• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries

    2023-03-14 06:52:08JijieLiShnoZouJinzhenHungXioqinWuYueLuXundoLiuBoSongDehuDong
    Chinese Chemical Letters 2023年1期

    Jijie Li,Shno Zou,Jinzhen Hung,Xioqin Wu,Yue Lu,Xundo Liu,Bo Song,*,Dehu Dong,*

    a School of Materials Science and Engineering,University of Jinan,Ji′nan 250022,China

    b National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,Harbin Institute of Technology,Harbin 150001,China

    Keywords:Oxygen reduction reaction Zn-air batteries Transition metal Doped carbon spheres

    ABSTRACT Low-cost and efficient oxygen reduction reaction (ORR) electrocatalysts are the key to developing Zn-air batteries for renewable energy storage.Herein,the Mn-N-P doped carbon sphere was prepared through polymerization of hexachlorotripolyphosphazene (HCCP) and phloroglucinol,and then followed the calcination at 900 °C.Theory calculations demonstrated the introduction of Mn in N-P doped carbon could lower the dissociation barrier of O2 into O* and promote the ORR through a 4e- pathway.The asprepared catalysts exhibited a half-wave potential of 0.82 V vs. RHE and limiting current density of 5.2 mA/cm2 toward ORR,which was comparable to those of the commercial Pt/C catalysts.In addition,Zn-air batteries with 0.05 Mn-N-P-C catalysts showed a high specific capacity of 830 mAh/gZn and excellent cycle stability.This facile approach demonstrated herein could be a solution to develop optimum non-precious metal catalysts for the application in cathodes of proton exchange membrane fuel cells.This study also provides new insight to design the catalysts of multi-heteroatom coordinated metal in the carbon matrix for both fundamental researches and practical applications.

    Ever-increasing energy consumption and environmental pollution have stimulated the development of renewable energy technology [1–4].Recently,Zn-air batteries have become promising owing to their high efficiencies in renewable energy storage [5–8].However,the sluggish oxygen reduction reaction that occurs at the cathode side significantly limits their energy conversion effi-ciency [9–11].Therefore,it is necessary to develop efficient electrocatalysts for ORR [12–14].Although precious metals (Pt,Ru and Ir)have been demonstrated to show high catalytic activity,their high cost and low stability restrain their practical applications [15–17].The investigation on low-cost and efficient ORR electrocatalysts is therefore important to develop high performance Zn-air batteries[18–20].

    Many efforts have been devoted to developing highly-active ORR catalysts with different compositions and structures,such as carbon materials [21–24],perovskites [25–27],and transition metal nitrides/phosphides [28–30].Among them,carbon materials have received extensive attention due to their low-cost,large specific surface area,and good electrical conductivity [31–33].It has been demonstrated that N-doing could change the electrochemical properties of carbon materials and thereby enhance ORR catalytic activity,due to the formation of adjacency between carbon atoms and pyridine nitrogen [34–36].However,the ORR catalytic activity of N-doped carbon is still lower than commercial Pt/C catalysts [37,38].Introducing transition metals (Fe,Co,Mnetc.) to Ndoped carbon could change the bonding of carbon matrix and expose more active sites,and thus further enhance the ORR activity [39–44].Among all the transition-metal-doped carbon materials,Fe-N-C catalysts present high catalytic activity for ORR.However,the loss of Fe species into electrolytes under electrochemical oxidation conditions leads to the degradation in activity,thus improving the stability is still challenging [45].Compared to Fe-N doped carbon materials,Mn-N doped carbon materials have been demonstrated to show better stability,[46] however,relatively inferior activity towards ORR,due to the electronic configuration and D-band structure of Mn atoms [47].Theoretical results demonstrated that the strong interaction between Mn-N active sites and the ORR intermediate (e.g.,O*,OH*) would lead to a 2e-ORR to produce H2O2[48,49].Recent studies have revealed that the ORR performance of such M-N-C catalysts could be further improved by introducing the third kind of heteroatoms [50,51].For example,Huet al.reported that the introduction of cobalt atoms into the NP-C system improved the ORR catalytic performance by promoting the oxygen absorption with the interaction between cobalt atoms and P-N-C [50].Liet al.introduced Fe into the N-P-C system to improve ORR catalytic performance and found out that dispersed Fe-N-P-C-O complex was the dominant active sites [51].Zhuet al.found out that introducing phosphorus atoms into the Mn-N system to form N,P co-coordinated Mn sites (MnNxPy) also could promote the ORR process [47].However,to achieve the rational design of high-performance Mn-N-P doped carbon catalysts and the understandings on inherent ORR kinetics,more efforts are still needed from both experimental and theoretical aspects.

    Fig.1.(a) The schematic diagram for synthesizing Mn-N-P doped carbon spheres(xMn-N-P-C) electrocatalysts,(b,c) FESEM images,(d-f) TEM images and (g) elemental mapping of C,N,P and Mn in 0.05 Mn-N-P-C spheres.

    Herein,Mn-N-P doped carbon spheres were synthesized through a two-step strategy involving the adsorption of Mn elements during polymerization process and then the carbonization with a pyrolysis process.The as-prepared catalysts exhibited high electrocatalytic activity and outstanding stability for ORR.Theory calculations demonstrated the Mn-N-P doped carbon showed lower energy toward 4e-ORR.In addition,Zn-air batteries with 0.05 Mn-N-P-C catalysts as the cathode showed a high specific capacity of 830 mAh/gZnand good cycle stability.

    The Mn-N-P doped carbon spheres were synthesized by the polymerization of hexachlorotripolyphosphazene (HCCP) and phloroglucinol under the presence of Mn2+,followed by a carbonization process,as shown in Fig.1a.The morphology of the assynthesized catalysts was characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM).As shown in Fig.1b and Fig.S1 (Supporting information),the synthesized Mn-doped phosphosphazene microsphere (Mn-PPH) precursors exhibit a sphere morphology with an average diameter of~700 nm,which is similar to that of the PPH without Mn,suggesting the addition of Mn2+in the polymerization will not significantly affect the morphology.After carbonization,the sphere morphology was well preserved (Fig.1c and Fig.S1 in Supporting information) while the diameter was reduced to ~500 nm.Noteworthily,the 0.05 Mn-N-P-C catalyst exhibited a smooth surface(Fig.1d and inset) without metal-related particles on it and the respective selected area electron diffraction (SAED,Fig.S2 in Supporting information) pattern implies its amorphous state.Highresolution TEM image (Fig.1e) also demonstrated that amorphous carbon structures were dominant in the sphere.Furthermore,elemental mappings of 0.05 Mn-N-P-C catalyst in Figs.1f and g showed that the Mn,N and P are distributed uniformly throughout the carbon spheres,suggesting that Mn,N and P were doped into the carbon matrix successfully.

    Fig.2.Analyses on the structure and surface chemical valence state of 0.05 Mn-NP-C.(a) XRD patterns of 0.05 Mn-PPH,PPH,0.05 Mn-N-P-C and N-P-C.(b) N 1s and(c) P 2p XPS survey spectra of 0.05 Mn-N-P-C and N-P-C.(d) Mn 2p XPS spectra of the 0.05 Mn-N-P-C.

    The structural properties of the as-prepared spheres were revealed by X-ray diffractometer (XRD).As shown in Fig.2a and Fig.S3 (Supporting information),0.05 Mn-PPH showed a similar XRD pattern as the PPH.After carbonization process,both the 0.05 Mn-N-P-C and N-P-C catalysts exhibited one broad peak at around 24.6°,which could be indexed to graphitic carbon.In XRD patterns of Mn-N-P doped sphere,Mn-related characteristic diffraction peaks were not observed,which was consistent with the TEM results.Raman spectra of the N-P-C and Mn-N-P-C catalysts (Fig.S4 in Supporting information) has two characteristic peaks corresponding to the D (1327.7 cm-1) and G (1587.6 cm-1) bans of graphite carbon which consisted with the XRD results [52].Furthermore,theID/IGratios of Mn-N-P doped samples lower than that of N-P-C,suggesting that the Mn doped samples have higher graphitization degree and favors the electron transfer [53].The surface chemical structure of the as-prepared Mn-N-P-C catalysts was investigated by X-ray photoelectron spectroscopy (XPS).As shown in Table S1 (Supporting information),Mn-N-P-C catalysts showed the presence of Mn,N and P elements,well matching with the elemental mapping analysis.Inductively coupled plasma mass spectrometry (ICP-MS,Table S2 in Supporting information) confirms the Mn and P content in the as synthesized samples.The loading amount of Mn was about 1.02 wt%,1.54 wt% and 2.43 wt% for 0.025 Mn-N-P-C,0.05 Mn-N-P-C and 0.1 Mn-N-P-C,respectively.The contents of Mn element were increased along with the increase of Mn precursors,indicating the Mn content could be well controlled.

    Fig.3.ORR and primary Zn-air battery performance of 0.05 Mn-N-P-C catalyst.(a) LSV curves for Pt/C,Mn-N-P-C and N-P-C catalysts,(b) LSV curves of 0.05 Mn-N-P-C at various rotating speeds,(c) long-term durability test of the 0.05 Mn-N-P-C and commercial Pt/C catalysts in the 0.1 mol/L O2-saturated KOH solution under the potential of 0.5 V vs. RHE,(d) discharging polarization curves and power density plots of primary Zn-air batteries,(e) specific capacity plots of the primary Zn-air batteries at 5 mA/cm2,(f) long-term durability tests of the Zn-air battery at the current density of 10 mA/cm2.

    High resolution N 1s XPS spectra could be deconvoluted into four main peaks,namely pyridinic N (398.3 eV),pyrrolic N(400.1 eV),graphitic N (400.7 eV) and oxidized N (404.1 eV) (Fig.2b and Fig.S5 in Supporting information) [45,54].These peaks confirmed the successful integration of N into the carbon matrix.Notably,for Mn doped catalysts,an obvious Mn-N peak at 399.5 eV was detected [45,55].It has been reported that the formation of an Mn-N bond could improve the ORR catalytic activity [56,57].P 2p spectra of the catalysts (Fig.2c and Fig.S6 in Supporting information) showed two different peaks at 132.4 eV (P-C) and 133.7 eV (P-O),suggesting that the P were introduced into the carbon matrix [58–60].In Mn doped catalysts,the Mn 2p XPS spectrum (Fig.2d and Fig.S7 in Supporting information) displayed two peaks at 641.8 and 653.4 eV,which should be attributed to Mn 2p3/2and Mn 2p1/2,respectively [45].These results revealed that Mn,N,and P elements were successfully doped into the carbon matrix.Specifically,the Mn were bound to the N in the catalyst,which was demonstrated by the formation of Mn-N bond in the as-synthesized carbon sphere.

    ORR performance of the catalysts was investigated in N2or O2saturated 0.1 mol/L KOH.As shown in Fig.S8 (Supporting information),no peak was detected in the CV curves of Mn-N-P-C under N2saturation solution.On the contrary,an obvious reduction peak at 0.78 Vvs.RHE was observed for 0.05 Mn-N-P-C catalyst in O2-saturated solutions,suggesting ORR process was conducted over the catalysts in the presence of O2.Additionally,the reduction peak of 0.05 Mn-N-P-C catalyst present a positive shift of 60 mV compared to the N-P doped carbon catalyst (Fig.S8 in Supporting information),which indicated the introduction of Mn can enhance the ORR performance.Fig.3a showed the LSV curves of the N-P,Mn-N-P-C and commercial Pt/C catalysts at the rotation rate of 1600 rpm.As expected,compared to the N-P doped sample,the limiting current density and half-wave potential were improved obviously after the introduction of Mn.The 0.05 Mn-N-P-C catalyst showed a limiting current density of 5.2 mA/cm2with a half-wave potential of 0.82 Vvs.RHE,which was the highest ORR catalytic activity compared to other Mn-N-P and N-P doped carbon catalysts.Moreover,0.05 Mn-N-P-C catalyst showed comparable ORR performance with commercial Pt/C catalysts and a higher ORR performance to some recently-reported Metal-N-P doped carbon catalysts (Table S3 in Supporting information).According to the above results,the N,P co-doped samples have poor ORR activity [50].In comparation,after introduction Mn element in those samples,the ORR performance has a significant improvement.It can be concluded that the introduction of Mn could increase the intrinsic active sites of the catalysts,which led to a lower over-potential and a higher current density during the ORR.To further reveal the ORR kinetics of all catalysts,LSV curves (Fig.3b and Fig.S9 in Supporting information) were collected at different rotation speeds.The limiting current density of 0.05 Mn-N-P-C catalyst increased steadily with the rotational speed.Koutecky-Levich (K-L) equation was used to determine the electron transfer number per oxygen molecule (n) for the ORR (Fig.S10 in Supporting information).Thenfor 0.05 Mn-N-P-C was ~3.9,indicating that the ORR was majorly conducted through a 4e-ORR pathway.As shown in Fig.S11 (Supporting information),the corresponding kinetic parameters were analyzed with the K-L equation and the 0.05 Mn-N-P-C catalyst exhibited the highestJk(17.4 mA/cm2at 0.4 Vvs.RHE) among other N-P and Mn-P-N doped catalysts.Moreover,during the long-termi-t-test,the current density of 0.05 Mn-N-P-C was maintained at about 93.8% (versus88% for commercial Pt/C catalysts,Fig.3c) and the LSV curves has a slightly decrease (Fig.S12 in Supporting information) which indicated that the as-synthesized Mn-N-P doped carbon sphere had better stability towards ORR compared to commercial Pt/C.The structure of 0.05 Mn-N-P-C catalysts after stability test was characterized as shown in Fig.S13 (Supporting information) which maintains a stable spherical structure.More importantly,after long-term test,the Mn,N and P are still distributed uniformly throughout the carbon spheres (Fig.S14 in Supporting information) demonstrated that the 0.05 Mn-N-P-C catalyst was stable during ORR process.All the above results indicated that the as-synthesized 0.05 Mn-N-P-C catalyst has high ORR activity and good stability.

    The high ORR performance of 0.05 Mn-N-P-C catalyst was further tested in primary Zn-air batteries.The Zn-air battery was assembled by using 0.05 Mn-N-P-C catalyst (commercial Pt/C catalyst was also used for comparison) as air cathode catalyst and a Zn sheet as an anode in a special battery case filled with 6 mol/L KOH electrolyte.As shown in Fig.3d,Zn-air batteries with 0.05 Mn-N-P-C catalyst exhibited a higher open circuit voltage (OCV) of 1.45 V and maximum power density of 133 mW/cm2compared to those of commercial Pt/C catalysts (1.28 V and 98 mW/cm2),which were also higher than those recently reported in literature (Table S4 in Supporting information).To further study the capacity performance of the Zn-air batteries,discharge tests were performed (Fig.3e).When normalized to the consumption mass of Zn,the battery with 0.05 Mn-N-P-C catalyst had a specific capacity of about 830 mAh/gZn,which was superior to that of the commercial Pt/C catalysts (700 mAh/gZn).Furthermore,discharges at different current densities showed no significant potential drop,suggesting good stability of the 0.05 Mn-N-P-C cathode catalyst (Fig.S15 in Supporting information).Fig.3f indicated that the battery could be mechanically recharged multiple times without obvious degradation on potential.Finally,two Zn-air batteries were connected in series to produce an OCV of ~2.5 V,which was able to power the light emitting diodes (Fig.3f,inset).

    Fig.4.DFT calculation.(a) The schematic atomic structures of PN3,MnN4 and MnN3P used for the DFT calculations and the calculated free energy evolution diagrams of ORR at (b) U=1.23 V and (c) U=0.45 V,(d) the schematic illustration for the ORR pathway as predicted from the calculation.

    From the above results,Mn-N-P doped catalyst showed higher ORR activity compared to that of N-P doped sample.XPS results indicated that the formation of Mn-N and P-C bonds in the catalyst.To elucidate the active sites and reaction mechanism for ORR,density functional theory (DFT) calculations were carried out.The optimized atomic structures for PN3,MnN4and MnN3P were schematically illustrated in Fig.4a.The free-energy profiles of ORR process were then calculated atU=0.45 and 1.23 V respectively.As shown in Figs.4b and c,oxygen adsorption step of PN3,MnN4and MnN3P required high activation energies both at 1.23 V and 0.45 V.In all the atomic structures,PN3has the highest oxygen adsorption energy (about 6.05 eV) thus the ORR is difficult to occur.For MnN4,it has the lowest adsorption energy of about 1.25 eV for the reaction of O2into O2*.However,the free energy of hydrogenation of adsorbed*OH to OH-needs an activation barrier of 2.43 eV and 1.65 eV at 1.23 V and 0.45 V,respectively (Figs.4b-d).In all the optimized atomic structures,MnN3P has the intermediate adsorption energy of about 2.65 eV.Compared to the MnN4structure,MnN3P has lower activation barriers of 0.78 eV and 0 eV at 1.23 V and 0.45 V respectively (Figs.4b-d),which suggest the MnN3P has appropriate reaction energy to promote the ORR along the 4e-associative pathway.The experimental and calculated results indicated that the introduction of Mn element in N-P doped carbon can lower the dissociation barrier of O2into O*and promote the ORR to follow a 4e-associative pathway.

    In conclusion,Mn-N-P doped carbon spheres were prepared through the polymerization followed by calcination at 900 °C.The as-prepared Mn-N-P doped carbon catalysts exhibited high electrocatalytic activity and good stability for ORR.Zn-air batteries with 0.05 Mn-N-P-C catalysts showed a higher specific capacity and good cycle stability compared to those of Pt/C.Theoretical calculations demonstrated the introduction of Mn in N-P doped carbon can lower the dissociation barrier of O2into O*and benefit the reaction coordinate to follow the 4e-ORR pathway.Therefore,the Mn-N-P-C catalyst developed in this study can be the promising alternative to commercial Pt/C catalysts in Zn-air batteries.

    Declaration of competing interest

    The authors report no declarations of competing interests.

    Acknowledgments

    This work was financially supported by the Science and Technology Program of University of Jinan (Nos.XKY2103,XKY2105),National Natural Science Foundation of China (Nos.51902130,52072085) and Key Research and Development project of Shandong Province (No.2019GGX102087).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.02.027.

    免费观看a级毛片全部| 欧美97在线视频| 最近中文字幕高清免费大全6| 18在线观看网站| 99精国产麻豆久久婷婷| 午夜免费男女啪啪视频观看| 美女福利国产在线| 在线观看三级黄色| 久久精品久久久久久噜噜老黄| 乱码一卡2卡4卡精品| av国产久精品久网站免费入址| 最新中文字幕久久久久| 永久网站在线| 十八禁网站网址无遮挡| 一级爰片在线观看| 麻豆精品久久久久久蜜桃| 美女福利国产在线| 欧美精品av麻豆av| 欧美bdsm另类| 精品福利永久在线观看| 大香蕉久久网| 午夜免费观看性视频| 熟妇人妻不卡中文字幕| 国产日韩欧美视频二区| 精品国产国语对白av| 激情五月婷婷亚洲| 日本wwww免费看| 中文天堂在线官网| 亚洲av电影在线进入| 两个人免费观看高清视频| 国产xxxxx性猛交| 国产av国产精品国产| 激情五月婷婷亚洲| 九色成人免费人妻av| 七月丁香在线播放| 99香蕉大伊视频| 汤姆久久久久久久影院中文字幕| 最近中文字幕2019免费版| 午夜福利,免费看| 亚洲国产毛片av蜜桃av| 精品亚洲乱码少妇综合久久| 蜜桃国产av成人99| 国产老妇伦熟女老妇高清| 日本欧美国产在线视频| 青青草视频在线视频观看| 国产激情久久老熟女| 中文天堂在线官网| 国产熟女欧美一区二区| 高清黄色对白视频在线免费看| 成年女人在线观看亚洲视频| 国产精品一二三区在线看| 99热这里只有是精品在线观看| 人妻少妇偷人精品九色| 亚洲高清免费不卡视频| 最近中文字幕高清免费大全6| 亚洲国产欧美在线一区| 中文欧美无线码| 精品熟女少妇av免费看| 黄色配什么色好看| 国产成人精品福利久久| 亚洲伊人色综图| 久久午夜福利片| 天堂8中文在线网| 男女高潮啪啪啪动态图| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品自拍成人| 午夜免费男女啪啪视频观看| 国产在线视频一区二区| 黑丝袜美女国产一区| 亚洲第一区二区三区不卡| 亚洲av欧美aⅴ国产| 1024视频免费在线观看| 国产一区二区在线观看av| 国产黄色免费在线视频| 亚洲欧美一区二区三区黑人 | 国产免费现黄频在线看| 国产成人精品一,二区| 亚洲精品国产av蜜桃| 国产乱来视频区| 超碰97精品在线观看| 新久久久久国产一级毛片| 亚洲av在线观看美女高潮| 精品视频人人做人人爽| 久久精品国产a三级三级三级| 亚洲综合色网址| 欧美日韩一区二区视频在线观看视频在线| 中国美白少妇内射xxxbb| 人妻少妇偷人精品九色| 国产精品国产三级国产专区5o| 久久久久精品性色| 亚洲国产成人一精品久久久| 国产亚洲av片在线观看秒播厂| 精品99又大又爽又粗少妇毛片| 女人被躁到高潮嗷嗷叫费观| 久久人人爽人人片av| 水蜜桃什么品种好| 国产精品一二三区在线看| 亚洲国产成人一精品久久久| 天天影视国产精品| 色5月婷婷丁香| 久久99热6这里只有精品| 美女内射精品一级片tv| 日日爽夜夜爽网站| 狂野欧美激情性xxxx在线观看| 国产精品免费大片| 日韩中文字幕视频在线看片| 国产男女内射视频| 日韩精品有码人妻一区| 国产熟女午夜一区二区三区| 午夜av观看不卡| 国产精品 国内视频| 国产成人精品无人区| 在线天堂最新版资源| 亚洲成人av在线免费| 国产成人精品福利久久| 熟女av电影| 欧美老熟妇乱子伦牲交| 成人午夜精彩视频在线观看| a级片在线免费高清观看视频| 亚洲精品一二三| 涩涩av久久男人的天堂| 亚洲美女搞黄在线观看| 麻豆精品久久久久久蜜桃| 最近的中文字幕免费完整| 美女福利国产在线| 中文字幕av电影在线播放| 91精品国产国语对白视频| 欧美国产精品一级二级三级| 国产免费视频播放在线视频| 久久精品久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 中国三级夫妇交换| 国产一区亚洲一区在线观看| 爱豆传媒免费全集在线观看| 桃花免费在线播放| 99久久中文字幕三级久久日本| 亚洲天堂av无毛| 日本av免费视频播放| 亚洲精品,欧美精品| freevideosex欧美| 日本色播在线视频| 日本与韩国留学比较| 中文欧美无线码| 成人黄色视频免费在线看| 国产精品一国产av| 久久人人爽人人爽人人片va| 亚洲av男天堂| 午夜激情久久久久久久| 免费久久久久久久精品成人欧美视频 | 国产乱人偷精品视频| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠躁躁| 亚洲美女搞黄在线观看| 免费黄频网站在线观看国产| 国产乱来视频区| 日韩免费高清中文字幕av| 在线观看国产h片| 亚洲av成人精品一二三区| 汤姆久久久久久久影院中文字幕| 亚洲国产精品一区二区三区在线| 高清黄色对白视频在线免费看| 狠狠婷婷综合久久久久久88av| 一级,二级,三级黄色视频| 美女大奶头黄色视频| 成人手机av| 成人国产麻豆网| 我的女老师完整版在线观看| 丰满乱子伦码专区| 9色porny在线观看| 啦啦啦中文免费视频观看日本| 啦啦啦视频在线资源免费观看| 午夜福利影视在线免费观看| 欧美人与性动交α欧美软件 | 午夜免费观看性视频| 欧美xxⅹ黑人| 午夜福利网站1000一区二区三区| 免费高清在线观看日韩| 黄片无遮挡物在线观看| 亚洲美女黄色视频免费看| 亚洲欧洲国产日韩| 色婷婷av一区二区三区视频| 亚洲综合色网址| 久久午夜福利片| 亚洲欧美清纯卡通| 成年人午夜在线观看视频| 国产亚洲av片在线观看秒播厂| 亚洲精华国产精华液的使用体验| 成年女人在线观看亚洲视频| 人妻一区二区av| 亚洲激情五月婷婷啪啪| 免费在线观看黄色视频的| 七月丁香在线播放| 欧美精品av麻豆av| 国精品久久久久久国模美| 国产1区2区3区精品| 国产精品嫩草影院av在线观看| 大香蕉97超碰在线| 一边摸一边做爽爽视频免费| 亚洲国产成人一精品久久久| 又黄又爽又刺激的免费视频.| 日韩精品免费视频一区二区三区 | 国产av码专区亚洲av| 久久久久久久久久久久大奶| 亚洲精品自拍成人| 欧美日韩视频精品一区| 精品一区二区免费观看| 97在线视频观看| 青青草视频在线视频观看| 大片免费播放器 马上看| 大香蕉97超碰在线| 蜜桃国产av成人99| 国产色爽女视频免费观看| 免费看不卡的av| 成人免费观看视频高清| 日韩av在线免费看完整版不卡| 日本色播在线视频| 久久ye,这里只有精品| 久久久久久久精品精品| 丰满少妇做爰视频| 熟女电影av网| 精品人妻偷拍中文字幕| 五月伊人婷婷丁香| 日本av手机在线免费观看| 久久久久精品性色| 国产深夜福利视频在线观看| 亚洲,欧美,日韩| 国产成人精品久久久久久| 美女主播在线视频| 精品一区在线观看国产| 精品久久久精品久久久| 久久99热6这里只有精品| 午夜福利视频在线观看免费| 国产探花极品一区二区| 最近最新中文字幕大全免费视频 | 99精国产麻豆久久婷婷| 国产黄色免费在线视频| av又黄又爽大尺度在线免费看| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 亚洲成av片中文字幕在线观看 | 国产乱来视频区| 涩涩av久久男人的天堂| 久久久久久久久久成人| 大陆偷拍与自拍| av播播在线观看一区| 国产精品国产三级国产av玫瑰| 国产精品三级大全| 国产精品久久久久成人av| 美女视频免费永久观看网站| 久久久久久久亚洲中文字幕| kizo精华| 亚洲av电影在线进入| 国产黄色免费在线视频| 十分钟在线观看高清视频www| 91久久精品国产一区二区三区| 黄片播放在线免费| 男人爽女人下面视频在线观看| 久久久精品区二区三区| 精品亚洲乱码少妇综合久久| a级片在线免费高清观看视频| 久久久久久久久久久免费av| 丝袜人妻中文字幕| 亚洲一级一片aⅴ在线观看| 黑人欧美特级aaaaaa片| 老司机亚洲免费影院| 免费黄网站久久成人精品| 久久久欧美国产精品| 狠狠婷婷综合久久久久久88av| 国产精品偷伦视频观看了| 久久久久视频综合| 亚洲精品av麻豆狂野| 99热全是精品| 国产成人精品一,二区| www.av在线官网国产| 国产精品无大码| 高清av免费在线| 丰满少妇做爰视频| 18禁动态无遮挡网站| 国产不卡av网站在线观看| 免费观看av网站的网址| 久久精品久久久久久噜噜老黄| 一级片'在线观看视频| 最近2019中文字幕mv第一页| 久久精品国产a三级三级三级| a级片在线免费高清观看视频| 亚洲精品日韩在线中文字幕| 久久久久人妻精品一区果冻| 日韩欧美精品免费久久| 成年av动漫网址| 国产伦理片在线播放av一区| 国产免费一级a男人的天堂| 我的女老师完整版在线观看| 日日摸夜夜添夜夜爱| 黄网站色视频无遮挡免费观看| 少妇精品久久久久久久| 欧美+日韩+精品| 日本-黄色视频高清免费观看| 婷婷色综合大香蕉| 制服人妻中文乱码| 下体分泌物呈黄色| 国产日韩欧美亚洲二区| 国产免费福利视频在线观看| 美女国产视频在线观看| xxxhd国产人妻xxx| 另类精品久久| 色网站视频免费| 69精品国产乱码久久久| 中国国产av一级| 最近2019中文字幕mv第一页| 日本欧美视频一区| 精品熟女少妇av免费看| 少妇人妻久久综合中文| 大片免费播放器 马上看| 三上悠亚av全集在线观看| 精品少妇黑人巨大在线播放| av在线观看视频网站免费| 国产成人免费无遮挡视频| 免费黄色在线免费观看| 欧美激情 高清一区二区三区| 少妇人妻 视频| 免费观看无遮挡的男女| 免费看不卡的av| 成人国产av品久久久| 不卡视频在线观看欧美| 亚洲av福利一区| 18禁动态无遮挡网站| 精品人妻偷拍中文字幕| 国产精品久久久久久av不卡| 国产午夜精品一二区理论片| 一级毛片 在线播放| 热re99久久精品国产66热6| 亚洲经典国产精华液单| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产av成人精品| 日本91视频免费播放| 成人综合一区亚洲| 1024视频免费在线观看| 一级毛片我不卡| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 一本大道久久a久久精品| 亚洲精华国产精华液的使用体验| 少妇被粗大猛烈的视频| 热99国产精品久久久久久7| 尾随美女入室| 日韩制服骚丝袜av| 水蜜桃什么品种好| 大香蕉久久网| 国产男女内射视频| 韩国精品一区二区三区 | 嫩草影院入口| 午夜福利视频在线观看免费| 久久99精品国语久久久| 99九九在线精品视频| 丝袜喷水一区| 一级,二级,三级黄色视频| 毛片一级片免费看久久久久| 考比视频在线观看| 久久这里只有精品19| 狂野欧美激情性bbbbbb| 欧美激情极品国产一区二区三区 | 午夜精品国产一区二区电影| 国产女主播在线喷水免费视频网站| 久久97久久精品| 欧美97在线视频| 亚洲欧美成人综合另类久久久| 99久久精品国产国产毛片| 日韩电影二区| 久久久亚洲精品成人影院| 午夜免费鲁丝| 成年av动漫网址| 全区人妻精品视频| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产综合久久久 | 久久精品久久久久久噜噜老黄| 又黄又粗又硬又大视频| 夜夜爽夜夜爽视频| 91aial.com中文字幕在线观看| 亚洲高清免费不卡视频| 赤兔流量卡办理| 国产欧美另类精品又又久久亚洲欧美| 97精品久久久久久久久久精品| 国产在线视频一区二区| 亚洲综合色网址| 涩涩av久久男人的天堂| 久久精品久久久久久噜噜老黄| 亚洲四区av| 在线精品无人区一区二区三| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| av.在线天堂| 男女国产视频网站| 久久久久久久国产电影| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 精品视频人人做人人爽| 日本午夜av视频| 51国产日韩欧美| 最近中文字幕2019免费版| av天堂久久9| 99热这里只有是精品在线观看| 性高湖久久久久久久久免费观看| 国产成人免费观看mmmm| 亚洲国产欧美日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 亚洲高清免费不卡视频| 男女午夜视频在线观看 | 高清不卡的av网站| 成人综合一区亚洲| 人人妻人人澡人人看| 亚洲国产色片| 久久女婷五月综合色啪小说| 久久综合国产亚洲精品| 国产69精品久久久久777片| 国产成人精品久久久久久| 精品少妇久久久久久888优播| 天天躁夜夜躁狠狠躁躁| 成人毛片a级毛片在线播放| 精品少妇内射三级| 午夜福利乱码中文字幕| 成人国产av品久久久| 女的被弄到高潮叫床怎么办| 国产福利在线免费观看视频| 嫩草影院入口| 久久亚洲国产成人精品v| 日韩av免费高清视频| 免费黄网站久久成人精品| 国产 一区精品| 亚洲精品成人av观看孕妇| 久久99一区二区三区| 咕卡用的链子| 伦精品一区二区三区| 欧美bdsm另类| 日本欧美国产在线视频| 波野结衣二区三区在线| 成人影院久久| 熟妇人妻不卡中文字幕| 波多野结衣一区麻豆| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| freevideosex欧美| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 国产亚洲欧美精品永久| 久久久久久久国产电影| 国产欧美日韩综合在线一区二区| 狂野欧美激情性bbbbbb| 国产精品免费大片| 久久久久久久久久久久大奶| av国产精品久久久久影院| 欧美97在线视频| 亚洲熟女精品中文字幕| 99久久精品国产国产毛片| 99re6热这里在线精品视频| 男女国产视频网站| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久| www日本在线高清视频| 国产白丝娇喘喷水9色精品| 黄片播放在线免费| 少妇的逼水好多| 各种免费的搞黄视频| 欧美 日韩 精品 国产| av网站免费在线观看视频| 熟妇人妻不卡中文字幕| 久久久亚洲精品成人影院| 一区二区三区乱码不卡18| 高清视频免费观看一区二区| 午夜激情久久久久久久| av线在线观看网站| 国产一区二区三区av在线| 国产精品99久久99久久久不卡 | 欧美bdsm另类| 一二三四在线观看免费中文在 | 看非洲黑人一级黄片| 欧美xxxx性猛交bbbb| 国产av码专区亚洲av| av在线播放精品| 国产免费又黄又爽又色| 欧美bdsm另类| 日韩一区二区三区影片| 制服丝袜香蕉在线| 男男h啪啪无遮挡| 熟女av电影| 高清av免费在线| 日日啪夜夜爽| 日本av免费视频播放| 亚洲欧美中文字幕日韩二区| 国产精品 国内视频| 最近的中文字幕免费完整| 国产成人精品无人区| 性色avwww在线观看| 亚洲经典国产精华液单| 免费观看无遮挡的男女| 黄色一级大片看看| 国产片内射在线| 另类亚洲欧美激情| 99久久中文字幕三级久久日本| 国产一级毛片在线| 国产精品一国产av| 国产69精品久久久久777片| 久久久久久久久久久久大奶| 国产在视频线精品| 精品人妻在线不人妻| 一级片'在线观看视频| av在线老鸭窝| 国产成人免费观看mmmm| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 一级片免费观看大全| 欧美xxxx性猛交bbbb| 欧美精品人与动牲交sv欧美| 免费日韩欧美在线观看| 午夜福利在线观看免费完整高清在| 国产精品久久久久久av不卡| 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜| 在线观看人妻少妇| 国产一区二区在线观看av| 亚洲精品国产av蜜桃| 国产一区二区三区av在线| 激情视频va一区二区三区| av播播在线观看一区| 建设人人有责人人尽责人人享有的| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 色网站视频免费| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| 国产精品三级大全| 精品国产一区二区三区四区第35| 成人国产麻豆网| 亚洲国产欧美日韩在线播放| 观看av在线不卡| 五月天丁香电影| 蜜桃在线观看..| 一级毛片电影观看| 91成人精品电影| 亚洲精品视频女| 亚洲av免费高清在线观看| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 人成视频在线观看免费观看| 最近的中文字幕免费完整| 久久99蜜桃精品久久| 欧美亚洲日本最大视频资源| 国产一区二区三区av在线| 欧美3d第一页| 在线观看免费日韩欧美大片| 999精品在线视频| 哪个播放器可以免费观看大片| 建设人人有责人人尽责人人享有的| 亚洲精品,欧美精品| 久久久久久久国产电影| 日日撸夜夜添| 日韩电影二区| 亚洲精品国产色婷婷电影| 亚洲国产精品999| 91精品伊人久久大香线蕉| 色网站视频免费| 五月天丁香电影| 亚洲精品久久久久久婷婷小说| 51国产日韩欧美| 亚洲色图 男人天堂 中文字幕 | 国产精品国产av在线观看| 欧美性感艳星| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | a级片在线免费高清观看视频| 少妇的逼好多水| 国产av一区二区精品久久| 欧美少妇被猛烈插入视频| 亚洲丝袜综合中文字幕| 久久影院123| 九草在线视频观看| 日韩欧美精品免费久久| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久 | 啦啦啦视频在线资源免费观看| videosex国产| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 亚洲国产色片| 2022亚洲国产成人精品| 青春草国产在线视频| 国产 一区精品| 韩国精品一区二区三区 | 久久久国产欧美日韩av| 亚洲国产欧美在线一区| 久久精品aⅴ一区二区三区四区 | 免费人妻精品一区二区三区视频| 99热6这里只有精品| 国产熟女午夜一区二区三区| 国产乱人偷精品视频| 又粗又硬又长又爽又黄的视频| 另类亚洲欧美激情| 一区二区三区四区激情视频| 久久久久久久久久人人人人人人| 国产在视频线精品| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 精品福利永久在线观看| 九色亚洲精品在线播放| 天天躁夜夜躁狠狠久久av| 在线观看www视频免费| 成人黄色视频免费在线看| 亚洲国产成人一精品久久久| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 国产国语露脸激情在线看| 久久精品国产鲁丝片午夜精品| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 久久人人爽人人爽人人片va| 久久毛片免费看一区二区三区|