• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions

    2023-03-14 06:52:42LinQianYuHaoWangShuLaChenTeErWenBaoChengHuangRenCunJin
    Chinese Chemical Letters 2023年1期

    Lin-Qian Yu,Hao Wang,Shu-La Chen,Te-Er Wen,Bao-Cheng Huang,Ren-Cun Jin

    Laboratory of Water Pollution Remediation,School of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou 311121,China

    Keywords:Fe-N/C Oxygen reduction reaction Biomass Fe coordination Polyphenol

    ABSTRACT Fe-N/C is a promising oxygen reduction reaction (ORR) catalyst to substitute the current widely used precious metal platinum.Cost-effectively fabricating the Fe-N/C material with high catalytic activity and getting in-depth insight into the responsible catalytic site are of great significance.In this work,we proposed to use biomass,tea leaves waste,as the precursor to prepare ORR catalyst.By adding 5% FeCl3(wt%) into tea precursor,the pyrolysis product (i.e.,5%Fe-N/C) exhibited an excellent four-electron ORR activity,whose onset potential was only 10 mV lower than that of commercial Pt/C.The limiting current density of 5%Fe-N/C (5.75 mA/cm2) was even higher than Pt/C (5.44 mA/cm2).Compared with other biomass or metal organic frameworks derived catalysts,5%Fe-N/C showed similar ORR activity.Also,both the methanol tolerance and material stability performances of as-prepared 5%Fe-N/C catalyst were superior to that of Pt/C.X-ray adsorption fine structure characterization revealed that the FeN4O2 might be the possible catalytic site.An appropriate amount of iron chloride addition not only facilitated catalytic site formation,but also enhanced material conductivity and reaction kinetics.The results of this work may be useful for the Fe based transition metal ORR catalyst design and application.

    Fuel cell technology is one of the favorable solutions for sustainable transportation development.Nevertheless,the low rate of oxygen reduction reaction (ORR) on cathode surface remains as a great challenge for its application [1–3].Due to its low Fermi level[4],platinum-based catalysts usually exhibit excellent ORR activity,yet the low storage reserves and fancy price impeded its largescale and sustainable deployment [5,6].As platinum is short of supply,there is a considerable motive force to search for abundant and inexpensive materials to expand the development of fuel cell technology [7,8].

    Transition metal-nitrogen-carbon electrocatalyst,especially Fe-N/C material,has been widely synthesized and used to catalyze ORR,by considering its high level in both activity and stability[8–10].Although a substantial progress on selectivity improvement of four-electron reaction route has been achieved,the intrinsic catalytic site of Fe-N/C still remains elusive.Fe-N moiety (Fe-Nx)was identified as the primary active center for ORR,while the metal coordination environment change normally results in discrepant catalytic selectivity [11,12].For instance,FeN4structure was widely proposed as the catalytic site in the previous works[13,14].Whereas,other studies argued that five [15] or six [16] coordinated Fe-Nxwas the responsible structure to catalyze ORR.Therefore,the responsible Fe-Nxsite is still ambiguous.Under the actual situation,other elements such as oxygen or carbon are possible to involve in coordination [17].Getting in-depth insight into the Fe-N/C catalyst active site identification and enrichment is then of great significance for ORR rate improvement and fuel cell application.

    Metal-organic coordinates were favorable materials to prepare metal-N/C catalyst.Zeolitic imidazolate frameworks-8 was used to coordinate Fe by partial substitution of zinc ions [18].Fe-N/C hybrid materials could also be fabricatedviaannealing Zn and Fe bimetallic metal organic frameworks (MOFs) [19].However,most of previous studies utilized artificially synthesized organic frameworks as precursors to prepare Fe-N/C ORR catalysts.

    While the preparation of MOFs is complicated,the reuse of waste biomass is much more convenient.There are a series application of waste biomass derived catalysts in photocatalysis [20],electrocatalytic water oxidation reaction [21],oxygen evolution[22,23],as well as ORR catalysis [24].Notably,naturally accessed polyphenol structure was proposed as an outstanding candidate to lock metal ion [25].Our previous work also showed that cobalt nanocomposite could be successfully fabricated by using tannic acid as organic ligand [26].Herein,polyphenol substance might be used an efficient organic ligand to anchor iron ion for Fe-N/C preparation.Typically,as one of the popular drink around the work[27],tea leaves are rich in polyphenol components.According to statistics,more than 90% of tea is left as waste in the tea beverage industry [28].Therefore,the reuse of tea leaves waste is worthy of attention.Specifically,green tea extract acts as both reducing agent and capping agent in the synthesis of iron nanoparticles[29],which may benefit for the Fe dispersion.

    Based on the above understandings,the primary aim of this work was to explore the feasibility of using waste tea leaves to prepare Fe-Nxenriched Fe-N/C ORR catalyst.A serial of catalysts were synthesized and their ORR performances under both alkaline and neutral pH conditions were tested.Then,the active catalytic site was identifiedviasynchrotron radiation characterization.At last,the catalyst structure-function relationship was elucidated.The result of this work may be useful for the transition metal ORR catalyst development.

    The schematic synthetic route of Fe-N/C catalyst was given in Text S1 (Supporting information).All of the electrochemical tests were conducted in a three electrode device through a CHI 760E workstation.Detailed parameters were listed in Text S2 (Supporting information).The characterization tests and parameters were provided in Text S3 (Supporting information).

    Scanning electron microscopy (SEM) images show that 5%Fe-N/C owns fine granular form,while 7.5%Fe-N/C and 10%Fe-N/C possess larger granular form (Fig.S1 in Supporting information).The Brunauer-Emmett-Teller specific surface area tests (Fig.S2 in Supporting information) revealed that 0%Fe-N/C owned the highest surface area (695.6 m2/g),while 5%Fe-N/C (485.3 m2/g),7.5%Fe-N/C (370.8 m2/g),and 10%Fe-N/C (271.3 m2/g) were relatively low(Table S2 in Supporting information).TheIDband (~1370 cm-1)andIGband (~1590 cm-1) of Raman spectra represent the defect and graphitic carbon [30],and the valueID/IGcan normally reflect the defect degree of materials.As shown in Fig.S3a (Supporting information),theID/IGvalues of four catalysts were discrepant,indicating the different graphitization degree of catalysts.The addition of FeCl3had significant effect on the defects of tea derived carbon materials,specifically,5% FeCl3addition of FeCl3increased the graphitization degree of catalysts,otherwise,7.5% FeCl3and 10% FeCl3decreased it.The graphitization degree of catalysts could influence the conductivity of the material [31].Therefore,it may cause the alteration of material resistance.The X-ray diffraction(XRD) patterns (Fig.S3b in Supporting information) showed that graphite (PDF #89–7213) was the main carbon crystal morphology,yet,the crystallinity is poor.Also,Fe3O4(PDF #75–0033) andα-Fe2O3(PDF #84–0306) were found in 5%Fe-N/C,7.5%Fe-N/C and 10%Fe-N/C.Among them,the 5%Fe-N/C showed the highest Fe3O4peak intensity,while the 10%Fe-N/C exhibited the strongest Fe2O3signal.Previous study revealed that the surface graphitic layer may prevent the acid to act on the inner metals [32],which might be the reason of iron oxides existence after acid pickling.

    To explore the distribution of surface elements,the scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) elemental mappings were collected (Figs.S4-S6 in Supporting information).It can be observed that N,O,and Fe elements were evenly distributed within materials.Inductively coupled plasma spectrometer test result showed that the Fe content of three catalysts were similar,ranging at 1.7%-2.1% (Table S3 in Supporting information).To further explore the surface elemental structure characteristics,the X-ray photoelectron spectroscopy (XPS) survey spectra of catalysts were given in Fig.S7.The high resolution N 1s and Fe 2p XPS spectra were then collected and resolved.As shown in Fig.1a,N 1s spectra of 0%Fe-N/C shows two peaks at 401 eV [8] and 399.9 eV,representing graphitic N and pyrrolic N [33].For 5%Fe-N/C (Fig.1b),there are four peaks in the N 1s spectra,i.e.,398.4 eV [8],399.1 eV[34],399.9 eV and 401 eV.The peak at 399.1 eV may attribute to the Fe-Nxspecies,and other three peaks attribute to pyridinic N,pyrrolic N and graphitic N.In comparison,no Fe-Nxmoiety was found on 7.5%Fe-N/C (Fig.1c).The peaks found on 10%Fe-N/C was the same to that on 5%Fe-N/C (Fig.1d) As summarized in Table S4(Supporting information),adding FeCl3would effectively transform graphitic N into pyridinic N in catalysts.Fe 2p spectra proved that addition of FeCl3would result in Fe-species formation within the pyrolysis products (Figs.1e-h).Specifically,two peaks at 711.1 eV and 724.5 eV,which were ascribed to Fe(III) in relation to the Fe-Nxspecies [35,36],were observed on catalysts.The above Fe species matched well with the N 1s XPS spectra.

    Fig.1.High resolution N 1s and Fe 2p XPS spectra of 0%Fe-N/C (a,e),5%Fe-N/C (b,f),7.5%Fe-N/C (c,g),and 10%Fe-N/C (d,h).

    Fig.2.ORR activity of the as-prepared Fe-N/C catalysts under 0.1 mol/L KOH condition.LSV curves in which the solid lines represent the disk current and the dotted lines represent the ring current (a),estimated H2O2 selectivity (b),and electron transfer number (c).

    The ORR activity of as-prepared catalysts was further evaluated via a rotating ring-disk electrode.The LSV curves in Fig.2a clearly indicate that the catalyst without iron addition (0%Fe-N/C)exhibited a poor activity in 0.1 mol/L KOH electrolyte,whose limiting current was 4.57 mA/cm2.Iron was found to be beneficial for the ORR activity improvement but over dosage of iron into precursor would result in a decreased performance.Among the catalysts,5%Fe-N/C showed the highest ORR activity,whose onset potential (0.93 V),half-wave poetical (0.84 V),and limiting current(5.75 mA/cm2) were all comparable to commercial 20% Pt/C (Table S5 in Supporting information).For electrochemical ORR,2-electron reaction intermediate (i.e.,H2O2) formation is the main obstacle.To measure the H2O2accumulation level on catalyst surface,a biased potential was applied on platinum ring and the H2O2oxidation current was collected.As shown in Fig.2a,5%Fe-N/C showed a comparable platinum ring current to that of Pt/C.The ring current density of 10%Fe-N/C was about 0.40 mA/cm2(Fig.2a,Table S5),which was the highest.H2O2selectivity calculation also validated the above results (Fig.2b).The estimated electron transfer number (n) of 0%Fe-N/C,7.5%Fe-N/C,and 10%Fe-N/C was at about 3.6,3.5,and 3.0 in the range of 0.2–0.5 V,respectively (Fig.2c).In comparison,the n value of 5%Fe-N/C was close to that of Pt/C,which were all near at 4.00,certificating an excellent selectivity of four-electron pathway.The above results clearly indicated that adding suitable amount of iron into tea leaves were beneficial for the four-electron ORR activity improvement while over dosage of iron would possibly alter catalyst structure and cause performance deterioration.

    Considering the highest ORR activity of 5%Fe-N/C,additional electrochemical tests were conducted to evaluate its stability.The CV curve of 5%Fe-N/C in O2saturated 0.1 mol/L KOH solution showed a clear reduction peak at about 0.76 V; however,there was no peak in N2saturated solution (Fig.3a),which again proved the ORR occurrence on this catalyst [37].To assess the stability of 5%Fe-N/C,the LSV curves before and after 3000 cycles of CV tests were collected.As shown in Fig.3b and Table S6 (Supporting information),only a slight decline (i.e.,5.4%) of limiting current density,from 5.75 mA/cm2to 5.44 mA/cm2,was observed on 5%Fe-N/C after stability tests.Whereas,a 7.5% dropped current intensity(decline from 5.44 mA/cm2to 5.03 mA/cm2) was occurred on Pt/C.Moreover,the onset potential of 5%Fe-N/C changed little after 3000 cycles of CV tests (from 0.93 V to 0.92 V).In comparison,the onset potential of Pt/C declined from 0.93 V to 0.88 V.The half-wave potential also exhibited the similar trend.These results indicated that 5%Fe-N/C might perform a good stability under the long run.

    Fig.3.The electrochemical stability of 5%Fe-N/C catalyst.CV curves of catalyst in 0.1 mol/L KOH electrolyte under O2 or N2 saturated condition without rotation (a),LSV curves of materials before and after 3000 CV cycles under oxygen-saturated electrolyte in 0.1 mol/L KOH (b), i-t curves of Pt/C and 5%Fe-N/C during 0.5 mol/L methanol tolerant test with an applied potential of 0.514 V (vs. RHE),where j is the real-time current density and j0 is the initial current density (c),ORR performance of catalysts in 0.1 mol/L PBS (pH 7.0) electrolyte (d).

    Pt/C is well known of being poisoned by methanol [38],as a result,the ability to tolerate methanol is another crucial factor for a ORR catalyst [39].Methanol with 0.5 mol/L concentration was dosed into electrolyte at about 600 s and thei-tcurrent curve was recorded.Results showed that methanol caused a negeligible influence on 5%Fe-N/C performance (Fig.3c).However,a near 60% drop of current was observed on Pt/C after methanol addition.

    Apart from in alkaline soultion,ORR activity of catalyst in netural soultion is also applicable in practice [8].Therefore,the LSV curves of 5%Fe-N/C and Pt/C in O2-saturated 0.1 mol/L PBS (pH 7.0) were collected (Fig.3d and Table S7 in Supporting information).Both the onset and half wave potential of 5%Fe-N/C (0.82 V and 0.64 V) were close to those of Pt/C (0.84 V and 0.64 V).Besides,the limiting current density of 5%Fe-N/C (5.64 mA/cm2) was even higher than Pt/C (5.28 mA/cm2).In comparison with other Fe-N/C and biomass derived catalysts,the performance of our fabricated Fe-N/C exhibited an outstanding performance (Tables S8-S10 in Supporting information).The above results indicated that 5%Fe-N/C owns an excellent ORR activity in both alkaline and neutral electrolyte.

    Due to the inefficiency of XPS on characterizing catalyst fine structure,the specific iron-nitrogen coordination was measured by X-ray adsorption near-edge structure (XANES) and extended X-ray adsorption fine structure (EXAFS) analysis.The FeK-edge XANES curves in Fig.4a indicates that the oxidation valence state of catalysts was different from Fe foil while similar to that of Fe2O3and Fe3O4,implying an oxidation state of iron.Fourier-transformed (FT)is a broadly adopted information extraction method to obtain further information of EXAFS spectra.As shown in Fig.4b and Fig.S8 (Supporting information),5%Fe-N/C showed a peak at 1.41 ?A while the peaks of 7.5%Fe-N/C and 10%Fe-N/C shifted to 1.47 ?A and 1.56 ?A,respectively.In relation to the Fe-Obond (1.47 ?A) in Fe2O3curve,the shift of 5%Fe-N/C and 10%Fe-N/C suggests that the Fe center was not merely coordinated with oxygen,and there may exist Fe-Nxspecies within these two catalysts [40].The above result was consistent with the XPS analysis.The coordination number of Fe and the mean bond length in 5%Fe-N/C were 6.4±1.2 ?A and 1.99±0.02 ?A (Table S11 in Supporting information).According to the fitting data,we proposed that the Fe atoms may bond with two O atoms and four N atoms (FeN4O2),which was matched well with the four-electron ORR activate sites in other researches [4,17].For 10%Fe-N/C,the Fe may coordinate with four N atoms (FeN4),which allowed to carry out the two-electron ORR route [41].

    Fig.4.Catalysts fine structure and electrochemical characterization.(a) Fe K-edge XANES spectra,(b) Fourier transform of the EXAFS spectra,(c) Tafel plots of the as-prepared catalysts,(d) EIS curves of the as-prepared catalysts.

    Besides the catalytic site,iron addition might also affect the catalyst conductivity and charge transfer resistance.Herein,both EIS and Tafel tests were performed.In Fig.4c and Table S12 (Supporting information),as compared to other catalysts,5%Fe-N/C showed the lowest charge-transfer resistance (Rct,2627Ω),implying its superior conductivity,which is consistent with the results of Raman shift.Tafel slope of 5%Fe-N/C was 114 mV/dec,which was the nearest one to Pt/C among the other catalysts (Fig.4d).Both Tafel and EIS tests showed a same trend that adding an appropriate amount of iron chloride can enhance the conductivity of the material,while over dosage will lead to a substantial increase of material resistance and the decrease of ORR kinetics.According to the XRD patterns (Fig.S3b),the Fe3O4peak intensity of Fe-N/C catalyst was decreased with the rising of iron dosage.According to the previous work,the antiferromagnetic Fe3O4was beneficial to increase the material conductivity [42,43].The reduction of Fe3O4while increase of non-ferromagnetic Fe2O3might be the reason of material charge resistance increase [44].

    By dosing appropriate amount of FeCl3into tea leaves precursor,the Fe-N/C catalyst with high four-electron ORR activity was sucessfully fabricated.The ORR activity of as-prepared 5%Fe-N/C catalyst were all comparable to that of commercial 20% Pt/C.In alkaline condition,5%Fe-N/C owns a high ORR activity of onset potential (0.93 V),half-wave potential (0.84 V),and limiting current density (5.77 mA/cm2),and in neutral media,the activity data are 0.82 V,0.64 V and 5.64 mA/cm2.Over-dosage of FeCl3would result in a declined four-electron selectivity.FeN4O2might be the possible catalytic site for ORR.An appropriate amount of iron chloride not only facilitated catalytic site formation,but also enhanced the material conductivity and reaction kinetics.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors wish to thank the National Natural Science Foundation of China (No.51908172) for the support of this study.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.02.041.

    大又大粗又爽又黄少妇毛片口| 亚洲欧美成人精品一区二区| 老司机影院毛片| 一级,二级,三级黄色视频| 成人国产av品久久久| 午夜激情福利司机影院| 男女无遮挡免费网站观看| 最近中文字幕2019免费版| 人妻夜夜爽99麻豆av| 秋霞在线观看毛片| 韩国av在线不卡| 免费黄网站久久成人精品| 三级国产精品片| 一本一本综合久久| 亚洲欧美清纯卡通| 少妇猛男粗大的猛烈进出视频| 嫩草影院入口| 国产精品嫩草影院av在线观看| 最近中文字幕高清免费大全6| 日本爱情动作片www.在线观看| 久久97久久精品| 中文字幕av电影在线播放| 国产免费一区二区三区四区乱码| 女性被躁到高潮视频| 成人二区视频| 老女人水多毛片| 国产成人午夜福利电影在线观看| 国产成人精品福利久久| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| 免费观看a级毛片全部| 色吧在线观看| 免费av中文字幕在线| 亚洲高清免费不卡视频| 日本欧美国产在线视频| 一个人免费看片子| 成人毛片a级毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 在线观看免费高清a一片| 最近2019中文字幕mv第一页| 高清毛片免费看| 国产伦理片在线播放av一区| 大陆偷拍与自拍| 国产一区二区在线观看日韩| 国模一区二区三区四区视频| 在线观看一区二区三区激情| 肉色欧美久久久久久久蜜桃| 日本猛色少妇xxxxx猛交久久| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 日本vs欧美在线观看视频| av卡一久久| 亚洲人成网站在线播| 看免费成人av毛片| 亚洲精品日韩av片在线观看| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 国产成人一区二区在线| 大香蕉久久成人网| 中文字幕av电影在线播放| 国产欧美日韩一区二区三区在线 | 一二三四中文在线观看免费高清| 国产日韩欧美亚洲二区| 高清黄色对白视频在线免费看| 中国三级夫妇交换| 免费日韩欧美在线观看| 午夜免费男女啪啪视频观看| 亚洲精品亚洲一区二区| 亚洲情色 制服丝袜| 国产69精品久久久久777片| 国产精品不卡视频一区二区| 国产国语露脸激情在线看| 免费观看无遮挡的男女| 国产亚洲精品第一综合不卡 | 亚洲国产精品专区欧美| 好男人视频免费观看在线| av在线app专区| 美女脱内裤让男人舔精品视频| 日韩大片免费观看网站| 水蜜桃什么品种好| 不卡视频在线观看欧美| 日韩中字成人| 国产精品熟女久久久久浪| 日韩视频在线欧美| 欧美日韩在线观看h| 校园人妻丝袜中文字幕| 十八禁高潮呻吟视频| 99视频精品全部免费 在线| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜| 亚洲国产av影院在线观看| 最后的刺客免费高清国语| 国产色爽女视频免费观看| 日本-黄色视频高清免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品日本国产第一区| 久久精品熟女亚洲av麻豆精品| 国产永久视频网站| 亚洲av电影在线观看一区二区三区| 热re99久久精品国产66热6| 国产成人freesex在线| 99热国产这里只有精品6| 王馨瑶露胸无遮挡在线观看| 美女中出高潮动态图| 一级,二级,三级黄色视频| 丰满迷人的少妇在线观看| 999精品在线视频| 岛国毛片在线播放| av又黄又爽大尺度在线免费看| 亚洲精品日本国产第一区| 久久毛片免费看一区二区三区| 亚洲精品,欧美精品| xxxhd国产人妻xxx| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| xxxhd国产人妻xxx| 在线观看一区二区三区激情| 国产精品成人在线| videossex国产| 天天影视国产精品| 超色免费av| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 久久人妻熟女aⅴ| 免费久久久久久久精品成人欧美视频 | 亚洲精品久久久久久婷婷小说| 亚洲精品久久久久久婷婷小说| 亚洲精品一区蜜桃| 精品久久久噜噜| 国产深夜福利视频在线观看| 国产不卡av网站在线观看| 在线观看美女被高潮喷水网站| 亚洲欧美日韩卡通动漫| 久久国内精品自在自线图片| 另类精品久久| 两个人免费观看高清视频| 国产成人精品在线电影| 久久免费观看电影| 免费不卡的大黄色大毛片视频在线观看| 婷婷色av中文字幕| 久久婷婷青草| 高清午夜精品一区二区三区| 草草在线视频免费看| 观看美女的网站| 亚洲人与动物交配视频| 日韩电影二区| 欧美三级亚洲精品| 搡女人真爽免费视频火全软件| 免费大片18禁| 在线免费观看不下载黄p国产| 午夜影院在线不卡| 你懂的网址亚洲精品在线观看| 中国三级夫妇交换| 国产一级毛片在线| 免费高清在线观看日韩| 国产精品欧美亚洲77777| 在线观看www视频免费| 看十八女毛片水多多多| 欧美另类一区| 午夜精品国产一区二区电影| 欧美精品人与动牲交sv欧美| 久久国产亚洲av麻豆专区| 久久久a久久爽久久v久久| 久久热精品热| 精品久久久精品久久久| 国产又色又爽无遮挡免| 日本vs欧美在线观看视频| 黄色视频在线播放观看不卡| 色94色欧美一区二区| 亚洲综合色网址| 免费看av在线观看网站| 日本黄大片高清| 亚洲av电影在线观看一区二区三区| 免费黄网站久久成人精品| 亚洲av日韩在线播放| 美女xxoo啪啪120秒动态图| 丝袜在线中文字幕| 91久久精品电影网| 男男h啪啪无遮挡| 中文字幕久久专区| 国产伦精品一区二区三区视频9| 曰老女人黄片| 成人亚洲精品一区在线观看| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 午夜福利在线观看免费完整高清在| 久久久久人妻精品一区果冻| 一个人免费看片子| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 欧美激情 高清一区二区三区| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| 国产在线免费精品| 九色成人免费人妻av| 欧美3d第一页| 日韩人妻高清精品专区| 婷婷色综合www| 蜜桃在线观看..| 色婷婷av一区二区三区视频| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 久久ye,这里只有精品| 自线自在国产av| 久久久亚洲精品成人影院| 亚洲欧美日韩卡通动漫| 考比视频在线观看| 一区二区av电影网| 丝袜脚勾引网站| 精品酒店卫生间| 国产精品免费大片| 十八禁高潮呻吟视频| 国产极品天堂在线| 我要看黄色一级片免费的| 在线播放无遮挡| 亚洲伊人久久精品综合| 成人二区视频| 欧美精品一区二区大全| videossex国产| 久久亚洲国产成人精品v| 日本vs欧美在线观看视频| a级毛色黄片| 大陆偷拍与自拍| 美女xxoo啪啪120秒动态图| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 嘟嘟电影网在线观看| 天天操日日干夜夜撸| 一二三四中文在线观看免费高清| 国产毛片在线视频| 日韩中文字幕视频在线看片| 亚洲美女搞黄在线观看| 免费人妻精品一区二区三区视频| 午夜激情av网站| 亚洲人成77777在线视频| 日韩强制内射视频| 精品久久久噜噜| 26uuu在线亚洲综合色| 国产精品99久久99久久久不卡 | 一级二级三级毛片免费看| 在线观看人妻少妇| 日韩精品有码人妻一区| 啦啦啦啦在线视频资源| 日韩av不卡免费在线播放| 欧美日韩视频高清一区二区三区二| 婷婷色av中文字幕| kizo精华| 亚洲天堂av无毛| 国产片内射在线| 日韩一区二区三区影片| kizo精华| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 日本91视频免费播放| 久久久久精品性色| 18禁动态无遮挡网站| .国产精品久久| 大香蕉久久成人网| 一级毛片电影观看| av电影中文网址| 国产日韩欧美亚洲二区| 波野结衣二区三区在线| 亚洲国产精品专区欧美| 大香蕉97超碰在线| 秋霞伦理黄片| 久久久午夜欧美精品| 国产精品一区二区在线不卡| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 欧美精品一区二区免费开放| 天美传媒精品一区二区| 国产精品久久久久久久久免| 国产欧美亚洲国产| 少妇人妻久久综合中文| 夜夜骑夜夜射夜夜干| 在线精品无人区一区二区三| 欧美日韩在线观看h| 亚洲色图综合在线观看| 久久久久久久国产电影| 亚洲成人av在线免费| www.色视频.com| av电影中文网址| 男女无遮挡免费网站观看| 日韩av在线免费看完整版不卡| 成人18禁高潮啪啪吃奶动态图 | av黄色大香蕉| 看十八女毛片水多多多| 久久久久久久久大av| 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 肉色欧美久久久久久久蜜桃| 国产一区亚洲一区在线观看| 女性被躁到高潮视频| 久久久精品免费免费高清| 免费人妻精品一区二区三区视频| xxxhd国产人妻xxx| 中文字幕亚洲精品专区| av有码第一页| 亚洲国产精品专区欧美| 一本久久精品| 国产色婷婷99| 伊人亚洲综合成人网| 国产视频首页在线观看| 麻豆乱淫一区二区| 一个人看视频在线观看www免费| 亚洲国产av影院在线观看| 亚洲综合精品二区| av专区在线播放| 亚洲一区二区三区欧美精品| 精品久久国产蜜桃| 韩国高清视频一区二区三区| 91精品三级在线观看| 最新的欧美精品一区二区| 亚洲av成人精品一二三区| 丝袜美足系列| 久久久国产欧美日韩av| 久久久久久久久久久久大奶| 3wmmmm亚洲av在线观看| 青青草视频在线视频观看| 在线 av 中文字幕| 精品99又大又爽又粗少妇毛片| 性高湖久久久久久久久免费观看| 国产成人91sexporn| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片| 男女免费视频国产| 多毛熟女@视频| 国产视频内射| 久久久久久久久久成人| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 国产成人精品一,二区| 久久久亚洲精品成人影院| 啦啦啦中文免费视频观看日本| 欧美成人午夜免费资源| 欧美激情 高清一区二区三区| 99热国产这里只有精品6| 亚洲高清免费不卡视频| 又黄又爽又刺激的免费视频.| 最新的欧美精品一区二区| 久久青草综合色| 久久久国产欧美日韩av| 国产精品 国内视频| 免费大片18禁| 国产在线一区二区三区精| 国产免费一级a男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 中文欧美无线码| 男男h啪啪无遮挡| 大又大粗又爽又黄少妇毛片口| 成人手机av| 啦啦啦中文免费视频观看日本| 丁香六月天网| 亚洲第一区二区三区不卡| 中国国产av一级| 免费黄网站久久成人精品| 天天操日日干夜夜撸| 久久综合国产亚洲精品| 亚洲国产精品国产精品| 亚洲精品aⅴ在线观看| av天堂久久9| 新久久久久国产一级毛片| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| 亚洲图色成人| 永久免费av网站大全| 日日爽夜夜爽网站| 高清毛片免费看| 男女边摸边吃奶| 美女福利国产在线| 日韩电影二区| 哪个播放器可以免费观看大片| 日韩欧美精品免费久久| 成人午夜精彩视频在线观看| 美女主播在线视频| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 日本午夜av视频| 好男人视频免费观看在线| 精品久久久噜噜| 哪个播放器可以免费观看大片| 日韩免费高清中文字幕av| 另类亚洲欧美激情| 精品国产一区二区久久| 日本欧美国产在线视频| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 国产精品一区www在线观看| 久久精品国产亚洲av涩爱| 97超视频在线观看视频| 三级国产精品片| 99视频精品全部免费 在线| 久久人人爽av亚洲精品天堂| 国产一级毛片在线| 亚洲欧美精品自产自拍| 天美传媒精品一区二区| 亚洲欧美色中文字幕在线| 国产熟女午夜一区二区三区 | 女人久久www免费人成看片| 一边亲一边摸免费视频| 99热这里只有精品一区| 母亲3免费完整高清在线观看 | 一个人免费看片子| 在线观看免费日韩欧美大片 | 人人妻人人澡人人爽人人夜夜| 多毛熟女@视频| 高清毛片免费看| 婷婷色麻豆天堂久久| 亚洲高清免费不卡视频| 国产毛片在线视频| 亚洲综合色网址| 日韩中字成人| 男男h啪啪无遮挡| 午夜免费男女啪啪视频观看| 精品国产一区二区久久| 午夜激情福利司机影院| 大陆偷拍与自拍| 国产高清国产精品国产三级| 亚洲精品一区蜜桃| 一级,二级,三级黄色视频| 美女内射精品一级片tv| 尾随美女入室| 大码成人一级视频| 久久久久久久大尺度免费视频| 中文天堂在线官网| 嫩草影院入口| 国产不卡av网站在线观看| www.色视频.com| 国产视频内射| 肉色欧美久久久久久久蜜桃| 日本爱情动作片www.在线观看| 欧美一级a爱片免费观看看| 成人黄色视频免费在线看| 曰老女人黄片| 女性生殖器流出的白浆| 国产精品一区二区在线不卡| 国产高清三级在线| 亚洲天堂av无毛| 亚洲人与动物交配视频| 狠狠婷婷综合久久久久久88av| 亚洲色图综合在线观看| 少妇的逼水好多| 中国三级夫妇交换| 如何舔出高潮| 久久99一区二区三区| 18禁在线无遮挡免费观看视频| 中国美白少妇内射xxxbb| 免费不卡的大黄色大毛片视频在线观看| 午夜精品国产一区二区电影| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| videosex国产| 免费大片18禁| 久热这里只有精品99| 国产精品国产三级国产av玫瑰| 如何舔出高潮| 亚洲精品乱码久久久久久按摩| 一区二区三区乱码不卡18| 日本黄色片子视频| 亚洲,欧美,日韩| 国产精品三级大全| 午夜福利视频在线观看免费| av播播在线观看一区| 精品久久久精品久久久| 日韩,欧美,国产一区二区三区| 国产精品免费大片| 国产日韩欧美亚洲二区| 3wmmmm亚洲av在线观看| 久久99热6这里只有精品| 国产免费一级a男人的天堂| 成人无遮挡网站| 欧美日本中文国产一区发布| 色哟哟·www| 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| a级毛色黄片| 满18在线观看网站| 亚洲高清免费不卡视频| 日韩一区二区视频免费看| 最近最新中文字幕免费大全7| 国产日韩欧美视频二区| 亚洲av欧美aⅴ国产| 99久久精品国产国产毛片| 看十八女毛片水多多多| 欧美日韩视频高清一区二区三区二| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 久久精品国产a三级三级三级| 日韩中字成人| 超碰97精品在线观看| 亚洲激情五月婷婷啪啪| 免费日韩欧美在线观看| 欧美最新免费一区二区三区| av在线播放精品| 尾随美女入室| 亚洲精品国产色婷婷电影| 亚洲丝袜综合中文字幕| 国产成人精品婷婷| 午夜影院在线不卡| 色吧在线观看| 亚洲人成网站在线播| 日本午夜av视频| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 下体分泌物呈黄色| av网站免费在线观看视频| 99久久精品国产国产毛片| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| 午夜视频国产福利| 有码 亚洲区| 久久精品国产亚洲av天美| 亚洲精品久久久久久婷婷小说| 简卡轻食公司| 高清黄色对白视频在线免费看| 99久久精品国产国产毛片| 欧美日韩一区二区视频在线观看视频在线| 国产免费视频播放在线视频| 国产成人精品福利久久| 久久青草综合色| 日韩,欧美,国产一区二区三区| 在线观看美女被高潮喷水网站| 中国美白少妇内射xxxbb| 国产视频首页在线观看| 午夜免费观看性视频| 亚洲国产欧美在线一区| 久久久久久久亚洲中文字幕| www.色视频.com| 丝瓜视频免费看黄片| 日韩不卡一区二区三区视频在线| 国产一级毛片在线| 欧美日韩视频精品一区| 性色av一级| 汤姆久久久久久久影院中文字幕| 亚洲精品第二区| 日韩人妻高清精品专区| 日韩 亚洲 欧美在线| 91午夜精品亚洲一区二区三区| 午夜激情av网站| 亚洲精品乱码久久久久久按摩| 亚洲欧美中文字幕日韩二区| a级毛片在线看网站| 亚洲五月色婷婷综合| 亚洲一区二区三区欧美精品| 久久久久国产精品人妻一区二区| 日韩av在线免费看完整版不卡| 午夜激情福利司机影院| 亚洲精品视频女| 久久精品夜色国产| freevideosex欧美| 秋霞在线观看毛片| 91国产中文字幕| 免费看av在线观看网站| 久久久久久久久久久久大奶| 最近的中文字幕免费完整| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 国产日韩欧美视频二区| 久久久午夜欧美精品| 国产69精品久久久久777片| 哪个播放器可以免费观看大片| 人妻系列 视频| 一区在线观看完整版| 中文字幕免费在线视频6| 精品久久久久久电影网| 亚洲av在线观看美女高潮| 亚洲av.av天堂| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 久久狼人影院| 日本猛色少妇xxxxx猛交久久| 人妻 亚洲 视频| 搡老乐熟女国产| 伊人久久精品亚洲午夜| 卡戴珊不雅视频在线播放| 老司机影院毛片| 久久久欧美国产精品| a级毛片免费高清观看在线播放| 精品人妻在线不人妻| 制服人妻中文乱码| 免费看光身美女| 91久久精品国产一区二区成人| 大香蕉久久网| 久久午夜福利片| 大话2 男鬼变身卡| 水蜜桃什么品种好| 成人手机av| 女的被弄到高潮叫床怎么办| 美女国产视频在线观看| 免费人成在线观看视频色| 欧美另类一区| 十八禁网站网址无遮挡| 嫩草影院入口| 永久免费av网站大全| 国产精品国产三级国产专区5o| 欧美日韩精品成人综合77777| 九九爱精品视频在线观看| 久久久久视频综合| 一区二区日韩欧美中文字幕 | 免费观看a级毛片全部| 高清在线视频一区二区三区| 欧美精品国产亚洲| 久久毛片免费看一区二区三区| 日本av手机在线免费观看| 看十八女毛片水多多多| 99久国产av精品国产电影| 亚洲精品自拍成人| 欧美成人精品欧美一级黄| 一级毛片 在线播放| 日本欧美视频一区|