观看毛片| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 国产三级中文精品| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 蜜桃久久精品国产亚洲av| 男人舔女人下体高潮全视频| 级片在线观看| 久久人人爽人人爽人人片va| 国产av麻豆久久久久久久| 国国产精品蜜臀av免费| av在线亚洲专区| 欧美日韩乱码在线| 精品福利观看| 国产成人影院久久av| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 日韩精品青青久久久久久| 中文字幕精品亚洲无线码一区| av天堂在线播放| 免费看av在线观看网站| avwww免费| 亚洲第一电影网av| 波多野结衣高清作品| 国产欧美日韩精品一区二区| 综合色av麻豆| 日韩,欧美,国产一区二区三区 | 国产精品人妻久久久影院| 中文字幕免费在线视频6| 熟女电影av网| 在线观看66精品国产| 久久久久久久久久黄片| 一进一出抽搐动态| 日韩精品中文字幕看吧| 国产精品三级大全| 国内精品宾馆在线| 免费人成在线观看视频色| 国产乱人视频| 亚洲婷婷狠狠爱综合网| 老师上课跳d突然被开到最大视频| 亚洲激情五月婷婷啪啪| 男女视频在线观看网站免费| 大又大粗又爽又黄少妇毛片口| 99国产极品粉嫩在线观看| 欧美成人一区二区免费高清观看| 午夜视频国产福利| 99久久久亚洲精品蜜臀av| 日本免费a在线| 亚洲欧美日韩高清在线视频| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 国产在视频线在精品| 成人三级黄色视频| 老司机影院成人| 伦理电影大哥的女人| 午夜亚洲福利在线播放| av天堂中文字幕网| 1024手机看黄色片| 国产精品福利在线免费观看| 欧美高清性xxxxhd video| 在线免费观看的www视频| 99热精品在线国产| 在线观看美女被高潮喷水网站| 色综合色国产| 男人和女人高潮做爰伦理| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 亚洲国产欧美人成| 日韩,欧美,国产一区二区三区 | 亚洲一级一片aⅴ在线观看| 免费人成在线观看视频色| 国产亚洲精品久久久久久毛片| 18禁裸乳无遮挡免费网站照片| 悠悠久久av| 桃色一区二区三区在线观看| 此物有八面人人有两片| 国产精品久久久久久av不卡| 成人av在线播放网站| 精品福利观看| 最近视频中文字幕2019在线8| 精品一区二区三区av网在线观看| 一区福利在线观看| 亚洲一区高清亚洲精品| 蜜臀久久99精品久久宅男| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 久久国内精品自在自线图片| 在线观看免费视频日本深夜| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 99九九线精品视频在线观看视频| 99精品在免费线老司机午夜| 欧美精品国产亚洲| 最近最新中文字幕大全电影3| 久久久久久久久大av| 亚洲国产精品国产精品| www.色视频.com| 日本三级黄在线观看| 午夜a级毛片| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 一本精品99久久精品77| 日韩三级伦理在线观看| 久久久精品大字幕| 男女边吃奶边做爰视频| 联通29元200g的流量卡| 国产欧美日韩精品亚洲av| 国产伦一二天堂av在线观看| 一本久久中文字幕| 日本五十路高清| 亚洲国产精品国产精品| a级毛片免费高清观看在线播放| 亚洲国产精品合色在线| 欧美色视频一区免费| 深夜a级毛片| 最近最新中文字幕大全电影3| 国产精品爽爽va在线观看网站| 三级经典国产精品| 久99久视频精品免费| eeuss影院久久| 午夜精品一区二区三区免费看| 一级毛片久久久久久久久女| 国产精品久久久久久久电影| 桃色一区二区三区在线观看| 美女黄网站色视频| 欧美+日韩+精品| 春色校园在线视频观看| 国产精品福利在线免费观看| 观看免费一级毛片| 免费看美女性在线毛片视频| 免费观看在线日韩| 欧美中文日本在线观看视频| 日本精品一区二区三区蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 一本一本综合久久| 五月伊人婷婷丁香| 可以在线观看毛片的网站| 女人十人毛片免费观看3o分钟| av在线蜜桃| 特大巨黑吊av在线直播| 少妇的逼好多水| 日韩精品中文字幕看吧| 国产精品一区www在线观看| 国产不卡一卡二| 国产精品电影一区二区三区| 亚洲国产精品成人综合色| ponron亚洲| 免费黄网站久久成人精品| 久久精品影院6| 黄色一级大片看看| 国产精品美女特级片免费视频播放器| 3wmmmm亚洲av在线观看| av专区在线播放| 99久久无色码亚洲精品果冻| 欧美+亚洲+日韩+国产| 直男gayav资源| 丰满乱子伦码专区| 变态另类成人亚洲欧美熟女| a级毛色黄片| 97超视频在线观看视频| 伦精品一区二区三区| 亚洲四区av| 欧美日韩精品成人综合77777| 精品国内亚洲2022精品成人| 久久韩国三级中文字幕| 此物有八面人人有两片| 老师上课跳d突然被开到最大视频| 18禁在线播放成人免费| 永久网站在线| 午夜福利成人在线免费观看| 欧美一区二区国产精品久久精品| 日本成人三级电影网站| 成人鲁丝片一二三区免费| 波多野结衣高清作品| 国产毛片a区久久久久| 最近2019中文字幕mv第一页| 国产成人91sexporn| 欧美在线一区亚洲| 中文字幕av成人在线电影| 久久精品国产鲁丝片午夜精品| 亚洲性夜色夜夜综合| 久久精品91蜜桃| 晚上一个人看的免费电影| 精品久久国产蜜桃| 在线a可以看的网站| 欧美丝袜亚洲另类| 国产私拍福利视频在线观看| 国产免费男女视频| 亚洲欧美日韩高清专用| 日本 av在线| 赤兔流量卡办理| 高清毛片免费观看视频网站| 91av网一区二区| 99久久精品一区二区三区| 97热精品久久久久久| 国产午夜精品久久久久久一区二区三区 | 日韩一区二区视频免费看| 久久午夜福利片| 亚洲美女黄片视频| 啦啦啦韩国在线观看视频| 亚洲五月天丁香| 午夜影院日韩av| 啦啦啦韩国在线观看视频| 18禁在线无遮挡免费观看视频 | 尤物成人国产欧美一区二区三区| 国产精品三级大全| av福利片在线观看| 99热这里只有是精品在线观看| 天堂动漫精品| 少妇高潮的动态图| 日本撒尿小便嘘嘘汇集6| 国产精品人妻久久久影院| 白带黄色成豆腐渣| 国产精品一二三区在线看| 天堂√8在线中文| 精品福利观看| 欧美丝袜亚洲另类| 九色成人免费人妻av| 小说图片视频综合网站| 中出人妻视频一区二区| 91久久精品国产一区二区三区| 亚洲第一区二区三区不卡| 免费黄网站久久成人精品| 偷拍熟女少妇极品色| ponron亚洲| 国产色爽女视频免费观看| 免费人成视频x8x8入口观看| 自拍偷自拍亚洲精品老妇|