• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Substrate specificity and reaction directionality of a three-residue cyclophane forming enzyme PauB

    2023-03-14 06:52:32YuanjunHanSuzeMaQiZhang
    Chinese Chemical Letters 2023年1期

    Yuanjun Han,Suze Ma,Qi Zhang

    Department of Chemistry,Fudan University,Shanghai 200433,China

    Keywords:Cyclophane Biosynthesis Radical SAM Enzyme catalysis Peptide Natural product

    ABSTRACT Three-residue cyclophane-forming enzymes (3-CyFEs) are a group of radical S-adenosylmethionine (SAM)enzymes involved in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs).3-CyFE catalyzes the crosslinking between an aromatic residue (Ω1) and a non-aromatic residue (X3) in a Ω1-X2-X3 motif to produce a cyclophane ring,a key step in the biosynthesis of the RiPP natural product triceptide.In this study,we perform a genome-wide search for the Xye-type triceptides,showing these RiPPs are likely class-specific and only present in gamma-proteobacteria.The 3-CyFE PauB from Photorhabdus australis exhibits a relaxed substrate specificity on the X3 position,but glycine in this position is not suitable for cyclophane formation.We also reconstituted the activity of PauB in vitro,showing it produces the N-terminal cyclophane firstly,and then the C-terminal ring,whereas the middle cyclophane is produced in the last step.

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing superfamily of peptide natural products that are found in all domains of life [1,2].These compounds are derived from a gene-encoded precursor peptide and are produced by a series of posttranslational modifications.Owing to the increasingly expanding genome sequences and the vast diversity of the RiPP superfamily,mining of these natural products provided to be fruitful for discovering novel biochemistries as well as compounds with unique structures [1,2].Of particular interests in RiPP biosynthesis are radical S-adenosylmethionine (rSAM)enzymes,one of the largest enzyme superfamilies thus far containing more than 700,000 members [3,4].rSAM enzymes are extensively involved in RiPP biosynthesis and catalyze strikingly diverse reactions [5–9].The rSAM-dependent RiPPs include sactipeptide (α-thioether linkage) [10–14],ranthipeptide (βorγ-thioether linkage) [15–17],streptide (C-C crosslink between Lys and Trp)[18],rotapeptide (C-O crosslink between Thr and Gln) [19],ryptide (C-C crosslink between Arg and Tyr) [20],daropeptide (C-O-C crosslink) [21–23],and poly-cyclopropylglycine-containing peptides[24],among others (Fig.1).In these reactions,the rSAM enzymes utilize a strictly conserved [4Fe-4S] cluster to reductively cleave S-adenosylmethionine (SAM),and the resulting 5′-deoxyadenosyl(dAdo) radical then abstracts a hydrogen atom from the substrate to initiate a variety of oxidation reactions [25,26].

    A growing group of rSAM enzymes involved in RiPP biosynthesis is three-residue cyclophane-forming enzymes (3-CyFEs),which catalyze the crosslinking between an aromatic residue (Ω1) and a non-aromatic residue (X3) in aΩ1-X2-X3 motif to produce a cyclophane moiety (Fig.1),and the mature RiPPs are designated as triceptide (three-residue in cyclophane peptides) [27].3-CyFEs are abundant in diverse bacterial phyla and can be further classified into different clades based on the characteristic motif of the substrate,such as Xye,Grr and Fxs [27,28].The Xye subfamily of triceptides is named because their biosynthetic gene clusters are mainly found inXenorhabdus,YersiniaandErwinia.These compounds contain three cyclophane rings,including two Trp-derived rings in the N- and C-termini,and a Phe-derived ring in the middle(Fig.1) [27].The precursor peptide XyeA is roughly 50 amino acids long,consisting of a C-terminal core peptide composed of 12–15 amino acids,and an N-terminal leader peptide ended with a characteristic Gly-Gly motif,which is predicted to be the proteolytic cleavage site to remove the leader peptide [29,30].

    To explore the structural diversity of the Xye-type triceptide and their biosynthetic chemistry,a genome-wide search was carried out in the NCBI database for the biosynthetic gene clusters (BGCs) of the Xye-type triceptide.We performed multiple rounds of position-specific iterated (PSI)-BLAST search,and then a combination of EFI genome neighborhood tool (EFI-GNT) analysis[31] and rapid ORF description & evaluation online (RODEO) analysis [32].These analyzes revealed 48 unique precursor peptides,which are characteristic of the Xye-type precursors and distinct from those of other triceptide subfamilies such as Grr and Fxs.The identified BGCs are all fromγ-proteobacteria,suggesting these RiPPs are likely class-specific.Sequence similarity network (SSN)analysis of the pooled XyeA sequences showed that,in contrast to the hypervariable Fxs precursors shown in our previous analysis[28],Xye precursors are relatively conserved in sequence and can be grouped into two types with a relatively stringent criterion (i.e.,E=10-16) (Fig.2A).The two types of XyeAs are highly divergent in leader peptide region but share a common LX4LX4GG motif (X denotes any other residues) (Fig.2B),which is a recognition sequence of peptidase-containing ATP-binding transporter [29].Type I XyeAs are mainly from the genus Yersinia and Phtorhabdus,and the mature products likely contain an extra N-terminal Ala-Gly motif,which is not present in the product of type II XyeA that are mainly from Serratia,Xenorhabdus,Erwinia and Vibrio.Unlike the conserved C-terminal Ser-Phe motif in the type I XyeA,the Cterminal sequences in the type II precursors are more variable (Fig.2B).Besides the precursor peptide XyeA and the 3-CyFE XyeB,the Xye BGCs also encodes a HlyD family secretion protein (XyeC),an ABC transporter fused with an N-terminal C39 peptidase domain(XyeD),and an aspartyl protease (XyeE) (Fig.3A).

    Fig.1.Chemical structure of selected rSAM-dependent RiPPs.The crosslinks introduced by rSAM enzymes are highlighted in red.

    Fig.2.Sequence diversity of the Xye-type tricepeptide.(A) Sequence similarity network (SSN) of 48 XyeA sequences.(B) Sequence logos of the two XyeA subgroups.

    Fig.3.Triceptide biosynthesis in Photorhabdus australis.(A) The pau BGC encodes a precursor peptide PauA,a 3-CyFE PauB,a HlyD family secretion protein PauC,an ABC transporter fused with a C39 peptidase PauD,and an aspartyl protease PauE.(B) HR-MS characterization of (i) PauA expressed alone and (ii) PauA modified by PauB in vivo.PauA with -6 Da modification (PauA-1) is a result of the formation of three cyclophane rings.(C) HR-MS spectrum of the tryptic fragment PauA(-4-12),which has three cyclophane rings formed between W1 and N3,Y5 and R7,and W8 and N10,respectively.LP denotes leader peptide.

    We focus on a type II Xye BGC fromPhotorhabdus australis.To validate the enzyme activity of 3-CyFE encoded by this gene cluster,the precursor peptide PauA was coexpressed with the rSAM enzyme PauB inE.coli.In this analysis,PauA was expressed as a fusion protein,which contains an N-terminal hexa-histidine (His6)tag,a following maltose-binding protein (MBP),and a TEV protease cleavage site that separates MBP from PauA in the C-terminus[33].To facilitate downstream analysis and characterization,Gln at the -5 position in the leader peptide was mutated to Lys for tryptic digestion (according to the RiPP nomenclature [1,2],here the core peptide is labeled with positive numbers starting from the first residue of the predicted core sequence,and the leader peptide with negative numbers in a C-to-N order) (Fig.3A).The resulting fusedpauAconstruct was then coexpressed withpauBinE.coli,and the modified PauA peptide was purified by Niaffinity chromatography followed by TEV protease digestion to remove the N-terminal His6and MBP tags.Liquid chromatography with high-resolution mass spectrometry (LC-HRMS) analysis showed the resulting PauA is 6 Da less ([M+7H]7+= 977.06)compared to the unmodified PauA obtained by expressing PauA alone ([M+7H]7+=977.93) (Fig.3B),suggesting three cyclophane crosslinks were formed in PauA.The resulting peptide was then digested by trypsin and analyzed by LC-HRMS,which revealed the expected peptide fragment PauA(-4-12)containing three cyclophane crosslinks (Fig.3C).Detailed HR-MS/MS clearly showed the three crosslinks are formed,respectively between Trp1 and Asn3,Tyr5 and Arg7,and Trp8 and Asn10,and this result is consistent with the expected 3-residue cyclophane structures of the Xye-type triceptides (Fig.S1 in Supporting information).We hereafter refer to the fully modified PauA (which contains three cyclophane rings) as 1,and the tryptic fragment was accordingly termed PauA(-4-12)-1.

    Sequence analysis of the putative Xye precursor peptide showed that the to-be-cyclized X3 residues in theΩ1-X2-X3 motif is relatively conserved,which appear as Asn,Lys or Arg (Fig.2B).To determine whether the enzyme can also act on other residues,we,respectively changed Asn3,Arg7,and Asn10 to Ser,a natural substrate of the Fxs type 3-CyFEs [27,28].The three PauA mutants (i.e.,N3S,R7S,N10S) were then co-expressed with PauB,and the resulting peptides were purified,digested by TEV protease,and analyzed in a way similar that of PauA with the wild type core as discussed above.LC-HRMS analysis of the resulting peptides showed that all the three Ser-based mutants were fully modified to the corresponding -6 Da products (Fig.4A),and this observation is consistent with the formation of the complete set of three cyclophane crosslinks in the three mutants.HR-MS/MS analysis of the corresponding tryptic fragments of the three mutants clearly revealed the crosslink between newly-introduced Ser residues and the correspondingΩ1 residue,besides the other two cyclophane rings (Figs.S2–S4 in Supporting information).We also constructed three Ala-based mutants (i.e.,N3A,R7A,N10A),and each of these mutants was coexpressed with PauB followed by purification and proteolytic digestion.Subsequent LC-HRMS and HR-MS/MS analysis revealed that,similar to those of the Ser-based mutants,complete sets of cyclophane crosslinks were formed for all the three Alabased mutants (Fig.4B and Figs.S5–S7 in Supporting information).These results indicate that both Ser and Ala are efficient substrates of PauB for cyclophane formation in triceptide biosynthesis.

    We next set out to test whether biosynthesis of the three cyclophane rings are independent of each other.Because the crosslinks introduced by 3-CyFEs are formedviatheβ-carbon of X3,we reasoned that changing X3 to Gly (which does not have aβ-carbon)would abolish cyclophane formation at the mutation site.This mutagenesis would also impede the formation of other cycylophanes if formation of one cyclophane ring is neccessary for the the latter.We hence generated three Gly-based PauA mutants (i.e.,N3G,R7G,N10G) and analyzed these peptides after coexpression with PauB.LC-HRMS analysis showed that only two cyclophanes were formed for all the Gly-based mutants.Following HR-MSMS analysis of the corresponding tryptic fragments of the mutants showed no crosslink is formed at the mutation site,whereas other two cyclophanes were installed succesfully (Fig.4C and Figs.S8–S10 in Supporting information).These observations indicate that cyclophane produced by 3-CyFE can only be formedviatheβcarbon of the side chain.Although three cyclophane rings are produced in the precurosr peptide,formation of each crosslink is independent of other two rings.

    To further investigate the PauB-catalyzed cyclophane formation,we purified PauB as an N-terminal His6tagged form,and reconstituted the [4Fe-4S] cluster under a strict anaerobic condition,in a way similar to our previous analysis with other radical SAM enzymes [34–37].Quantification analysis showed that each enzyme contains 8.2 ± 0.4 iron and 9.1 ± 0.5 labile sulfide,suggesting PauB harbors two [4Fe-4S] clusters.This observation is consistent with the fact that 3-CyFEs contains a C-terminal SPASM/twitch domain,which binds additional [4Fe-4S] clusters,with roles suggestive of peptide binding and/or electron transfer [38,39].We then treated the reconsituted PauB with sodium dithionite (DTH),a strong reductant that has been commonly used in converting [4Fe-4S] from the inactive +2 to the active +1 state [26].Incubation of the reconstituted PauB with DTH and SAM resulted in apparent production of 5′-deoxyadenosine (dAdoH) (Fig.S11 in Supporting information),indicating that PauB is indeed a rSAM protein.In contrast to many other rSAM enzymes that do not require external reductant for activity [40–45],DTH appears to be strictly essential for enzyme activity (Fig.S11).The assay was then performed by incubation of PauA with PauB in the presence of SAM and DTH under strictly anaerobic condition.LC-HRMS analysis of the reaction mixture clearly revealed production of the fully modified PauA(PauA-1) carrying three cyclophanes (Fig.5A),which was further validated by HR-MSMS analysis (Fig.S12 in Supporting information).We did not observed any signals corresponding to the noncyclized fragment of the -6 Da product (Fig.S12),suggesting that PauB specifically catalyzed cyclophane formation on PauA,distinct from the remarkable catalytic promiscuity of the Fxs-type 3-CyFE SjiB observed in our previous analysis [28].

    We next interrogated the reaction order in the formation of the three cyclophane rings.To this end,we performed the reaction and monitored the time course ofin vitroPauA modification.This analysis showed the main product in 1 h reaction carries only one cyclophane ring (hereafter reffered as to PauA-2) (Fig.5A,trace ii).The product carrying two cyclophane rings (i.e.PauA-3) culminated around 3 h (Fig.5A,trace iii),whereas the fully modified product PauA-1 appeared as the major product after 6 h reaction (Fig.5A,trace iv).These observation strongly indicates that the PauBcatalyzed multiple cyclophane production on PauA is a distributive process,an observation consistent with most (if not all) RiPP biosynthesis enzymes [46].

    Fig.4.HR-MS analysis of PauA mutants modified by PauB,showing the HR-MS spectra of (A) three Ser-based mutants,(B) three Ala-based mutants,and (C) three Gly-based mutants.The molecular weights were calculated based on the unmodified products,and -6 Da and -4 Da correspond to the formation of three and two cyclophane rings,respectively.

    Fig.5. In vitro reconstitution of cyclophane formation by PauB.(A) Time-dependent formation of the three cyclophane rings on PauA.(B) The HR-MS spectra of the tryptic fragments of PauA-2 obtained by treating the 1 h reaction mixture with trypsin.(C) The proposed reaction order of the PauB-catalyzed cyclophane formation on PauA.(D) The HR-MS spectra of the tryptic fragments the PauA-3 obtained by treating the 3 h reaction mixture with trypsin.

    We then treated the PauA product from 1 h reaction by trypsin and analyzed it by LC-HRMS.Because cyclophane formation between Tyr5 and Arg7 would completely block trypsin digestion,as shown for PauA(-4-12)-1,it is expected that an intact fragment PauA(-4-12)carrying a -2 Da modification would be found if the first cyclophane was formed between Tyr5 and Arg7.However,such a PauA(-4-12)fragment was not observed in our analysis.Instead,the fragment PauA(-4-7)carrying a -2 Da modification (i.e.PauA(-4-7)-2) and the unmodified PauA(8-12)were observed in the assay (Fig.5B),which has been further validated by HR-MSMS analysis (Figs.S13 and S14 in Supporting information).In contrast,the modified PauA(8-12)fragment carrying a -2 Da modification was barely observed in the reaction.These results clearly demonstrated that the N-terminal cyclophane produced from Trp1 and Asn3 is the first ring produced in PauB reaction (Fig.5C).

    LC-HRMS analysis of the 3 h reaction product pre-treated with trypsin revealed two fragments PauA(-4-7)-3 (which is same to PauA(-4-7)-2) and the PauA(8-12)-3.This two fragments both carry a -2 Da modification (Fig.5D),which have been further validated by HR-MSMS analysis (Figs.S15 and S16 in Supporting information).In contrast,the intact PauA(-4-12)carrying a -4 Da modification was not found in the assay.These results indicates that the second crosslink catalyzed by PauB is the C-terminal cycphophane produced between Trp8 and Asn11,and the middle cycophane is produced lastly in PauB catalysis (Fig.5C).

    In summary,we show the BGCs of the Xye-type triceptides are present in a variety of gamma-proteobacteria.Although the motifs involved in cylcophane formation have characterstic features,and only three residues (i.e.Asn,Lys and Arg) are found at the X3 position,other residues such as Ser and Ala can also be recognized and modified for cylophane formtion.Although Gly at the X3 position cannot be modified,blocking cyclophane formation by the Gly-based mutagenesis does not have any observable impacts on the production of other two cyclophanes,suggesting that the three cyclophanes in the Xye system are produced independently.We also reconsituted thein vitroactivity of PauB,showing it is fully active to install the complete set of cyclophane rings on PauA.Moreover,we showed in PauB catalysis,the N-terminal cyclophane is produced firstly,which is followed by the formation of the Cterminal ring,whereas the middle cyclophane formed from Phe5 and Arg7 is produced in the last step (Fig.5C).Our study paves the way for future biosynthetic and engineering study of triceptides,and also contributes to the rapidly expanding knowledge the rSAM superfamily enzymes and the rSAM-dependent RiPP natural products.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by grants from the National Key Research and Development Program (Nos.2018YFA0900402 and 2021YFA0910501),from the National Natural Science Foundation of China (Nos.21822703,21921003,and 32070050),from the funding of Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (No.ZDSYS14005),and from West Light Foundation of the Chinese Academy of Sciences (No.xbzgzdsys-202105).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.06.012.

    美女脱内裤让男人舔精品视频| 啦啦啦视频在线资源免费观看| 哪个播放器可以免费观看大片| 天天操日日干夜夜撸| 久热久热在线精品观看| 亚洲色图综合在线观看| 精品午夜福利在线看| 国产麻豆69| 中文字幕人妻熟女乱码| 制服丝袜香蕉在线| 亚洲精品一二三| 国产亚洲av片在线观看秒播厂| 国产乱来视频区| 午夜福利影视在线免费观看| 国产亚洲最大av| 久久精品国产亚洲av天美| 亚洲国产最新在线播放| 国产片内射在线| 国产成人91sexporn| 日韩人妻精品一区2区三区| 狠狠婷婷综合久久久久久88av| 在线天堂最新版资源| a级片在线免费高清观看视频| 一级爰片在线观看| 女的被弄到高潮叫床怎么办| 超碰97精品在线观看| 欧美国产精品va在线观看不卡| 日本av手机在线免费观看| 一边亲一边摸免费视频| 日韩精品有码人妻一区| 黄片无遮挡物在线观看| 成人毛片60女人毛片免费| 99国产综合亚洲精品| 久久精品国产亚洲av涩爱| 国产日韩欧美亚洲二区| 欧美 日韩 精品 国产| 人妻系列 视频| 国产爽快片一区二区三区| 青春草视频在线免费观看| 亚洲在久久综合| 一级,二级,三级黄色视频| 青草久久国产| 亚洲国产av影院在线观看| 一级毛片 在线播放| 国产精品免费大片| 国产成人av激情在线播放| 日日摸夜夜添夜夜爱| 久久精品国产综合久久久| 欧美国产精品va在线观看不卡| 欧美成人午夜精品| 亚洲美女搞黄在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产av蜜桃| 2021少妇久久久久久久久久久| 少妇猛男粗大的猛烈进出视频| 国产一区二区 视频在线| 午夜久久久在线观看| 日韩制服骚丝袜av| 亚洲欧美成人综合另类久久久| 亚洲精品日韩在线中文字幕| 国产 一区精品| 超色免费av| 亚洲av中文av极速乱| 两性夫妻黄色片| 女人精品久久久久毛片| 亚洲内射少妇av| 欧美精品国产亚洲| 中文精品一卡2卡3卡4更新| 亚洲精品视频女| 老司机影院毛片| kizo精华| 久久久久久久亚洲中文字幕| 999精品在线视频| a级毛片黄视频| av卡一久久| 成人影院久久| 欧美精品av麻豆av| 久久人人爽av亚洲精品天堂| 久久99一区二区三区| 精品少妇黑人巨大在线播放| 青春草国产在线视频| 有码 亚洲区| 叶爱在线成人免费视频播放| 久久精品人人爽人人爽视色| 国产av精品麻豆| 人妻一区二区av| 精品亚洲成a人片在线观看| 自线自在国产av| 成年av动漫网址| 亚洲精品国产av蜜桃| a 毛片基地| xxxhd国产人妻xxx| 爱豆传媒免费全集在线观看| 国产精品国产三级专区第一集| 女人久久www免费人成看片| 欧美97在线视频| 国产精品久久久久久久久免| 免费在线观看视频国产中文字幕亚洲 | 成年女人毛片免费观看观看9 | 午夜福利在线观看免费完整高清在| 亚洲中文av在线| 在线精品无人区一区二区三| 国产av码专区亚洲av| 寂寞人妻少妇视频99o| 久久99一区二区三区| 日韩在线高清观看一区二区三区| 99久国产av精品国产电影| 成年人午夜在线观看视频| 夜夜骑夜夜射夜夜干| 国产精品熟女久久久久浪| 99久国产av精品国产电影| 亚洲国产精品成人久久小说| 三级国产精品片| 午夜精品国产一区二区电影| 久久久久久人妻| 日韩制服丝袜自拍偷拍| 日本91视频免费播放| 国产色婷婷99| 国产精品久久久久久精品古装| 日韩一区二区三区影片| 9热在线视频观看99| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久午夜乱码| 午夜久久久在线观看| 女人精品久久久久毛片| 青草久久国产| 午夜日本视频在线| 国产免费福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲男人天堂网一区| 精品一品国产午夜福利视频| 久久久a久久爽久久v久久| 欧美日韩亚洲高清精品| 一区二区三区激情视频| 亚洲一区中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 少妇猛男粗大的猛烈进出视频| 人人澡人人妻人| 丰满乱子伦码专区| 色婷婷av一区二区三区视频| 精品国产乱码久久久久久小说| 国产精品成人在线| 2022亚洲国产成人精品| 大话2 男鬼变身卡| 免费高清在线观看日韩| 成年人免费黄色播放视频| kizo精华| 欧美变态另类bdsm刘玥| 国产精品麻豆人妻色哟哟久久| 久久久久久久国产电影| 性色av一级| 少妇人妻精品综合一区二区| 女性被躁到高潮视频| 国语对白做爰xxxⅹ性视频网站| 黄色毛片三级朝国网站| 国产成人av激情在线播放| 黑人猛操日本美女一级片| 啦啦啦在线观看免费高清www| 欧美精品av麻豆av| 9191精品国产免费久久| 777久久人妻少妇嫩草av网站| 国产精品一二三区在线看| 美国免费a级毛片| 亚洲,一卡二卡三卡| 欧美精品av麻豆av| 又粗又硬又长又爽又黄的视频| 一区二区av电影网| 少妇人妻 视频| 久久久久久伊人网av| 国产麻豆69| 高清av免费在线| 黑人猛操日本美女一级片| 大片免费播放器 马上看| 男人爽女人下面视频在线观看| 久久久久久久久免费视频了| 精品少妇久久久久久888优播| 欧美日韩国产mv在线观看视频| 国产精品熟女久久久久浪| 国产精品国产三级国产专区5o| 亚洲三区欧美一区| 亚洲精品一区蜜桃| 午夜免费男女啪啪视频观看| 欧美激情极品国产一区二区三区| 欧美精品人与动牲交sv欧美| 美女主播在线视频| freevideosex欧美| 青草久久国产| 五月伊人婷婷丁香| 少妇人妻 视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品秋霞免费鲁丝片| 日本wwww免费看| 亚洲国产av新网站| 久久这里只有精品19| 日韩一卡2卡3卡4卡2021年| 久久久精品国产亚洲av高清涩受| 免费观看性生交大片5| 少妇人妻精品综合一区二区| 美女中出高潮动态图| 久久精品aⅴ一区二区三区四区 | 久久久久久久亚洲中文字幕| 久久国产精品男人的天堂亚洲| 精品视频人人做人人爽| 成人午夜精彩视频在线观看| 欧美日本中文国产一区发布| 久久亚洲国产成人精品v| a级片在线免费高清观看视频| 高清视频免费观看一区二区| 国产一区二区三区综合在线观看| 欧美日本中文国产一区发布| 波野结衣二区三区在线| 日本免费在线观看一区| 男女免费视频国产| 久久久亚洲精品成人影院| 18在线观看网站| 如日韩欧美国产精品一区二区三区| 一区在线观看完整版| 免费播放大片免费观看视频在线观看| 国产一区二区三区av在线| 99热国产这里只有精品6| av片东京热男人的天堂| 精品午夜福利在线看| 亚洲欧洲日产国产| 亚洲国产精品一区三区| 啦啦啦中文免费视频观看日本| 毛片一级片免费看久久久久| 最近手机中文字幕大全| 成年人午夜在线观看视频| 一边摸一边做爽爽视频免费| 欧美日韩亚洲高清精品| 韩国精品一区二区三区| av在线老鸭窝| 国产午夜精品一二区理论片| 亚洲精品美女久久久久99蜜臀 | 黑人猛操日本美女一级片| 国产精品女同一区二区软件| 国产成人免费无遮挡视频| 午夜福利影视在线免费观看| 最近2019中文字幕mv第一页| 久久久精品区二区三区| 黑人巨大精品欧美一区二区蜜桃| 丝袜喷水一区| 久久久欧美国产精品| 女人久久www免费人成看片| 午夜福利在线观看免费完整高清在| 麻豆av在线久日| 观看av在线不卡| 爱豆传媒免费全集在线观看| 精品一区在线观看国产| 一区二区三区四区激情视频| 又黄又粗又硬又大视频| 麻豆乱淫一区二区| 深夜精品福利| 亚洲成人av在线免费| 2022亚洲国产成人精品| 99热网站在线观看| 黄色毛片三级朝国网站| 欧美亚洲日本最大视频资源| 熟女av电影| 99国产综合亚洲精品| 婷婷色麻豆天堂久久| 日韩精品有码人妻一区| 黑人欧美特级aaaaaa片| 午夜激情av网站| 乱人伦中国视频| 亚洲在久久综合| av网站免费在线观看视频| 女人精品久久久久毛片| 各种免费的搞黄视频| 欧美精品一区二区免费开放| 亚洲色图综合在线观看| 丰满少妇做爰视频| 亚洲久久久国产精品| 久久久久久久久免费视频了| 国产极品粉嫩免费观看在线| 一本—道久久a久久精品蜜桃钙片| 天堂8中文在线网| 曰老女人黄片| 丁香六月天网| 欧美日韩综合久久久久久| 美女主播在线视频| 色视频在线一区二区三区| 亚洲精品日本国产第一区| 欧美日韩亚洲高清精品| 久久久欧美国产精品| 成人毛片60女人毛片免费| 高清av免费在线| 天天躁日日躁夜夜躁夜夜| 国产深夜福利视频在线观看| 一区二区日韩欧美中文字幕| 亚洲av电影在线进入| 哪个播放器可以免费观看大片| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 91精品三级在线观看| 天天操日日干夜夜撸| 亚洲欧美一区二区三区黑人 | 久久99热这里只频精品6学生| 久久久久精品性色| 免费少妇av软件| 国产精品av久久久久免费| 女人精品久久久久毛片| 国产成人a∨麻豆精品| 中文字幕色久视频| 丝袜美足系列| 熟妇人妻不卡中文字幕| 亚洲视频免费观看视频| 男女免费视频国产| 国产精品亚洲av一区麻豆 | 精品一区二区三区四区五区乱码 | 中文字幕av电影在线播放| 国产欧美日韩一区二区三区在线| 亚洲国产欧美在线一区| 黄色怎么调成土黄色| 水蜜桃什么品种好| 在线观看免费视频网站a站| 精品国产露脸久久av麻豆| 美女国产视频在线观看| 日日爽夜夜爽网站| 啦啦啦啦在线视频资源| av视频免费观看在线观看| 欧美精品人与动牲交sv欧美| 国产男人的电影天堂91| 中文字幕精品免费在线观看视频| 男女午夜视频在线观看| 夫妻性生交免费视频一级片| 中国国产av一级| 免费日韩欧美在线观看| 精品亚洲成国产av| 中文字幕人妻丝袜制服| 色吧在线观看| www日本在线高清视频| 亚洲精品久久成人aⅴ小说| 在线天堂中文资源库| 制服诱惑二区| 欧美另类一区| 不卡av一区二区三区| 自线自在国产av| 99re6热这里在线精品视频| 亚洲精品自拍成人| 午夜日韩欧美国产| 一区二区三区激情视频| 在线观看免费视频网站a站| 你懂的网址亚洲精品在线观看| 26uuu在线亚洲综合色| 国产日韩一区二区三区精品不卡| 男人爽女人下面视频在线观看| 国产日韩欧美亚洲二区| 国产精品.久久久| 亚洲天堂av无毛| 亚洲国产精品一区三区| 国产黄色视频一区二区在线观看| 老女人水多毛片| 女人久久www免费人成看片| 国产 精品1| 一级爰片在线观看| 精品国产一区二区三区久久久樱花| 婷婷色综合大香蕉| 久久午夜综合久久蜜桃| 黄色视频在线播放观看不卡| 国产一区有黄有色的免费视频| 久久久久久久久久人人人人人人| 精品国产乱码久久久久久小说| 我的亚洲天堂| 精品国产超薄肉色丝袜足j| 18+在线观看网站| 中文天堂在线官网| av又黄又爽大尺度在线免费看| 国语对白做爰xxxⅹ性视频网站| 国产精品偷伦视频观看了| 国产视频首页在线观看| 午夜激情av网站| 精品一品国产午夜福利视频| 亚洲国产精品一区二区三区在线| 七月丁香在线播放| av电影中文网址| 高清在线视频一区二区三区| 波野结衣二区三区在线| 亚洲欧洲国产日韩| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 亚洲男人天堂网一区| 亚洲精品久久久久久婷婷小说| 男女高潮啪啪啪动态图| 狂野欧美激情性bbbbbb| 一区福利在线观看| 一级片免费观看大全| 国产男女内射视频| 丝袜脚勾引网站| 成年女人在线观看亚洲视频| 纵有疾风起免费观看全集完整版| 欧美精品国产亚洲| 曰老女人黄片| 久久久精品免费免费高清| 亚洲激情五月婷婷啪啪| av一本久久久久| 青春草国产在线视频| 深夜精品福利| av免费观看日本| 日韩熟女老妇一区二区性免费视频| 中文字幕亚洲精品专区| 久久久久久久久久人人人人人人| 女人精品久久久久毛片| 最近手机中文字幕大全| 亚洲欧美色中文字幕在线| 亚洲国产精品一区二区三区在线| 欧美精品国产亚洲| 777久久人妻少妇嫩草av网站| 少妇被粗大的猛进出69影院| 2022亚洲国产成人精品| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 国产成人aa在线观看| 午夜福利一区二区在线看| 成人毛片a级毛片在线播放| 国产精品 欧美亚洲| 久久久久国产精品人妻一区二区| 18+在线观看网站| 亚洲美女黄色视频免费看| 在线观看免费高清a一片| 伊人久久国产一区二区| 肉色欧美久久久久久久蜜桃| 又粗又硬又长又爽又黄的视频| 777久久人妻少妇嫩草av网站| 亚洲成人av在线免费| 最黄视频免费看| 丰满少妇做爰视频| 自线自在国产av| 国产福利在线免费观看视频| av国产精品久久久久影院| 久久久国产欧美日韩av| av网站免费在线观看视频| 久久精品久久精品一区二区三区| 天天影视国产精品| 制服诱惑二区| 精品少妇内射三级| 少妇的逼水好多| 亚洲,一卡二卡三卡| 少妇被粗大的猛进出69影院| 26uuu在线亚洲综合色| a级毛片黄视频| 18禁国产床啪视频网站| 日日撸夜夜添| 韩国av在线不卡| 香蕉丝袜av| 亚洲情色 制服丝袜| 999久久久国产精品视频| 亚洲精品aⅴ在线观看| 啦啦啦中文免费视频观看日本| 秋霞伦理黄片| 又大又黄又爽视频免费| 美女国产高潮福利片在线看| 午夜福利,免费看| av片东京热男人的天堂| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 久久久精品94久久精品| 自线自在国产av| 日韩一本色道免费dvd| 亚洲成人手机| kizo精华| 少妇的丰满在线观看| 女的被弄到高潮叫床怎么办| 交换朋友夫妻互换小说| 国产免费视频播放在线视频| h视频一区二区三区| 免费播放大片免费观看视频在线观看| 亚洲五月色婷婷综合| 成人毛片a级毛片在线播放| 亚洲成人手机| 一区二区三区精品91| 国产片内射在线| 精品第一国产精品| 欧美激情高清一区二区三区 | 制服诱惑二区| 99久国产av精品国产电影| 亚洲,欧美精品.| 如日韩欧美国产精品一区二区三区| 亚洲欧美清纯卡通| 人人妻人人爽人人添夜夜欢视频| av免费在线看不卡| 人妻系列 视频| 亚洲成人av在线免费| 午夜免费鲁丝| 一个人免费看片子| 18在线观看网站| 亚洲,一卡二卡三卡| 国产精品久久久av美女十八| 一区二区三区精品91| 亚洲国产最新在线播放| 国产毛片在线视频| www.精华液| 黑人巨大精品欧美一区二区蜜桃| 午夜日本视频在线| 我要看黄色一级片免费的| 亚洲精品美女久久av网站| 国产成人精品婷婷| 丝瓜视频免费看黄片| 视频在线观看一区二区三区| 精品久久久精品久久久| 99国产精品免费福利视频| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 亚洲人成电影观看| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 我要看黄色一级片免费的| 黄片小视频在线播放| 最近最新中文字幕免费大全7| 国产精品国产三级国产专区5o| 国产av精品麻豆| 黄色怎么调成土黄色| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩视频精品一区| 曰老女人黄片| 女性生殖器流出的白浆| 男女高潮啪啪啪动态图| 国产野战对白在线观看| 日本av免费视频播放| 不卡av一区二区三区| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 自线自在国产av| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| www.av在线官网国产| 国产亚洲午夜精品一区二区久久| 免费黄网站久久成人精品| 这个男人来自地球电影免费观看 | 2018国产大陆天天弄谢| 狠狠精品人妻久久久久久综合| 久久久亚洲精品成人影院| 咕卡用的链子| 亚洲久久久国产精品| 色哟哟·www| 国产亚洲精品第一综合不卡| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 精品国产露脸久久av麻豆| 看免费av毛片| 日韩一区二区视频免费看| 国产97色在线日韩免费| 久久久久久久大尺度免费视频| 1024视频免费在线观看| 国产精品熟女久久久久浪| videosex国产| 色视频在线一区二区三区| 另类亚洲欧美激情| 国产成人精品婷婷| av线在线观看网站| 国产熟女午夜一区二区三区| 亚洲精品第二区| 亚洲国产精品一区二区三区在线| 亚洲婷婷狠狠爱综合网| 国产探花极品一区二区| 亚洲欧洲精品一区二区精品久久久 | 熟女av电影| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 精品一区二区免费观看| 中文字幕亚洲精品专区| 一区二区三区精品91| 黄色视频在线播放观看不卡| 免费女性裸体啪啪无遮挡网站| 美女福利国产在线| 看免费成人av毛片| 久久ye,这里只有精品| 国产乱人偷精品视频| 成人毛片a级毛片在线播放| 亚洲情色 制服丝袜| 久久久久久人妻| 亚洲av日韩在线播放| 制服人妻中文乱码| 亚洲美女搞黄在线观看| 在线看a的网站| 人人澡人人妻人| 日日啪夜夜爽| 久久免费观看电影| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 电影成人av| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| 国产精品一国产av| 人妻人人澡人人爽人人| 国产av一区二区精品久久| 99热国产这里只有精品6| 亚洲一区中文字幕在线| 捣出白浆h1v1| 一级片'在线观看视频| 老汉色∧v一级毛片| 午夜福利在线观看免费完整高清在| 久久影院123| 国产亚洲精品第一综合不卡| 丝袜人妻中文字幕| av电影中文网址| 亚洲久久久国产精品| xxxhd国产人妻xxx| 久久精品国产亚洲av涩爱| 日本av手机在线免费观看| 99re6热这里在线精品视频| 人人妻人人添人人爽欧美一区卜| 高清视频免费观看一区二区| 黄片播放在线免费| 不卡视频在线观看欧美| 一区二区三区四区激情视频| www.av在线官网国产| 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 人人妻人人澡人人爽人人夜夜| 91精品国产国语对白视频| 国产白丝娇喘喷水9色精品|