• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions

    2023-03-14 06:52:42LinQianYuHaoWangShuLaChenTeErWenBaoChengHuangRenCunJin
    Chinese Chemical Letters 2023年1期

    Lin-Qian Yu,Hao Wang,Shu-La Chen,Te-Er Wen,Bao-Cheng Huang,Ren-Cun Jin

    Laboratory of Water Pollution Remediation,School of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou 311121,China

    Keywords:Fe-N/C Oxygen reduction reaction Biomass Fe coordination Polyphenol

    ABSTRACT Fe-N/C is a promising oxygen reduction reaction (ORR) catalyst to substitute the current widely used precious metal platinum.Cost-effectively fabricating the Fe-N/C material with high catalytic activity and getting in-depth insight into the responsible catalytic site are of great significance.In this work,we proposed to use biomass,tea leaves waste,as the precursor to prepare ORR catalyst.By adding 5% FeCl3(wt%) into tea precursor,the pyrolysis product (i.e.,5%Fe-N/C) exhibited an excellent four-electron ORR activity,whose onset potential was only 10 mV lower than that of commercial Pt/C.The limiting current density of 5%Fe-N/C (5.75 mA/cm2) was even higher than Pt/C (5.44 mA/cm2).Compared with other biomass or metal organic frameworks derived catalysts,5%Fe-N/C showed similar ORR activity.Also,both the methanol tolerance and material stability performances of as-prepared 5%Fe-N/C catalyst were superior to that of Pt/C.X-ray adsorption fine structure characterization revealed that the FeN4O2 might be the possible catalytic site.An appropriate amount of iron chloride addition not only facilitated catalytic site formation,but also enhanced material conductivity and reaction kinetics.The results of this work may be useful for the Fe based transition metal ORR catalyst design and application.

    Fuel cell technology is one of the favorable solutions for sustainable transportation development.Nevertheless,the low rate of oxygen reduction reaction (ORR) on cathode surface remains as a great challenge for its application [1–3].Due to its low Fermi level[4],platinum-based catalysts usually exhibit excellent ORR activity,yet the low storage reserves and fancy price impeded its largescale and sustainable deployment [5,6].As platinum is short of supply,there is a considerable motive force to search for abundant and inexpensive materials to expand the development of fuel cell technology [7,8].

    Transition metal-nitrogen-carbon electrocatalyst,especially Fe-N/C material,has been widely synthesized and used to catalyze ORR,by considering its high level in both activity and stability[8–10].Although a substantial progress on selectivity improvement of four-electron reaction route has been achieved,the intrinsic catalytic site of Fe-N/C still remains elusive.Fe-N moiety (Fe-Nx)was identified as the primary active center for ORR,while the metal coordination environment change normally results in discrepant catalytic selectivity [11,12].For instance,FeN4structure was widely proposed as the catalytic site in the previous works[13,14].Whereas,other studies argued that five [15] or six [16] coordinated Fe-Nxwas the responsible structure to catalyze ORR.Therefore,the responsible Fe-Nxsite is still ambiguous.Under the actual situation,other elements such as oxygen or carbon are possible to involve in coordination [17].Getting in-depth insight into the Fe-N/C catalyst active site identification and enrichment is then of great significance for ORR rate improvement and fuel cell application.

    Metal-organic coordinates were favorable materials to prepare metal-N/C catalyst.Zeolitic imidazolate frameworks-8 was used to coordinate Fe by partial substitution of zinc ions [18].Fe-N/C hybrid materials could also be fabricatedviaannealing Zn and Fe bimetallic metal organic frameworks (MOFs) [19].However,most of previous studies utilized artificially synthesized organic frameworks as precursors to prepare Fe-N/C ORR catalysts.

    While the preparation of MOFs is complicated,the reuse of waste biomass is much more convenient.There are a series application of waste biomass derived catalysts in photocatalysis [20],electrocatalytic water oxidation reaction [21],oxygen evolution[22,23],as well as ORR catalysis [24].Notably,naturally accessed polyphenol structure was proposed as an outstanding candidate to lock metal ion [25].Our previous work also showed that cobalt nanocomposite could be successfully fabricated by using tannic acid as organic ligand [26].Herein,polyphenol substance might be used an efficient organic ligand to anchor iron ion for Fe-N/C preparation.Typically,as one of the popular drink around the work[27],tea leaves are rich in polyphenol components.According to statistics,more than 90% of tea is left as waste in the tea beverage industry [28].Therefore,the reuse of tea leaves waste is worthy of attention.Specifically,green tea extract acts as both reducing agent and capping agent in the synthesis of iron nanoparticles[29],which may benefit for the Fe dispersion.

    Based on the above understandings,the primary aim of this work was to explore the feasibility of using waste tea leaves to prepare Fe-Nxenriched Fe-N/C ORR catalyst.A serial of catalysts were synthesized and their ORR performances under both alkaline and neutral pH conditions were tested.Then,the active catalytic site was identifiedviasynchrotron radiation characterization.At last,the catalyst structure-function relationship was elucidated.The result of this work may be useful for the transition metal ORR catalyst development.

    The schematic synthetic route of Fe-N/C catalyst was given in Text S1 (Supporting information).All of the electrochemical tests were conducted in a three electrode device through a CHI 760E workstation.Detailed parameters were listed in Text S2 (Supporting information).The characterization tests and parameters were provided in Text S3 (Supporting information).

    Scanning electron microscopy (SEM) images show that 5%Fe-N/C owns fine granular form,while 7.5%Fe-N/C and 10%Fe-N/C possess larger granular form (Fig.S1 in Supporting information).The Brunauer-Emmett-Teller specific surface area tests (Fig.S2 in Supporting information) revealed that 0%Fe-N/C owned the highest surface area (695.6 m2/g),while 5%Fe-N/C (485.3 m2/g),7.5%Fe-N/C (370.8 m2/g),and 10%Fe-N/C (271.3 m2/g) were relatively low(Table S2 in Supporting information).TheIDband (~1370 cm-1)andIGband (~1590 cm-1) of Raman spectra represent the defect and graphitic carbon [30],and the valueID/IGcan normally reflect the defect degree of materials.As shown in Fig.S3a (Supporting information),theID/IGvalues of four catalysts were discrepant,indicating the different graphitization degree of catalysts.The addition of FeCl3had significant effect on the defects of tea derived carbon materials,specifically,5% FeCl3addition of FeCl3increased the graphitization degree of catalysts,otherwise,7.5% FeCl3and 10% FeCl3decreased it.The graphitization degree of catalysts could influence the conductivity of the material [31].Therefore,it may cause the alteration of material resistance.The X-ray diffraction(XRD) patterns (Fig.S3b in Supporting information) showed that graphite (PDF #89–7213) was the main carbon crystal morphology,yet,the crystallinity is poor.Also,Fe3O4(PDF #75–0033) andα-Fe2O3(PDF #84–0306) were found in 5%Fe-N/C,7.5%Fe-N/C and 10%Fe-N/C.Among them,the 5%Fe-N/C showed the highest Fe3O4peak intensity,while the 10%Fe-N/C exhibited the strongest Fe2O3signal.Previous study revealed that the surface graphitic layer may prevent the acid to act on the inner metals [32],which might be the reason of iron oxides existence after acid pickling.

    To explore the distribution of surface elements,the scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) elemental mappings were collected (Figs.S4-S6 in Supporting information).It can be observed that N,O,and Fe elements were evenly distributed within materials.Inductively coupled plasma spectrometer test result showed that the Fe content of three catalysts were similar,ranging at 1.7%-2.1% (Table S3 in Supporting information).To further explore the surface elemental structure characteristics,the X-ray photoelectron spectroscopy (XPS) survey spectra of catalysts were given in Fig.S7.The high resolution N 1s and Fe 2p XPS spectra were then collected and resolved.As shown in Fig.1a,N 1s spectra of 0%Fe-N/C shows two peaks at 401 eV [8] and 399.9 eV,representing graphitic N and pyrrolic N [33].For 5%Fe-N/C (Fig.1b),there are four peaks in the N 1s spectra,i.e.,398.4 eV [8],399.1 eV[34],399.9 eV and 401 eV.The peak at 399.1 eV may attribute to the Fe-Nxspecies,and other three peaks attribute to pyridinic N,pyrrolic N and graphitic N.In comparison,no Fe-Nxmoiety was found on 7.5%Fe-N/C (Fig.1c).The peaks found on 10%Fe-N/C was the same to that on 5%Fe-N/C (Fig.1d) As summarized in Table S4(Supporting information),adding FeCl3would effectively transform graphitic N into pyridinic N in catalysts.Fe 2p spectra proved that addition of FeCl3would result in Fe-species formation within the pyrolysis products (Figs.1e-h).Specifically,two peaks at 711.1 eV and 724.5 eV,which were ascribed to Fe(III) in relation to the Fe-Nxspecies [35,36],were observed on catalysts.The above Fe species matched well with the N 1s XPS spectra.

    Fig.1.High resolution N 1s and Fe 2p XPS spectra of 0%Fe-N/C (a,e),5%Fe-N/C (b,f),7.5%Fe-N/C (c,g),and 10%Fe-N/C (d,h).

    Fig.2.ORR activity of the as-prepared Fe-N/C catalysts under 0.1 mol/L KOH condition.LSV curves in which the solid lines represent the disk current and the dotted lines represent the ring current (a),estimated H2O2 selectivity (b),and electron transfer number (c).

    The ORR activity of as-prepared catalysts was further evaluated via a rotating ring-disk electrode.The LSV curves in Fig.2a clearly indicate that the catalyst without iron addition (0%Fe-N/C)exhibited a poor activity in 0.1 mol/L KOH electrolyte,whose limiting current was 4.57 mA/cm2.Iron was found to be beneficial for the ORR activity improvement but over dosage of iron into precursor would result in a decreased performance.Among the catalysts,5%Fe-N/C showed the highest ORR activity,whose onset potential (0.93 V),half-wave poetical (0.84 V),and limiting current(5.75 mA/cm2) were all comparable to commercial 20% Pt/C (Table S5 in Supporting information).For electrochemical ORR,2-electron reaction intermediate (i.e.,H2O2) formation is the main obstacle.To measure the H2O2accumulation level on catalyst surface,a biased potential was applied on platinum ring and the H2O2oxidation current was collected.As shown in Fig.2a,5%Fe-N/C showed a comparable platinum ring current to that of Pt/C.The ring current density of 10%Fe-N/C was about 0.40 mA/cm2(Fig.2a,Table S5),which was the highest.H2O2selectivity calculation also validated the above results (Fig.2b).The estimated electron transfer number (n) of 0%Fe-N/C,7.5%Fe-N/C,and 10%Fe-N/C was at about 3.6,3.5,and 3.0 in the range of 0.2–0.5 V,respectively (Fig.2c).In comparison,the n value of 5%Fe-N/C was close to that of Pt/C,which were all near at 4.00,certificating an excellent selectivity of four-electron pathway.The above results clearly indicated that adding suitable amount of iron into tea leaves were beneficial for the four-electron ORR activity improvement while over dosage of iron would possibly alter catalyst structure and cause performance deterioration.

    Considering the highest ORR activity of 5%Fe-N/C,additional electrochemical tests were conducted to evaluate its stability.The CV curve of 5%Fe-N/C in O2saturated 0.1 mol/L KOH solution showed a clear reduction peak at about 0.76 V; however,there was no peak in N2saturated solution (Fig.3a),which again proved the ORR occurrence on this catalyst [37].To assess the stability of 5%Fe-N/C,the LSV curves before and after 3000 cycles of CV tests were collected.As shown in Fig.3b and Table S6 (Supporting information),only a slight decline (i.e.,5.4%) of limiting current density,from 5.75 mA/cm2to 5.44 mA/cm2,was observed on 5%Fe-N/C after stability tests.Whereas,a 7.5% dropped current intensity(decline from 5.44 mA/cm2to 5.03 mA/cm2) was occurred on Pt/C.Moreover,the onset potential of 5%Fe-N/C changed little after 3000 cycles of CV tests (from 0.93 V to 0.92 V).In comparison,the onset potential of Pt/C declined from 0.93 V to 0.88 V.The half-wave potential also exhibited the similar trend.These results indicated that 5%Fe-N/C might perform a good stability under the long run.

    Fig.3.The electrochemical stability of 5%Fe-N/C catalyst.CV curves of catalyst in 0.1 mol/L KOH electrolyte under O2 or N2 saturated condition without rotation (a),LSV curves of materials before and after 3000 CV cycles under oxygen-saturated electrolyte in 0.1 mol/L KOH (b), i-t curves of Pt/C and 5%Fe-N/C during 0.5 mol/L methanol tolerant test with an applied potential of 0.514 V (vs. RHE),where j is the real-time current density and j0 is the initial current density (c),ORR performance of catalysts in 0.1 mol/L PBS (pH 7.0) electrolyte (d).

    Pt/C is well known of being poisoned by methanol [38],as a result,the ability to tolerate methanol is another crucial factor for a ORR catalyst [39].Methanol with 0.5 mol/L concentration was dosed into electrolyte at about 600 s and thei-tcurrent curve was recorded.Results showed that methanol caused a negeligible influence on 5%Fe-N/C performance (Fig.3c).However,a near 60% drop of current was observed on Pt/C after methanol addition.

    Apart from in alkaline soultion,ORR activity of catalyst in netural soultion is also applicable in practice [8].Therefore,the LSV curves of 5%Fe-N/C and Pt/C in O2-saturated 0.1 mol/L PBS (pH 7.0) were collected (Fig.3d and Table S7 in Supporting information).Both the onset and half wave potential of 5%Fe-N/C (0.82 V and 0.64 V) were close to those of Pt/C (0.84 V and 0.64 V).Besides,the limiting current density of 5%Fe-N/C (5.64 mA/cm2) was even higher than Pt/C (5.28 mA/cm2).In comparison with other Fe-N/C and biomass derived catalysts,the performance of our fabricated Fe-N/C exhibited an outstanding performance (Tables S8-S10 in Supporting information).The above results indicated that 5%Fe-N/C owns an excellent ORR activity in both alkaline and neutral electrolyte.

    Due to the inefficiency of XPS on characterizing catalyst fine structure,the specific iron-nitrogen coordination was measured by X-ray adsorption near-edge structure (XANES) and extended X-ray adsorption fine structure (EXAFS) analysis.The FeK-edge XANES curves in Fig.4a indicates that the oxidation valence state of catalysts was different from Fe foil while similar to that of Fe2O3and Fe3O4,implying an oxidation state of iron.Fourier-transformed (FT)is a broadly adopted information extraction method to obtain further information of EXAFS spectra.As shown in Fig.4b and Fig.S8 (Supporting information),5%Fe-N/C showed a peak at 1.41 ?A while the peaks of 7.5%Fe-N/C and 10%Fe-N/C shifted to 1.47 ?A and 1.56 ?A,respectively.In relation to the Fe-Obond (1.47 ?A) in Fe2O3curve,the shift of 5%Fe-N/C and 10%Fe-N/C suggests that the Fe center was not merely coordinated with oxygen,and there may exist Fe-Nxspecies within these two catalysts [40].The above result was consistent with the XPS analysis.The coordination number of Fe and the mean bond length in 5%Fe-N/C were 6.4±1.2 ?A and 1.99±0.02 ?A (Table S11 in Supporting information).According to the fitting data,we proposed that the Fe atoms may bond with two O atoms and four N atoms (FeN4O2),which was matched well with the four-electron ORR activate sites in other researches [4,17].For 10%Fe-N/C,the Fe may coordinate with four N atoms (FeN4),which allowed to carry out the two-electron ORR route [41].

    Fig.4.Catalysts fine structure and electrochemical characterization.(a) Fe K-edge XANES spectra,(b) Fourier transform of the EXAFS spectra,(c) Tafel plots of the as-prepared catalysts,(d) EIS curves of the as-prepared catalysts.

    Besides the catalytic site,iron addition might also affect the catalyst conductivity and charge transfer resistance.Herein,both EIS and Tafel tests were performed.In Fig.4c and Table S12 (Supporting information),as compared to other catalysts,5%Fe-N/C showed the lowest charge-transfer resistance (Rct,2627Ω),implying its superior conductivity,which is consistent with the results of Raman shift.Tafel slope of 5%Fe-N/C was 114 mV/dec,which was the nearest one to Pt/C among the other catalysts (Fig.4d).Both Tafel and EIS tests showed a same trend that adding an appropriate amount of iron chloride can enhance the conductivity of the material,while over dosage will lead to a substantial increase of material resistance and the decrease of ORR kinetics.According to the XRD patterns (Fig.S3b),the Fe3O4peak intensity of Fe-N/C catalyst was decreased with the rising of iron dosage.According to the previous work,the antiferromagnetic Fe3O4was beneficial to increase the material conductivity [42,43].The reduction of Fe3O4while increase of non-ferromagnetic Fe2O3might be the reason of material charge resistance increase [44].

    By dosing appropriate amount of FeCl3into tea leaves precursor,the Fe-N/C catalyst with high four-electron ORR activity was sucessfully fabricated.The ORR activity of as-prepared 5%Fe-N/C catalyst were all comparable to that of commercial 20% Pt/C.In alkaline condition,5%Fe-N/C owns a high ORR activity of onset potential (0.93 V),half-wave potential (0.84 V),and limiting current density (5.77 mA/cm2),and in neutral media,the activity data are 0.82 V,0.64 V and 5.64 mA/cm2.Over-dosage of FeCl3would result in a declined four-electron selectivity.FeN4O2might be the possible catalytic site for ORR.An appropriate amount of iron chloride not only facilitated catalytic site formation,but also enhanced the material conductivity and reaction kinetics.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors wish to thank the National Natural Science Foundation of China (No.51908172) for the support of this study.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.02.041.

    欧美一级a爱片免费观看看| 一个人免费在线观看电影| 欧美性猛交╳xxx乱大交人| 少妇裸体淫交视频免费看高清| 校园人妻丝袜中文字幕| 日韩人妻高清精品专区| 日本与韩国留学比较| 色噜噜av男人的天堂激情| 99久久精品热视频| 国产国拍精品亚洲av在线观看| 亚洲欧洲日产国产| 舔av片在线| or卡值多少钱| 精品久久久久久久末码| 久久久久网色| 九色成人免费人妻av| 神马国产精品三级电影在线观看| 午夜福利高清视频| 久久久久久九九精品二区国产| 亚洲av中文av极速乱| 欧美日韩在线观看h| 亚洲美女视频黄频| 黑人高潮一二区| 一边亲一边摸免费视频| 嫩草影院精品99| а√天堂www在线а√下载| 欧美成人a在线观看| 禁无遮挡网站| 热99re8久久精品国产| 老司机福利观看| 尤物成人国产欧美一区二区三区| 国产熟女欧美一区二区| 国产精品一区二区三区四区久久| 久久国内精品自在自线图片| 亚洲人成网站在线播| 午夜视频国产福利| 国产一区二区三区av在线 | 久久精品夜色国产| 国产伦理片在线播放av一区 | 久久午夜福利片| 成人亚洲精品av一区二区| 亚洲,欧美,日韩| 日日啪夜夜撸| 我要看日韩黄色一级片| 午夜激情欧美在线| 在线播放无遮挡| 波多野结衣高清无吗| 国产精品日韩av在线免费观看| 久久久国产成人免费| 又黄又爽又刺激的免费视频.| 亚洲av二区三区四区| 看非洲黑人一级黄片| 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 欧美日本视频| 久久国产乱子免费精品| 男女视频在线观看网站免费| 国产综合懂色| 日本-黄色视频高清免费观看| av免费在线看不卡| 成人性生交大片免费视频hd| 免费一级毛片在线播放高清视频| 1000部很黄的大片| 国产精品一区二区三区四区久久| 好男人在线观看高清免费视频| 久久人妻av系列| 九九在线视频观看精品| 麻豆国产97在线/欧美| 亚洲四区av| 级片在线观看| 我的老师免费观看完整版| 天堂√8在线中文| 亚洲四区av| 精品久久久久久久久久免费视频| 国产精品1区2区在线观看.| 男女做爰动态图高潮gif福利片| 夜夜爽天天搞| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 亚洲内射少妇av| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久| 日韩视频在线欧美| 国产av在哪里看| 欧美日韩乱码在线| 久久精品国产鲁丝片午夜精品| 黄色日韩在线| АⅤ资源中文在线天堂| 色视频www国产| 免费看光身美女| 亚洲精品成人久久久久久| av视频在线观看入口| 国产91av在线免费观看| 你懂的网址亚洲精品在线观看 | 99riav亚洲国产免费| 午夜久久久久精精品| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 色视频www国产| 天天一区二区日本电影三级| 99热只有精品国产| 观看美女的网站| 免费av毛片视频| 国产单亲对白刺激| 嘟嘟电影网在线观看| 日韩欧美国产在线观看| 久久久久久久久中文| 亚洲国产精品合色在线| 日本免费一区二区三区高清不卡| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区亚洲精品在线观看| 久久午夜福利片| 久久久国产成人精品二区| 亚洲av电影不卡..在线观看| 赤兔流量卡办理| 三级经典国产精品| 亚洲真实伦在线观看| av又黄又爽大尺度在线免费看 | 男女下面进入的视频免费午夜| 九色成人免费人妻av| 久久综合国产亚洲精品| 一本精品99久久精品77| 日产精品乱码卡一卡2卡三| 精品久久久久久久久av| 国产精品一区二区三区四区久久| 国产日韩欧美在线精品| 99久久精品一区二区三区| 久久精品国产亚洲av涩爱 | 国产av不卡久久| 性色avwww在线观看| 韩国av在线不卡| 日本三级黄在线观看| 日韩成人伦理影院| 99久久久亚洲精品蜜臀av| 丰满的人妻完整版| 日本av手机在线免费观看| 日韩 亚洲 欧美在线| 午夜久久久久精精品| 91精品一卡2卡3卡4卡| 人妻夜夜爽99麻豆av| eeuss影院久久| 中国国产av一级| 男人和女人高潮做爰伦理| 国产 一区 欧美 日韩| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 一级毛片aaaaaa免费看小| av在线观看视频网站免费| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 亚洲成人久久性| 久久精品综合一区二区三区| 国产久久久一区二区三区| 国产极品精品免费视频能看的| 久久久久久大精品| 国产91av在线免费观看| 国产极品精品免费视频能看的| 久久久久久大精品| 国产在视频线在精品| 一区二区三区高清视频在线| 一级毛片久久久久久久久女| 国产在线精品亚洲第一网站| 成人三级黄色视频| 免费观看的影片在线观看| 小蜜桃在线观看免费完整版高清| 久久久成人免费电影| 久久久久网色| 国产精品一区二区三区四区免费观看| 精品久久国产蜜桃| 亚洲欧美精品综合久久99| 美女脱内裤让男人舔精品视频 | 国产 一区 欧美 日韩| 日韩av不卡免费在线播放| av在线播放精品| 国产大屁股一区二区在线视频| ponron亚洲| 日本av手机在线免费观看| 精品人妻一区二区三区麻豆| 自拍偷自拍亚洲精品老妇| 亚洲高清免费不卡视频| kizo精华| 热99在线观看视频| 麻豆成人午夜福利视频| 国产成人freesex在线| 美女国产视频在线观看| 国产视频内射| 日本-黄色视频高清免费观看| 久久久久久国产a免费观看| 国产精品蜜桃在线观看 | 免费搜索国产男女视频| 午夜视频国产福利| 99热网站在线观看| 亚洲一区高清亚洲精品| 熟女电影av网| 成人漫画全彩无遮挡| 校园春色视频在线观看| 国产精品久久久久久亚洲av鲁大| 国产亚洲精品久久久com| 在线国产一区二区在线| 国产精品,欧美在线| 人妻系列 视频| 国产毛片a区久久久久| 亚洲18禁久久av| 久久久久九九精品影院| 日本一本二区三区精品| 麻豆久久精品国产亚洲av| 我的老师免费观看完整版| 级片在线观看| 国产伦在线观看视频一区| 边亲边吃奶的免费视频| 国产成人福利小说| 最近的中文字幕免费完整| 麻豆一二三区av精品| 午夜福利高清视频| 久久久久久久午夜电影| 一级黄片播放器| 日韩成人伦理影院| 亚洲精品日韩在线中文字幕 | 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区免费观看| 精品国产三级普通话版| 久久韩国三级中文字幕| 亚洲不卡免费看| 在线观看免费视频日本深夜| 日韩欧美一区二区三区在线观看| 综合色av麻豆| 午夜激情欧美在线| 久久久久久久久中文| 亚洲精品乱码久久久久久按摩| 久久亚洲精品不卡| 色播亚洲综合网| 国产精品蜜桃在线观看 | 少妇丰满av| 91久久精品国产一区二区成人| 成熟少妇高潮喷水视频| 黄色一级大片看看| 少妇丰满av| 亚洲高清免费不卡视频| 一本精品99久久精品77| 夜夜看夜夜爽夜夜摸| 国产精品免费一区二区三区在线| 18禁裸乳无遮挡免费网站照片| 国产 一区 欧美 日韩| 国产一级毛片七仙女欲春2| 少妇的逼好多水| 少妇人妻精品综合一区二区 | 麻豆国产97在线/欧美| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 在线免费十八禁| 国产精品.久久久| 欧美性猛交黑人性爽| 人体艺术视频欧美日本| 搡女人真爽免费视频火全软件| 国产中年淑女户外野战色| 中文亚洲av片在线观看爽| 深爱激情五月婷婷| 少妇的逼水好多| 国产精品一及| 免费黄网站久久成人精品| 国产乱人视频| 禁无遮挡网站| 亚洲人成网站在线播放欧美日韩| av卡一久久| 国产伦理片在线播放av一区 | 日本在线视频免费播放| 黄片wwwwww| 非洲黑人性xxxx精品又粗又长| av.在线天堂| 99国产精品一区二区蜜桃av| 伦精品一区二区三区| 一边亲一边摸免费视频| 午夜精品一区二区三区免费看| 国产不卡一卡二| 在线免费十八禁| 色5月婷婷丁香| 亚洲欧美精品专区久久| av福利片在线观看| 99热网站在线观看| 色视频www国产| 又爽又黄a免费视频| 久久鲁丝午夜福利片| 国产伦精品一区二区三区视频9| 一边摸一边抽搐一进一小说| 午夜视频国产福利| 日韩精品青青久久久久久| 最近中文字幕高清免费大全6| 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 黄色视频,在线免费观看| 高清在线视频一区二区三区 | 国产亚洲av嫩草精品影院| 成人综合一区亚洲| 欧美三级亚洲精品| 亚洲精品色激情综合| 中文字幕精品亚洲无线码一区| 在线播放无遮挡| 久久精品国产自在天天线| 国产精品久久久久久av不卡| 国产av一区在线观看免费| 午夜福利在线观看免费完整高清在 | 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 联通29元200g的流量卡| 国产av在哪里看| 校园人妻丝袜中文字幕| 国内久久婷婷六月综合欲色啪| 寂寞人妻少妇视频99o| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 国产精品无大码| 久久精品夜色国产| 亚洲av中文av极速乱| 麻豆成人午夜福利视频| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 欧美人与善性xxx| 日韩强制内射视频| 日韩欧美在线乱码| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 国产成人91sexporn| 女的被弄到高潮叫床怎么办| 精品久久久久久久久亚洲| 日本撒尿小便嘘嘘汇集6| 日韩av不卡免费在线播放| 久久久久网色| 亚洲成人久久性| 久久国内精品自在自线图片| 精品不卡国产一区二区三区| videossex国产| 成年版毛片免费区| 亚洲高清免费不卡视频| 亚洲成人av在线免费| 欧美在线一区亚洲| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 国产探花极品一区二区| 国产视频首页在线观看| 亚洲不卡免费看| 精品不卡国产一区二区三区| 亚洲国产高清在线一区二区三| 国产视频首页在线观看| 亚洲成人久久爱视频| 看黄色毛片网站| 亚洲精品成人久久久久久| 一进一出抽搐动态| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 51国产日韩欧美| 亚洲,欧美,日韩| 看黄色毛片网站| av在线蜜桃| 丰满乱子伦码专区| 男人和女人高潮做爰伦理| 日本黄色片子视频| 一级毛片aaaaaa免费看小| 久久精品国产亚洲av涩爱 | 美女脱内裤让男人舔精品视频 | 国产精品,欧美在线| 岛国在线免费视频观看| 国产中年淑女户外野战色| 国产色婷婷99| 亚洲欧美精品自产自拍| 男女做爰动态图高潮gif福利片| 最近中文字幕高清免费大全6| 国产视频内射| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 黑人高潮一二区| 午夜免费激情av| 真实男女啪啪啪动态图| 变态另类成人亚洲欧美熟女| 男女下面进入的视频免费午夜| 久久午夜亚洲精品久久| 伦理电影大哥的女人| 亚洲精品色激情综合| 国产视频内射| 国产精品久久久久久久电影| 观看美女的网站| 亚洲天堂国产精品一区在线| 人人妻人人澡欧美一区二区| 亚洲最大成人手机在线| 三级国产精品欧美在线观看| 亚洲国产精品成人久久小说 | 色视频www国产| 国产亚洲5aaaaa淫片| 中文字幕精品亚洲无线码一区| 国产乱人视频| 99热全是精品| 久久人人精品亚洲av| 欧美3d第一页| 18禁黄网站禁片免费观看直播| 欧美3d第一页| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 精华霜和精华液先用哪个| 久久草成人影院| 精品久久久久久久久亚洲| 亚洲欧美精品综合久久99| 不卡一级毛片| 国产精品美女特级片免费视频播放器| 午夜福利高清视频| 国产成人aa在线观看| 22中文网久久字幕| 少妇人妻精品综合一区二区 | 日本欧美国产在线视频| 99久久久亚洲精品蜜臀av| 久久久久网色| 欧美+亚洲+日韩+国产| 精品人妻熟女av久视频| 欧美一区二区精品小视频在线| 简卡轻食公司| 神马国产精品三级电影在线观看| 麻豆av噜噜一区二区三区| 国产精品久久久久久亚洲av鲁大| 麻豆av噜噜一区二区三区| 日本与韩国留学比较| 久久久久性生活片| 欧美日韩在线观看h| 色视频www国产| 欧美日韩在线观看h| 日本黄色片子视频| 日韩中字成人| 精品人妻一区二区三区麻豆| 久久人人爽人人爽人人片va| 欧美高清成人免费视频www| 超碰av人人做人人爽久久| 亚洲在久久综合| 色播亚洲综合网| 国产老妇女一区| 国内精品宾馆在线| 日韩人妻高清精品专区| 99热这里只有是精品在线观看| 91av网一区二区| 高清毛片免费看| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| 日韩三级伦理在线观看| 国内精品久久久久精免费| 变态另类丝袜制服| 91精品一卡2卡3卡4卡| 青青草视频在线视频观看| 麻豆成人av视频| 最近中文字幕高清免费大全6| 国产精品一区二区三区四区免费观看| 一边摸一边抽搐一进一小说| 精品一区二区三区人妻视频| 国产精品一区www在线观看| 日韩一本色道免费dvd| 非洲黑人性xxxx精品又粗又长| 国产三级在线视频| 91精品国产九色| eeuss影院久久| 久久久久久久久久久丰满| 91麻豆精品激情在线观看国产| 中文字幕免费在线视频6| 99久久精品热视频| 久久久精品大字幕| 亚洲精品亚洲一区二区| 美女 人体艺术 gogo| 国产午夜精品久久久久久一区二区三区| 午夜福利成人在线免费观看| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆| 长腿黑丝高跟| 久久久久久久久中文| 嫩草影院新地址| 变态另类成人亚洲欧美熟女| 成人无遮挡网站| 日韩欧美 国产精品| 简卡轻食公司| 久久99蜜桃精品久久| 99热这里只有精品一区| 深夜精品福利| 91狼人影院| 欧美成人a在线观看| 寂寞人妻少妇视频99o| 韩国av在线不卡| 国产不卡一卡二| 久久久久久久亚洲中文字幕| 最近视频中文字幕2019在线8| 人妻制服诱惑在线中文字幕| 成人无遮挡网站| ponron亚洲| 国产单亲对白刺激| 日日撸夜夜添| 久久久欧美国产精品| а√天堂www在线а√下载| 亚洲人成网站在线播放欧美日韩| 美女 人体艺术 gogo| 国产不卡一卡二| 成人美女网站在线观看视频| or卡值多少钱| 免费av不卡在线播放| 简卡轻食公司| www日本黄色视频网| av在线老鸭窝| 99九九线精品视频在线观看视频| av福利片在线观看| 国产黄色视频一区二区在线观看 | 精品免费久久久久久久清纯| 成人特级黄色片久久久久久久| 非洲黑人性xxxx精品又粗又长| 看非洲黑人一级黄片| 丝袜喷水一区| 黄色视频,在线免费观看| 国产午夜精品论理片| 偷拍熟女少妇极品色| 搞女人的毛片| 综合色av麻豆| 中国美女看黄片| 婷婷亚洲欧美| 日本av手机在线免费观看| 亚洲不卡免费看| 两个人的视频大全免费| 99久久精品国产国产毛片| 欧美三级亚洲精品| 国产人妻一区二区三区在| 精品熟女少妇av免费看| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 简卡轻食公司| 国产亚洲5aaaaa淫片| 爱豆传媒免费全集在线观看| 啦啦啦观看免费观看视频高清| 国产视频首页在线观看| 成人美女网站在线观看视频| 精品久久国产蜜桃| 美女被艹到高潮喷水动态| 久久久久久国产a免费观看| 老师上课跳d突然被开到最大视频| 亚洲国产欧美在线一区| 免费观看精品视频网站| 国国产精品蜜臀av免费| 亚洲成av人片在线播放无| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av涩爱 | 免费一级毛片在线播放高清视频| 成人特级av手机在线观看| 国产成人午夜福利电影在线观看| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 国产黄片视频在线免费观看| 国产毛片a区久久久久| 欧美xxxx黑人xx丫x性爽| 欧美日韩一区二区视频在线观看视频在线 | www.色视频.com| 国产高清三级在线| 有码 亚洲区| 日日摸夜夜添夜夜添av毛片| 我要搜黄色片| 亚洲色图av天堂| 日韩高清综合在线| 国产一级毛片七仙女欲春2| 能在线免费观看的黄片| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲网站| 深夜a级毛片| 欧美高清性xxxxhd video| 高清日韩中文字幕在线| 99精品在免费线老司机午夜| 听说在线观看完整版免费高清| 久久鲁丝午夜福利片| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 久99久视频精品免费| 2022亚洲国产成人精品| 欧美丝袜亚洲另类| av免费观看日本| 高清在线视频一区二区三区 | 久久久久久九九精品二区国产| 非洲黑人性xxxx精品又粗又长| 久久人人精品亚洲av| 中文字幕制服av| 我的女老师完整版在线观看| 精品国内亚洲2022精品成人| 欧美一区二区国产精品久久精品| 中文资源天堂在线| 少妇猛男粗大的猛烈进出视频 | 日韩欧美国产在线观看| 波多野结衣高清作品| 免费一级毛片在线播放高清视频| 偷拍熟女少妇极品色| h日本视频在线播放| 美女cb高潮喷水在线观看| 天天躁夜夜躁狠狠久久av| 中文字幕精品亚洲无线码一区| 日本色播在线视频| 亚洲图色成人| 天堂√8在线中文| 亚洲无线观看免费| 亚洲国产精品成人综合色| 在线观看66精品国产| 在线免费十八禁| av在线观看视频网站免费| 99热这里只有精品一区| 五月玫瑰六月丁香| 18+在线观看网站| 亚洲国产精品成人综合色| 人体艺术视频欧美日本| 国产黄色视频一区二区在线观看 | 久久久久久久久久黄片| 国产午夜精品一二区理论片| 国产黄色小视频在线观看| 人体艺术视频欧美日本| 一进一出抽搐动态| 亚洲成人精品中文字幕电影| 高清在线视频一区二区三区 | 亚洲欧洲国产日韩| 啦啦啦观看免费观看视频高清| 美女xxoo啪啪120秒动态图|