• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Substrate specificity and reaction directionality of a three-residue cyclophane forming enzyme PauB

    2023-03-14 06:52:32YuanjunHanSuzeMaQiZhang
    Chinese Chemical Letters 2023年1期

    Yuanjun Han,Suze Ma,Qi Zhang

    Department of Chemistry,Fudan University,Shanghai 200433,China

    Keywords:Cyclophane Biosynthesis Radical SAM Enzyme catalysis Peptide Natural product

    ABSTRACT Three-residue cyclophane-forming enzymes (3-CyFEs) are a group of radical S-adenosylmethionine (SAM)enzymes involved in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs).3-CyFE catalyzes the crosslinking between an aromatic residue (Ω1) and a non-aromatic residue (X3) in a Ω1-X2-X3 motif to produce a cyclophane ring,a key step in the biosynthesis of the RiPP natural product triceptide.In this study,we perform a genome-wide search for the Xye-type triceptides,showing these RiPPs are likely class-specific and only present in gamma-proteobacteria.The 3-CyFE PauB from Photorhabdus australis exhibits a relaxed substrate specificity on the X3 position,but glycine in this position is not suitable for cyclophane formation.We also reconstituted the activity of PauB in vitro,showing it produces the N-terminal cyclophane firstly,and then the C-terminal ring,whereas the middle cyclophane is produced in the last step.

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing superfamily of peptide natural products that are found in all domains of life [1,2].These compounds are derived from a gene-encoded precursor peptide and are produced by a series of posttranslational modifications.Owing to the increasingly expanding genome sequences and the vast diversity of the RiPP superfamily,mining of these natural products provided to be fruitful for discovering novel biochemistries as well as compounds with unique structures [1,2].Of particular interests in RiPP biosynthesis are radical S-adenosylmethionine (rSAM)enzymes,one of the largest enzyme superfamilies thus far containing more than 700,000 members [3,4].rSAM enzymes are extensively involved in RiPP biosynthesis and catalyze strikingly diverse reactions [5–9].The rSAM-dependent RiPPs include sactipeptide (α-thioether linkage) [10–14],ranthipeptide (βorγ-thioether linkage) [15–17],streptide (C-C crosslink between Lys and Trp)[18],rotapeptide (C-O crosslink between Thr and Gln) [19],ryptide (C-C crosslink between Arg and Tyr) [20],daropeptide (C-O-C crosslink) [21–23],and poly-cyclopropylglycine-containing peptides[24],among others (Fig.1).In these reactions,the rSAM enzymes utilize a strictly conserved [4Fe-4S] cluster to reductively cleave S-adenosylmethionine (SAM),and the resulting 5′-deoxyadenosyl(dAdo) radical then abstracts a hydrogen atom from the substrate to initiate a variety of oxidation reactions [25,26].

    A growing group of rSAM enzymes involved in RiPP biosynthesis is three-residue cyclophane-forming enzymes (3-CyFEs),which catalyze the crosslinking between an aromatic residue (Ω1) and a non-aromatic residue (X3) in aΩ1-X2-X3 motif to produce a cyclophane moiety (Fig.1),and the mature RiPPs are designated as triceptide (three-residue in cyclophane peptides) [27].3-CyFEs are abundant in diverse bacterial phyla and can be further classified into different clades based on the characteristic motif of the substrate,such as Xye,Grr and Fxs [27,28].The Xye subfamily of triceptides is named because their biosynthetic gene clusters are mainly found inXenorhabdus,YersiniaandErwinia.These compounds contain three cyclophane rings,including two Trp-derived rings in the N- and C-termini,and a Phe-derived ring in the middle(Fig.1) [27].The precursor peptide XyeA is roughly 50 amino acids long,consisting of a C-terminal core peptide composed of 12–15 amino acids,and an N-terminal leader peptide ended with a characteristic Gly-Gly motif,which is predicted to be the proteolytic cleavage site to remove the leader peptide [29,30].

    To explore the structural diversity of the Xye-type triceptide and their biosynthetic chemistry,a genome-wide search was carried out in the NCBI database for the biosynthetic gene clusters (BGCs) of the Xye-type triceptide.We performed multiple rounds of position-specific iterated (PSI)-BLAST search,and then a combination of EFI genome neighborhood tool (EFI-GNT) analysis[31] and rapid ORF description & evaluation online (RODEO) analysis [32].These analyzes revealed 48 unique precursor peptides,which are characteristic of the Xye-type precursors and distinct from those of other triceptide subfamilies such as Grr and Fxs.The identified BGCs are all fromγ-proteobacteria,suggesting these RiPPs are likely class-specific.Sequence similarity network (SSN)analysis of the pooled XyeA sequences showed that,in contrast to the hypervariable Fxs precursors shown in our previous analysis[28],Xye precursors are relatively conserved in sequence and can be grouped into two types with a relatively stringent criterion (i.e.,E=10-16) (Fig.2A).The two types of XyeAs are highly divergent in leader peptide region but share a common LX4LX4GG motif (X denotes any other residues) (Fig.2B),which is a recognition sequence of peptidase-containing ATP-binding transporter [29].Type I XyeAs are mainly from the genus Yersinia and Phtorhabdus,and the mature products likely contain an extra N-terminal Ala-Gly motif,which is not present in the product of type II XyeA that are mainly from Serratia,Xenorhabdus,Erwinia and Vibrio.Unlike the conserved C-terminal Ser-Phe motif in the type I XyeA,the Cterminal sequences in the type II precursors are more variable (Fig.2B).Besides the precursor peptide XyeA and the 3-CyFE XyeB,the Xye BGCs also encodes a HlyD family secretion protein (XyeC),an ABC transporter fused with an N-terminal C39 peptidase domain(XyeD),and an aspartyl protease (XyeE) (Fig.3A).

    Fig.1.Chemical structure of selected rSAM-dependent RiPPs.The crosslinks introduced by rSAM enzymes are highlighted in red.

    Fig.2.Sequence diversity of the Xye-type tricepeptide.(A) Sequence similarity network (SSN) of 48 XyeA sequences.(B) Sequence logos of the two XyeA subgroups.

    Fig.3.Triceptide biosynthesis in Photorhabdus australis.(A) The pau BGC encodes a precursor peptide PauA,a 3-CyFE PauB,a HlyD family secretion protein PauC,an ABC transporter fused with a C39 peptidase PauD,and an aspartyl protease PauE.(B) HR-MS characterization of (i) PauA expressed alone and (ii) PauA modified by PauB in vivo.PauA with -6 Da modification (PauA-1) is a result of the formation of three cyclophane rings.(C) HR-MS spectrum of the tryptic fragment PauA(-4-12),which has three cyclophane rings formed between W1 and N3,Y5 and R7,and W8 and N10,respectively.LP denotes leader peptide.

    We focus on a type II Xye BGC fromPhotorhabdus australis.To validate the enzyme activity of 3-CyFE encoded by this gene cluster,the precursor peptide PauA was coexpressed with the rSAM enzyme PauB inE.coli.In this analysis,PauA was expressed as a fusion protein,which contains an N-terminal hexa-histidine (His6)tag,a following maltose-binding protein (MBP),and a TEV protease cleavage site that separates MBP from PauA in the C-terminus[33].To facilitate downstream analysis and characterization,Gln at the -5 position in the leader peptide was mutated to Lys for tryptic digestion (according to the RiPP nomenclature [1,2],here the core peptide is labeled with positive numbers starting from the first residue of the predicted core sequence,and the leader peptide with negative numbers in a C-to-N order) (Fig.3A).The resulting fusedpauAconstruct was then coexpressed withpauBinE.coli,and the modified PauA peptide was purified by Niaffinity chromatography followed by TEV protease digestion to remove the N-terminal His6and MBP tags.Liquid chromatography with high-resolution mass spectrometry (LC-HRMS) analysis showed the resulting PauA is 6 Da less ([M+7H]7+= 977.06)compared to the unmodified PauA obtained by expressing PauA alone ([M+7H]7+=977.93) (Fig.3B),suggesting three cyclophane crosslinks were formed in PauA.The resulting peptide was then digested by trypsin and analyzed by LC-HRMS,which revealed the expected peptide fragment PauA(-4-12)containing three cyclophane crosslinks (Fig.3C).Detailed HR-MS/MS clearly showed the three crosslinks are formed,respectively between Trp1 and Asn3,Tyr5 and Arg7,and Trp8 and Asn10,and this result is consistent with the expected 3-residue cyclophane structures of the Xye-type triceptides (Fig.S1 in Supporting information).We hereafter refer to the fully modified PauA (which contains three cyclophane rings) as 1,and the tryptic fragment was accordingly termed PauA(-4-12)-1.

    Sequence analysis of the putative Xye precursor peptide showed that the to-be-cyclized X3 residues in theΩ1-X2-X3 motif is relatively conserved,which appear as Asn,Lys or Arg (Fig.2B).To determine whether the enzyme can also act on other residues,we,respectively changed Asn3,Arg7,and Asn10 to Ser,a natural substrate of the Fxs type 3-CyFEs [27,28].The three PauA mutants (i.e.,N3S,R7S,N10S) were then co-expressed with PauB,and the resulting peptides were purified,digested by TEV protease,and analyzed in a way similar that of PauA with the wild type core as discussed above.LC-HRMS analysis of the resulting peptides showed that all the three Ser-based mutants were fully modified to the corresponding -6 Da products (Fig.4A),and this observation is consistent with the formation of the complete set of three cyclophane crosslinks in the three mutants.HR-MS/MS analysis of the corresponding tryptic fragments of the three mutants clearly revealed the crosslink between newly-introduced Ser residues and the correspondingΩ1 residue,besides the other two cyclophane rings (Figs.S2–S4 in Supporting information).We also constructed three Ala-based mutants (i.e.,N3A,R7A,N10A),and each of these mutants was coexpressed with PauB followed by purification and proteolytic digestion.Subsequent LC-HRMS and HR-MS/MS analysis revealed that,similar to those of the Ser-based mutants,complete sets of cyclophane crosslinks were formed for all the three Alabased mutants (Fig.4B and Figs.S5–S7 in Supporting information).These results indicate that both Ser and Ala are efficient substrates of PauB for cyclophane formation in triceptide biosynthesis.

    We next set out to test whether biosynthesis of the three cyclophane rings are independent of each other.Because the crosslinks introduced by 3-CyFEs are formedviatheβ-carbon of X3,we reasoned that changing X3 to Gly (which does not have aβ-carbon)would abolish cyclophane formation at the mutation site.This mutagenesis would also impede the formation of other cycylophanes if formation of one cyclophane ring is neccessary for the the latter.We hence generated three Gly-based PauA mutants (i.e.,N3G,R7G,N10G) and analyzed these peptides after coexpression with PauB.LC-HRMS analysis showed that only two cyclophanes were formed for all the Gly-based mutants.Following HR-MSMS analysis of the corresponding tryptic fragments of the mutants showed no crosslink is formed at the mutation site,whereas other two cyclophanes were installed succesfully (Fig.4C and Figs.S8–S10 in Supporting information).These observations indicate that cyclophane produced by 3-CyFE can only be formedviatheβcarbon of the side chain.Although three cyclophane rings are produced in the precurosr peptide,formation of each crosslink is independent of other two rings.

    To further investigate the PauB-catalyzed cyclophane formation,we purified PauB as an N-terminal His6tagged form,and reconstituted the [4Fe-4S] cluster under a strict anaerobic condition,in a way similar to our previous analysis with other radical SAM enzymes [34–37].Quantification analysis showed that each enzyme contains 8.2 ± 0.4 iron and 9.1 ± 0.5 labile sulfide,suggesting PauB harbors two [4Fe-4S] clusters.This observation is consistent with the fact that 3-CyFEs contains a C-terminal SPASM/twitch domain,which binds additional [4Fe-4S] clusters,with roles suggestive of peptide binding and/or electron transfer [38,39].We then treated the reconsituted PauB with sodium dithionite (DTH),a strong reductant that has been commonly used in converting [4Fe-4S] from the inactive +2 to the active +1 state [26].Incubation of the reconstituted PauB with DTH and SAM resulted in apparent production of 5′-deoxyadenosine (dAdoH) (Fig.S11 in Supporting information),indicating that PauB is indeed a rSAM protein.In contrast to many other rSAM enzymes that do not require external reductant for activity [40–45],DTH appears to be strictly essential for enzyme activity (Fig.S11).The assay was then performed by incubation of PauA with PauB in the presence of SAM and DTH under strictly anaerobic condition.LC-HRMS analysis of the reaction mixture clearly revealed production of the fully modified PauA(PauA-1) carrying three cyclophanes (Fig.5A),which was further validated by HR-MSMS analysis (Fig.S12 in Supporting information).We did not observed any signals corresponding to the noncyclized fragment of the -6 Da product (Fig.S12),suggesting that PauB specifically catalyzed cyclophane formation on PauA,distinct from the remarkable catalytic promiscuity of the Fxs-type 3-CyFE SjiB observed in our previous analysis [28].

    We next interrogated the reaction order in the formation of the three cyclophane rings.To this end,we performed the reaction and monitored the time course ofin vitroPauA modification.This analysis showed the main product in 1 h reaction carries only one cyclophane ring (hereafter reffered as to PauA-2) (Fig.5A,trace ii).The product carrying two cyclophane rings (i.e.PauA-3) culminated around 3 h (Fig.5A,trace iii),whereas the fully modified product PauA-1 appeared as the major product after 6 h reaction (Fig.5A,trace iv).These observation strongly indicates that the PauBcatalyzed multiple cyclophane production on PauA is a distributive process,an observation consistent with most (if not all) RiPP biosynthesis enzymes [46].

    Fig.4.HR-MS analysis of PauA mutants modified by PauB,showing the HR-MS spectra of (A) three Ser-based mutants,(B) three Ala-based mutants,and (C) three Gly-based mutants.The molecular weights were calculated based on the unmodified products,and -6 Da and -4 Da correspond to the formation of three and two cyclophane rings,respectively.

    Fig.5. In vitro reconstitution of cyclophane formation by PauB.(A) Time-dependent formation of the three cyclophane rings on PauA.(B) The HR-MS spectra of the tryptic fragments of PauA-2 obtained by treating the 1 h reaction mixture with trypsin.(C) The proposed reaction order of the PauB-catalyzed cyclophane formation on PauA.(D) The HR-MS spectra of the tryptic fragments the PauA-3 obtained by treating the 3 h reaction mixture with trypsin.

    We then treated the PauA product from 1 h reaction by trypsin and analyzed it by LC-HRMS.Because cyclophane formation between Tyr5 and Arg7 would completely block trypsin digestion,as shown for PauA(-4-12)-1,it is expected that an intact fragment PauA(-4-12)carrying a -2 Da modification would be found if the first cyclophane was formed between Tyr5 and Arg7.However,such a PauA(-4-12)fragment was not observed in our analysis.Instead,the fragment PauA(-4-7)carrying a -2 Da modification (i.e.PauA(-4-7)-2) and the unmodified PauA(8-12)were observed in the assay (Fig.5B),which has been further validated by HR-MSMS analysis (Figs.S13 and S14 in Supporting information).In contrast,the modified PauA(8-12)fragment carrying a -2 Da modification was barely observed in the reaction.These results clearly demonstrated that the N-terminal cyclophane produced from Trp1 and Asn3 is the first ring produced in PauB reaction (Fig.5C).

    LC-HRMS analysis of the 3 h reaction product pre-treated with trypsin revealed two fragments PauA(-4-7)-3 (which is same to PauA(-4-7)-2) and the PauA(8-12)-3.This two fragments both carry a -2 Da modification (Fig.5D),which have been further validated by HR-MSMS analysis (Figs.S15 and S16 in Supporting information).In contrast,the intact PauA(-4-12)carrying a -4 Da modification was not found in the assay.These results indicates that the second crosslink catalyzed by PauB is the C-terminal cycphophane produced between Trp8 and Asn11,and the middle cycophane is produced lastly in PauB catalysis (Fig.5C).

    In summary,we show the BGCs of the Xye-type triceptides are present in a variety of gamma-proteobacteria.Although the motifs involved in cylcophane formation have characterstic features,and only three residues (i.e.Asn,Lys and Arg) are found at the X3 position,other residues such as Ser and Ala can also be recognized and modified for cylophane formtion.Although Gly at the X3 position cannot be modified,blocking cyclophane formation by the Gly-based mutagenesis does not have any observable impacts on the production of other two cyclophanes,suggesting that the three cyclophanes in the Xye system are produced independently.We also reconsituted thein vitroactivity of PauB,showing it is fully active to install the complete set of cyclophane rings on PauA.Moreover,we showed in PauB catalysis,the N-terminal cyclophane is produced firstly,which is followed by the formation of the Cterminal ring,whereas the middle cyclophane formed from Phe5 and Arg7 is produced in the last step (Fig.5C).Our study paves the way for future biosynthetic and engineering study of triceptides,and also contributes to the rapidly expanding knowledge the rSAM superfamily enzymes and the rSAM-dependent RiPP natural products.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by grants from the National Key Research and Development Program (Nos.2018YFA0900402 and 2021YFA0910501),from the National Natural Science Foundation of China (Nos.21822703,21921003,and 32070050),from the funding of Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (No.ZDSYS14005),and from West Light Foundation of the Chinese Academy of Sciences (No.xbzgzdsys-202105).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.06.012.

    少妇熟女欧美另类| 国产在视频线精品| 伦理电影大哥的女人| 狂野欧美激情性bbbbbb| 精品少妇久久久久久888优播| 三级经典国产精品| 久久久久久久亚洲中文字幕| 久久午夜福利片| 国产永久视频网站| 熟妇人妻不卡中文字幕| 亚洲国产精品成人综合色| 亚洲国产av新网站| 男女边摸边吃奶| 99视频精品全部免费 在线| 免费黄色在线免费观看| 久久久久久国产a免费观看| 99久久精品热视频| 两个人的视频大全免费| 成人免费观看视频高清| 成年女人在线观看亚洲视频 | 国产69精品久久久久777片| 国产免费一区二区三区四区乱码| 国产亚洲最大av| 成人国产麻豆网| 成年女人看的毛片在线观看| 中文资源天堂在线| 国产久久久一区二区三区| 国产亚洲av嫩草精品影院| 亚洲av.av天堂| 亚洲精品日韩在线中文字幕| 伊人久久精品亚洲午夜| 国产色爽女视频免费观看| 麻豆乱淫一区二区| 啦啦啦中文免费视频观看日本| 18禁裸乳无遮挡动漫免费视频 | 一本久久精品| 亚洲四区av| 国产精品嫩草影院av在线观看| 国产综合精华液| 国产伦精品一区二区三区视频9| 午夜福利网站1000一区二区三区| 午夜免费男女啪啪视频观看| 高清毛片免费看| 水蜜桃什么品种好| 亚洲aⅴ乱码一区二区在线播放| 2018国产大陆天天弄谢| 五月伊人婷婷丁香| 永久网站在线| 看免费成人av毛片| 亚洲精品456在线播放app| 亚洲va在线va天堂va国产| av在线天堂中文字幕| av在线观看视频网站免费| 黄色配什么色好看| 国产色婷婷99| 极品教师在线视频| 久久久久精品性色| 久久久精品欧美日韩精品| 丰满人妻一区二区三区视频av| 亚洲成人中文字幕在线播放| 一级毛片aaaaaa免费看小| 亚洲高清免费不卡视频| 欧美一区二区亚洲| 亚洲精品乱久久久久久| 亚洲自拍偷在线| 国产午夜福利久久久久久| 熟女av电影| 成人鲁丝片一二三区免费| 高清欧美精品videossex| 黄色怎么调成土黄色| 久久国产乱子免费精品| 国产精品一区二区性色av| 免费看不卡的av| 丝袜喷水一区| 国产乱人偷精品视频| 狂野欧美激情性bbbbbb| 又爽又黄无遮挡网站| 香蕉精品网在线| 禁无遮挡网站| 我要看日韩黄色一级片| 国产成人福利小说| 亚洲天堂av无毛| 亚洲av中文av极速乱| 日日摸夜夜添夜夜添av毛片| 成人综合一区亚洲| 日本一本二区三区精品| 蜜桃亚洲精品一区二区三区| 国产黄片视频在线免费观看| 国产精品久久久久久久电影| 亚洲欧美成人精品一区二区| 看黄色毛片网站| 一级爰片在线观看| 久久久精品免费免费高清| 晚上一个人看的免费电影| 免费av不卡在线播放| 男女边吃奶边做爰视频| 午夜日本视频在线| 91午夜精品亚洲一区二区三区| 全区人妻精品视频| 黄色一级大片看看| 伊人久久国产一区二区| 少妇熟女欧美另类| 一区二区三区乱码不卡18| 国产免费视频播放在线视频| 精品午夜福利在线看| 国产成人91sexporn| 国产一区二区在线观看日韩| 亚洲天堂av无毛| 亚洲精品亚洲一区二区| 白带黄色成豆腐渣| 99热这里只有精品一区| 日韩一区二区三区影片| 久久久久国产精品人妻一区二区| 2021少妇久久久久久久久久久| 久久精品久久精品一区二区三区| 2022亚洲国产成人精品| 大陆偷拍与自拍| 亚洲最大成人中文| 偷拍熟女少妇极品色| 噜噜噜噜噜久久久久久91| 亚洲欧洲日产国产| 97超视频在线观看视频| 精品国产三级普通话版| 我的老师免费观看完整版| 国产伦精品一区二区三区四那| 别揉我奶头 嗯啊视频| 久久精品国产鲁丝片午夜精品| 91精品国产九色| 亚洲欧美日韩另类电影网站 | 全区人妻精品视频| 夜夜看夜夜爽夜夜摸| 国产男女超爽视频在线观看| 中文资源天堂在线| 日韩成人伦理影院| 久久久精品免费免费高清| 成年女人在线观看亚洲视频 | 亚洲成人中文字幕在线播放| 街头女战士在线观看网站| 免费高清在线观看视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲第一区二区三区不卡| 九九在线视频观看精品| 久久久久久久午夜电影| 99热国产这里只有精品6| 美女主播在线视频| 少妇被粗大猛烈的视频| 国产一区二区在线观看日韩| 亚洲精品成人久久久久久| 欧美日韩在线观看h| 国产午夜精品久久久久久一区二区三区| av.在线天堂| 夜夜看夜夜爽夜夜摸| 一级毛片黄色毛片免费观看视频| 欧美区成人在线视频| 国产av码专区亚洲av| 在线天堂最新版资源| 你懂的网址亚洲精品在线观看| 三级男女做爰猛烈吃奶摸视频| www.av在线官网国产| 白带黄色成豆腐渣| 国产黄片美女视频| 国产精品一区二区在线观看99| 亚洲欧美日韩东京热| 国产一区二区三区综合在线观看 | 欧美国产精品一级二级三级 | 国产亚洲av片在线观看秒播厂| 国产精品99久久99久久久不卡 | 纵有疾风起免费观看全集完整版| av在线蜜桃| 久久久久久九九精品二区国产| 亚洲av欧美aⅴ国产| 亚洲av中文av极速乱| 成人国产av品久久久| 欧美激情国产日韩精品一区| 亚洲在久久综合| 国产精品一区二区三区四区免费观看| 白带黄色成豆腐渣| 国产高清不卡午夜福利| 国产男女超爽视频在线观看| .国产精品久久| 你懂的网址亚洲精品在线观看| 日本黄大片高清| 国内少妇人妻偷人精品xxx网站| 亚洲一区二区三区欧美精品 | 亚洲高清免费不卡视频| 亚洲婷婷狠狠爱综合网| 国产亚洲精品久久久com| 在现免费观看毛片| 午夜爱爱视频在线播放| 日韩一区二区三区影片| 人妻系列 视频| 又爽又黄无遮挡网站| 成年av动漫网址| 国产亚洲av片在线观看秒播厂| 黄色欧美视频在线观看| 国产精品不卡视频一区二区| 天天一区二区日本电影三级| h日本视频在线播放| 在线天堂最新版资源| 国产高潮美女av| 男女边摸边吃奶| 成人黄色视频免费在线看| 久久精品国产自在天天线| 国产精品久久久久久精品电影| 18禁裸乳无遮挡动漫免费视频 | av黄色大香蕉| 日韩视频在线欧美| 尾随美女入室| 99久久九九国产精品国产免费| 99视频精品全部免费 在线| 国产高潮美女av| 国产精品福利在线免费观看| 26uuu在线亚洲综合色| 国产成人免费观看mmmm| 麻豆国产97在线/欧美| 国产高清有码在线观看视频| 好男人视频免费观看在线| 中文乱码字字幕精品一区二区三区| 亚洲欧美日韩另类电影网站 | 久久影院123| 亚洲国产精品成人综合色| 亚洲av免费高清在线观看| 亚洲人与动物交配视频| 成年免费大片在线观看| 免费黄网站久久成人精品| 亚洲人成网站高清观看| 看黄色毛片网站| 久久久久久九九精品二区国产| 亚洲av中文av极速乱| 看非洲黑人一级黄片| av免费在线看不卡| 一级毛片电影观看| 亚洲欧美日韩卡通动漫| 亚洲综合精品二区| 人妻系列 视频| 国产久久久一区二区三区| 青春草视频在线免费观看| 伦精品一区二区三区| 亚洲经典国产精华液单| 大话2 男鬼变身卡| 久久99蜜桃精品久久| 免费av毛片视频| 亚洲精品国产成人久久av| 国产成人a∨麻豆精品| 亚洲欧美中文字幕日韩二区| 婷婷色av中文字幕| 成人美女网站在线观看视频| 91狼人影院| 成年女人看的毛片在线观看| 一区二区三区精品91| 我的女老师完整版在线观看| 激情五月婷婷亚洲| 天天躁日日操中文字幕| 国产精品一区www在线观看| 香蕉精品网在线| 精品视频人人做人人爽| 国产欧美亚洲国产| 亚洲精品aⅴ在线观看| 精华霜和精华液先用哪个| 中文精品一卡2卡3卡4更新| 午夜免费鲁丝| 在现免费观看毛片| 如何舔出高潮| 亚洲三级黄色毛片| 久久久久国产网址| 国产高潮美女av| 男女下面进入的视频免费午夜| 国产成人福利小说| 精品久久久久久久末码| 老师上课跳d突然被开到最大视频| 少妇高潮的动态图| 亚洲国产精品专区欧美| 色婷婷久久久亚洲欧美| 成人欧美大片| 亚洲精品视频女| 欧美性猛交╳xxx乱大交人| 热99国产精品久久久久久7| 国产精品伦人一区二区| 亚洲在线观看片| 女人久久www免费人成看片| av网站免费在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 久久ye,这里只有精品| 国产亚洲av嫩草精品影院| 亚洲精品456在线播放app| 精品一区二区三卡| 国产成人精品福利久久| 中文字幕av成人在线电影| 日日撸夜夜添| 午夜亚洲福利在线播放| 亚洲国产精品成人久久小说| 亚洲图色成人| 亚洲国产日韩一区二区| 亚洲精品久久久久久婷婷小说| 中国三级夫妇交换| 啦啦啦中文免费视频观看日本| 国产精品一区www在线观看| 精品亚洲乱码少妇综合久久| 久久久久久久久久成人| 亚洲欧美精品自产自拍| 久久精品久久久久久噜噜老黄| 国产亚洲最大av| 亚洲四区av| 欧美成人午夜免费资源| 色5月婷婷丁香| 中文天堂在线官网| 久久久成人免费电影| 免费大片18禁| 国产美女午夜福利| 丝袜喷水一区| 成人免费观看视频高清| av播播在线观看一区| 九色成人免费人妻av| 国模一区二区三区四区视频| 又爽又黄无遮挡网站| 联通29元200g的流量卡| 三级经典国产精品| 一个人看的www免费观看视频| 国产精品无大码| 综合色av麻豆| 亚洲欧美中文字幕日韩二区| 国产高清三级在线| 国产男女超爽视频在线观看| 亚洲精品成人久久久久久| 嫩草影院精品99| 乱系列少妇在线播放| 亚洲av成人精品一区久久| 国产精品一区二区在线观看99| 五月伊人婷婷丁香| 久久综合国产亚洲精品| 亚洲精品成人av观看孕妇| 成人一区二区视频在线观看| 国产av码专区亚洲av| 草草在线视频免费看| 亚洲,一卡二卡三卡| 又爽又黄无遮挡网站| 欧美老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 国产男人的电影天堂91| 插阴视频在线观看视频| 日本三级黄在线观看| 精品酒店卫生间| av国产免费在线观看| 黄色怎么调成土黄色| 国产亚洲一区二区精品| 18+在线观看网站| 午夜日本视频在线| av一本久久久久| av在线天堂中文字幕| 国产人妻一区二区三区在| 国产高清三级在线| av.在线天堂| 18禁裸乳无遮挡动漫免费视频 | 91狼人影院| 2021天堂中文幕一二区在线观| 精品一区在线观看国产| 亚洲欧美一区二区三区国产| 久热这里只有精品99| 蜜臀久久99精品久久宅男| 99九九线精品视频在线观看视频| 99热这里只有是精品在线观看| 国产淫语在线视频| 在线天堂最新版资源| 亚洲av男天堂| 久久午夜福利片| 亚洲国产精品国产精品| 亚洲经典国产精华液单| 亚洲欧洲国产日韩| 色播亚洲综合网| 狠狠精品人妻久久久久久综合| 国产成人freesex在线| 久久国产乱子免费精品| 18禁在线播放成人免费| 亚洲精品一区蜜桃| 国产白丝娇喘喷水9色精品| 国产精品秋霞免费鲁丝片| 丝袜美腿在线中文| 特大巨黑吊av在线直播| 国产一区二区三区综合在线观看 | 国产精品伦人一区二区| 国产成人一区二区在线| 亚洲成人中文字幕在线播放| 最近中文字幕高清免费大全6| 蜜桃亚洲精品一区二区三区| 国产一区二区三区综合在线观看 | 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av涩爱| 欧美日韩视频精品一区| 一个人观看的视频www高清免费观看| 免费黄网站久久成人精品| 伦理电影大哥的女人| 视频区图区小说| av国产久精品久网站免费入址| 高清在线视频一区二区三区| 2022亚洲国产成人精品| av国产精品久久久久影院| 国产爽快片一区二区三区| 99久久九九国产精品国产免费| 看非洲黑人一级黄片| 大片免费播放器 马上看| 中文在线观看免费www的网站| 国产午夜福利久久久久久| 国产男人的电影天堂91| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 日韩欧美精品v在线| 欧美成人a在线观看| 极品少妇高潮喷水抽搐| 你懂的网址亚洲精品在线观看| 黑人高潮一二区| 下体分泌物呈黄色| 人人妻人人看人人澡| av免费观看日本| 69av精品久久久久久| 精品亚洲乱码少妇综合久久| 大陆偷拍与自拍| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 欧美高清成人免费视频www| 国产精品无大码| 卡戴珊不雅视频在线播放| 欧美成人午夜免费资源| 一级毛片黄色毛片免费观看视频| 亚洲av福利一区| 免费黄色在线免费观看| 亚洲,欧美,日韩| 精品国产三级普通话版| 春色校园在线视频观看| 精品一区二区三卡| 久久久午夜欧美精品| 午夜免费鲁丝| 高清在线视频一区二区三区| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 色视频www国产| 国产老妇女一区| 97在线视频观看| 免费看日本二区| 精品国产露脸久久av麻豆| 国产一区二区亚洲精品在线观看| 成人二区视频| 一级毛片黄色毛片免费观看视频| av一本久久久久| 成年av动漫网址| 三级国产精品欧美在线观看| 国产精品女同一区二区软件| 亚洲精品一区蜜桃| 久久精品人妻少妇| 18禁在线无遮挡免费观看视频| 精品视频人人做人人爽| 久久国产乱子免费精品| 春色校园在线视频观看| 欧美老熟妇乱子伦牲交| 能在线免费看毛片的网站| 国产中年淑女户外野战色| 免费av不卡在线播放| 欧美日韩视频高清一区二区三区二| 高清在线视频一区二区三区| 亚洲精品自拍成人| 成人无遮挡网站| 国产日韩欧美亚洲二区| 国产精品国产三级专区第一集| 王馨瑶露胸无遮挡在线观看| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 精品人妻熟女av久视频| 三级男女做爰猛烈吃奶摸视频| 久久影院123| 精品一区二区三卡| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 内射极品少妇av片p| 九色成人免费人妻av| 日本三级黄在线观看| 日产精品乱码卡一卡2卡三| 婷婷色综合www| 白带黄色成豆腐渣| 一级毛片电影观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品福利在线免费观看| 久久久久精品性色| 大香蕉久久网| 嫩草影院精品99| 国产一区有黄有色的免费视频| 免费观看a级毛片全部| 人妻少妇偷人精品九色| av天堂中文字幕网| 听说在线观看完整版免费高清| 观看免费一级毛片| 久久精品国产自在天天线| 少妇人妻精品综合一区二区| 最近中文字幕2019免费版| 国产高清国产精品国产三级 | 毛片女人毛片| 内射极品少妇av片p| 啦啦啦在线观看免费高清www| 久久久久久久大尺度免费视频| 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 99热全是精品| 亚洲精华国产精华液的使用体验| 我的女老师完整版在线观看| 免费看av在线观看网站| 22中文网久久字幕| 国产亚洲av嫩草精品影院| 久久久久久久久久久免费av| 精品久久国产蜜桃| 最近最新中文字幕大全电影3| 深夜a级毛片| 狂野欧美白嫩少妇大欣赏| 麻豆久久精品国产亚洲av| 亚洲国产最新在线播放| 日本熟妇午夜| 一级毛片久久久久久久久女| 久久久欧美国产精品| 精品午夜福利在线看| 高清在线视频一区二区三区| 黄片wwwwww| 又爽又黄无遮挡网站| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| .国产精品久久| av在线播放精品| 日日摸夜夜添夜夜添av毛片| 九色成人免费人妻av| 一级爰片在线观看| 我的女老师完整版在线观看| 直男gayav资源| 婷婷色综合大香蕉| 国产乱来视频区| 男女啪啪激烈高潮av片| 亚洲av免费高清在线观看| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 欧美激情国产日韩精品一区| 欧美国产精品一级二级三级 | 男女啪啪激烈高潮av片| 五月天丁香电影| 日本-黄色视频高清免费观看| 亚洲婷婷狠狠爱综合网| 欧美激情久久久久久爽电影| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验| 久久人人爽人人爽人人片va| 亚洲av成人精品一区久久| 一本色道久久久久久精品综合| 观看免费一级毛片| 久久久久久久久大av| 亚洲不卡免费看| 99热国产这里只有精品6| 亚洲av不卡在线观看| 一区二区三区精品91| 久久精品夜色国产| 22中文网久久字幕| 乱系列少妇在线播放| 日韩一本色道免费dvd| 麻豆成人午夜福利视频| 精品熟女少妇av免费看| 禁无遮挡网站| 亚洲国产高清在线一区二区三| 好男人视频免费观看在线| www.av在线官网国产| 国产又色又爽无遮挡免| 国产亚洲午夜精品一区二区久久 | 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 国产高潮美女av| 精品少妇久久久久久888优播| 久久这里有精品视频免费| av免费在线看不卡| 新久久久久国产一级毛片| 我的女老师完整版在线观看| 最近最新中文字幕大全电影3| 久久久久久久久大av| 亚洲久久久久久中文字幕| 搡女人真爽免费视频火全软件| 成年av动漫网址| 国产一区二区在线观看日韩| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 亚洲成人一二三区av| 亚洲欧美日韩无卡精品| 干丝袜人妻中文字幕| 亚洲天堂av无毛| 精品99又大又爽又粗少妇毛片| 精品国产三级普通话版| 老师上课跳d突然被开到最大视频| 亚洲av男天堂| 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人 | 春色校园在线视频观看| 精品熟女少妇av免费看| 老司机影院成人| 国产爱豆传媒在线观看| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 又爽又黄无遮挡网站| 日本午夜av视频| av线在线观看网站| 亚洲av.av天堂| 午夜精品一区二区三区免费看| 国产国拍精品亚洲av在线观看| 成人一区二区视频在线观看| 成人特级av手机在线观看| 午夜免费男女啪啪视频观看| 嫩草影院精品99| 国产精品.久久久| 69av精品久久久久久| 亚洲av二区三区四区| 日韩欧美精品免费久久| 夜夜看夜夜爽夜夜摸|