• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Screening promising TM-doped CeO2 monolayer for formaldehyde sensor with high sensitivity and selectivity

    2023-03-14 06:52:48ZhouhoZhuHengcongToJingbinFuYingtngZhouJinGuoChunyngZhi
    Chinese Chemical Letters 2023年1期

    Zhouho Zhu,Hengcong To,Jingbin Fu,Yingtng Zhou,Jin Guo,*,Chunyng Zhi,e,*

    a School of Petrochemical Engineering & Environment,Zhejiang Ocean University,Zhoushan 316022,China

    b School of Port and Transportation Engineering,Zhejiang Ocean University,Zhoushan 316022,China

    c College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310058,China

    d Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards,Zhejiang Ocean University,Zhoushan 316022,China

    e School of Materials Science and Chemical Engineering,Ningbo University,Ningbo 315211,China

    Keywords:Cerium oxide Density functional theory Formaldehyde Metal doping

    ABSTRACT Developing convenient,fast-response and high-performance formaldehyde detection sensor is significant but challenging.Herein,two CeO2 phases (Fmˉ3m and P42/mnm),three facets (CeO2(100),CeO2(110) and CeO2(111)) and three adsorption sites (top,bridge and hollow) are selected as substrate to interact with formaldehyde.Twenty-eight candidated transition metals (TM) are doped on CeO2 surfaces to investigate the performance of detecting formaldehyde by density functional theory.It shows that (i) CeO2 in a cubic fluorite structure with the space group Fmˉ3m is suitable for formaldehyde adsorption compared with P42/mnm; (ii) TM-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr) are considered as candidated materials to absorb formaldehyde ascribed to lower adsorption energies.The d-band center,partial density of states,charge density difference and electron localization function are employed to clarify the mechanism of TM-doped CeO2 improving the performance of formaldehyde adsorption.It obviously displays that TM doped CeO2(100) changes the d orbit and rearranges electrons resulting in the superior ability to the adsorbed formaldehyde.This work provides theoretical guidance and experimental motivation for the development of novel formaldehyde sensor based on metal oxide semiconductor materials.

    Formaldehyde (HCHO) is one kind of colorless poisonous volatile organic compounds (VOC) synthesized by the oxidation of methanol and widely used as an antiseptic,disinfectant and histologic fixative [1].It is unavoidably released from artificial building decoration materials including coatings,paints,and resins [2].Previous reports have shown that high-dose exposure increases the risk of acute poisoning and long-term exposure could lead to chronic poisoning or even cancer [3].The International Agency for Research on Cancer (IARC) classified HCHO as a Group I carcinogen[4,5].In addition,the World Health Organization (WHO) set the HCHO exposure limit as 0.08 ppm within 30 min [6].Thus,the development of HCHO detection technology is great of urgent to daily life and industrial applications.The traditional techniques for the detection of HCHO include gas chromatography [7],electrochemistry [8] and spectrophotomete [9].However,these detection techniques show many disadvantages,such as bulky equipment and complex detection steps [10].Therefore,it is significance to develop convenient,fast-response and high-performance HCHO sensor.

    Compared to bulky equipment,gas sensors based on metal oxide semiconductor (MOS) has recently attracted more attention owing to small size,low cost and facile operation [11–13],such as CeO2,SiO2,Al2O3and TiO2[14].Among them,CeO2,featured by remarkable redox properties associated with facile conversion of Ce4+to Ce3+and strong interaction with metal,is widely investigated [15].Many researchers have reported the excellent performance of CeO2in the detection of HCHO based on experiment results.Shahidet al.[16] prepared CeO2polyhedral nanostructures with highly exposed surface area.The result was shown that gas sensing response to HCHO is better than that of other target gasses at 150 ppm.Zhanget al.[17] provided ultra-thin CeO2nanosheets by a simple low-temperature hydrothermal method.It exhibited a fast response to 5–400 ppm HCHO vapor.D.S.Danielet al.[18] proposed doping Zn ions into CeO2films and observed an obvious HCHO response in a lower detection (0.5 ppm) at 32°C.The above works have proved that CeO2is a potential metal oxide material for HCHO detection.However,these reports are obtained through prolonged trial and error,bulky equipment and complex experimental procedures.Therefore,it is of great significance to propose a simple method to improve the ability of CeO2to detect HCHO instead of the traditional experiment.

    Density functional theory (DFT) [19] is a computational quantum mechanical modeling method used in physics,chemistry and materials science.It is widely used to explore materials for the detection of HCHO.For example,Denget al.[20] studied the electronic properties of TM (TM=Ni,Pt,Ti,Pd) doped MoS2and the adsorption of HCHO on these monolayer 2D structures by DFT,shows that TM-doped can substantially improve the sensitivity towards HCHO.[21] Jinget al.[22] used the density functional theory with Hubbard U correction (DFT+U) to study the effect of Au doping CeO2on the adsorption HCHO.The authors believed that Au doping promoted the activation of surface oxygen and promoted the adsorption of HCHO.Hence,as a detection descriptor,adsorption can be employed to describe the performance of HCHO adsorption sensor.TM-doped CeO2to improve the adsorption capacity of HCHO by using DFT is considered to be an effective measure to improve the ability to detect HCHO.However,to the best of our knowledge,there is still a lack of relevant reports.

    Inspired by above reports,two CeO2phases (Fmˉ3m andP42/mnm),three facets (CeO2(100),CeO2(110) and CeO2(111)) and three adsorption sites (top,bridge and hollow) are proposed to elucidate stability for HCHO adsorption.Afterwards,twenty-eight candidated TMs are doped on CeO2to simulate the adsorption performance of HCHO.It is found that CeO2in a cubic fluorite structure with the space group of Fmˉ3m is favorable to HCHO adsorption compared with the CeO2(P42/mnm) base on DFT simulation.TM-CeO2(TM=Au,Hf,Nb,Ta,Zr) are considered as candidated materials for absorbing HCHO due to their lower adsorption energies than the other twenty-five TM-CeO2.Finally,the d-band center,partial density of states and charge density difference are employed to explain the mechanism of improving the adsorption capacity of HCHO.The simulation solid date reveals that the improved performance of CeO2of adsorbing HCHO by doping TMs ascribed to the electron rearrangement and hybridization of Ce and TMs orbitals.The present work provides a beneficial guidance for exploring practical applications of the transition metal-doped CeO2as superior HCHO detection materials.

    All the density functional theory calculations are carried out in the ViennaAb-initioSimulation Package (VASP) [23],and VASPKIT[24] is used to post-process the data calculated by VASP.The generalized gradient approximation (GGA) is used with Perdew-Burke-Ernzerhof (PBE) [25,26] exchange- correlation functional.The Projector augmented-wave (PAW) method is used to deal with the core electrons,and the valence electrons are described by a plane wave basis set with a cutoff energy of 450 eV.The adsorption energy and electronic properties are calculated byk-point grid(1×1×1) and (4×4×1) Monkhorst-Pack grids,respectively.In order to avoid the interaction between periodic structures,the vacuum layer is set to 15 ?A,and the convergence criteria of force and energy are set to 0.03 eV/?A and 10-5eV,respectively.

    The adsorption energy (Eads) of HCHO adsorbed on CeO2surface that measures the strength of the interaction between HCHO and the surface,is calculated as

    whereEtotal,EsubstrateandEHCHOrepresent the total energy of CeO2adsorbing HCHO,the energy of CeO2substrate and the energy of HCHO molecules in vacuum,respectively.It is be considered adsorption energies below -0.5 eV to be ‘strong’,or chemisorbed,while adsorption energies above -0.5 eV to be ‘weak’,or physisorbed in this work [27].

    Table 1 C–O bond length of HCHO adsorbed on α-CeO2 and β-CeO2 surfaces.

    The binding energy (Ebinding) of TMs doped CeO2is calculated as follows:

    Among them,Etotal,Etotal-TMandETMrepresent the energy of TM doped CeO2,the energy of TM doped CeO2without TM,and the energy of a metal atom in vacuum,respectively.The negative value ofEbindinindicates that the doping of TM is an exothermic reaction.In general,the more negative their values are,the more stable the adsorption is.

    In order to simulate the sensitivity of selected TM-α-CeO2(100)(TM=Au,Hf,Nb,Ta,Zr),characteristics between sensor response and the current-voltage are calculated based on the nonequilibrium Green’s function formalism of the SMEAGOL package [28].The double-zeta basis with a cut off energy of 600 Ry and generalized gradient approximation of Perdew-Burke-Ernzerhof were used.The Brillouin zone is set on 1×8×10 and 1×10×10 Monkhorst-Packk-meshes in the electrode and transport calculations,respectively.

    Two CeO2phases,noted asα-CeO2andβ-CeO2,are employed to simulate.As shown in Fig.S1a (Supporting information),α-CeO2in a cubic fluorite structure with the space grouping Fmˉ3m[29].Ce is surrounded by eight nearby O,while O is surrounded by four nearby Ce.The lattice parameters area=b=c=5.411 ?A,α=β=γ=90° As shown in Fig.S1b (Supporting information,β-CeO2with the space group isP42/mnmand the lattice constant isa=b=5.135 ?A,c=3.636 ?A,α=β=γ=90° in order to compare withα-CeO2.The low index surfaces of CeO2are CeO2(100),CeO2(110) and CeO2(111) [30,31].The surfaces ofα-CeO2andβ-CeO2before and after optimization are demonstrated in Figs.S1c-f (Supporting information) and Figs.S1g-l (Supporting information),respectively.According to previous report,the most favorable configuration for HCHO adsorption over stoichiometric oxides is normal to the surface with the oxygen bound to the metal cation[32].The three sites (top,bridge and hollow) of HCHO adsorbed vertically onα-CeO2andβ-CeO2surfaces above Ce atom are selected in Fig.S2 (Supporting information).

    After structural optimization,eighteen stable models are obtained.The adsorption energies and C–O bond length (d) of HCHO are used to evaluate the adsorption stability of HCHO on three facets.As describe in Table 1 and Figs.1a and b,the lowest adsorption energies of HCHO onα-CeO2(100),α-CeO2(110),α-CeO2(111),β-CeO2(100),β-CeO2(110),β-CeO2(111) are -2.99 eV,-1.49 eV,-1.56 eV,-3.67 eV,-1.50 eV and -1.35 eV,respectively.It is considered that adsorption energies below -0.5 eV is to be‘strong’,or chemisorbed [27].All of them are lower than -0.5 eV,indicating that the adsorption of HCHO on CeO2belongs to chemical adsorption.It is worth noting that their corresponding bond lengths are longer than the other two adsorption sites.For instance,adsorption energies ofα-CeO2(100) on three sites are hollow (-2.99 eV)>bridge (-1.51 eV)>top (-1.12 eV).Their corresponding C–O bond length are hollow (1.44 ?A)>bridge (1.33 ?A)>top (1.30 ?A).The more negative adsorption energy and the longer bond distance with interacting of CeO2surfaces and HCHO indicate higher performance to adsorb HCHO.Therefore,the orders of adsorption capacity of HCHO on CeO2areα-CeO2(100)>α-CeO2(111)>α-CeO2(110) andβ-CeO2(100)>β-CeO2(110)>β-CeO2(111).The hollow site for HCHO ofα-CeO2(100) and the top site for HCHO ofβ-CeO2(100) are employed in the following simulation.

    Fig.1.Adsorption energies of HCHO at three adsorption sites (top,bridge and hollow) of (a) α-CeO2 and (b) β-CeO2.Binding energies of TM doping at two sites of (c) α-CeO2(100) and (d) β-CeO2(100).Yellow and green spots indicate that TMs are doped on anchoring site and doping site,respectively.Adsorption energies of HCHO adsorbed by (e) TM-α-CeO2 and (f) TM-β-CeO2 (TM=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Cd,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg).

    In order to explore the favorable adsorption sites to TMs doping on CeO2,28 candidate TMs (TM=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Cd,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg) are designed to investigate their binding energies at anchoring site and doping site of CeO2.The structural models are displayd in Fig.S3 (Supporting information).According to the comparison of binding energies (Figs.1c and d),it is show that (i) for TM-α-CeO2(100),most of TMs are apt to be doped at the doping site,while Pt and Au are more squint towards be doped at the anchoring site.For TM-β-CeO2(100),TMs before the VIB group of the elements periodic table are apt to be adsorbed at the doping site.However,the TMs after the VIIB group of the elements periodic table are more inclined to be adsorbed at the anchoring site(except Fe); (ii) TMs doping is an exothermic reaction in virtue of their binding energies below 0 eV (except for IIB group TMs since they with no incomplete d shell and their electronic properties are not active).In the following simulation,doping site for TM-α-CeO2(100) is employed to adsorb HCHO.As for TM-β-CeO2(100),we use sites that TMs are more inclined to doping.

    To explore the adsorption capacity of TM dopedα-CeO2(100)andβ-CeO2(100) to with HCHO,their adsorption energies and electronic properties are calculated.The calculated results of adsorption energies are displayed in Figs.1e and f.Among them,the adsorption energies of five TM dopedα-CeO2(100) are lower thanα-CeO2(100).They are Zr-α-CeO2(-3.70 eV),Nb-α-CeO2(-3.47 eV),Hf-α-CeO2(-3.23 eV),Ta-α-CeO2(-3.09 eV) and Auα-CeO2(-3.07 eV),respectively.It indicates that the adsorption capacity of CeO2for HCHO is slightly enhanced owing to five TMs doped.However,the adsorption energies of TM dopedβ-CeO2(100) are higher thanβ-CeO2(100),indicating thatα-CeO2(100) is more suitable for adsorbing HCHO.The transition states and the structural parameters of HCHO adsorb at TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr) are displayed in Figs.S4 and S5(Supporting information),respectively.Thed(Ce-O) and A(H–C-H)of TM-α-CeO2(100) are smaller thanα-CeO2(100).It is consistent with the result of adsorption energies.

    Partial density of states (PDOS) and d-band center are used to further explain the mechanism that TM dopedα-CeO2(100) increases the CeO2adsorption capacity of HCHO.As shown in Fig.2a,the d orbitals of TMs and the d orbitals of Ce hybridized obviously from -6 eV to -4 eV.The d orbitals of Ce have obviously changed indicating that TM doped changes the d orbit of Ce,rearranges the electrons of the Ce,result in TMs can be stably doped on the surface of CeO2.According to above results,it is concluded that the adsorption performance of HCHO onα-CeO2(100) is stronger than HCHO onβ-CeO2(100).

    The d-band center of Ce is calculated using the following method (Eq.3):

    In general,the shift of d-band center away from the Fermi level will increase the filling of the antibond state,thus weakening the adsorption of the adsorbent,otherwise it will enhance the adsorption of the adsorbent [33].In our results,the d-band of TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr) are closer to the Fermi level thanα-CeO2(100),illustrating that TM doped increases the bonding state and led to the enhancement of the interaction between Ce and HCHO.Similarly,we find that the fermi level of HCHO adsorbed TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr) have a red shift(Fig.2b).Therefore,TM doped decreases the free energy ofα-CeO2(100),resulting in more stable structure [34].

    The Charge density difference (CDD) is employed to further clarify the electron transfer mechanism of HCHO adsorbed on TMα-CeO2(100),it is calculated by Eq.4.

    In the formula,ρTM-CeO2–HCHO,ρTM-CeO2andρHCHOare the charge densities of HCHO adsorbed on TM-α-CeO2(100),α-CeO2(100) and isolated HCHO molecule,respectively.As displayed in Fig.2c,the yellow and cyan areas denote the charge accumulation and loss,respectively.It reveals that the C atom of HCHO obtains electrons from two Ce atoms ofα-CeO2(100).After doping TM,the C atom with HCHO is inclined to obtain electrons from TM result in forming covalent bonds of C of TM.Additionally,electron localization function (ELF) maps confirm that HCHO has a strong bonding with TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr) but a weak interaction withα-CeO2(100) (Fig.3).Hence,the TM doped promote the adsorption of HCHO on TM-α-CeO2(100).

    Fig.2.(a) PDOS of HCHO adsorb at TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr).0 eV represents Fermi level.The black lines represent the D-band of Ce in HCHO adsorb at TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr).(b) The DOS of HCHO adsorb at TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr).(c) The charge density difference of TM-α-CeO2(100)(TM=Au,Hf,Nb,Ta,Zr).

    Fig.3.Electron localization function of HCHO adsorb at TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr).The white arrow points to the adsorption site of CeO2 surface and HCHO,and the connection of TMs to HCHO indicates strong adsorption capacity.The saturation value is 0.1.

    Fig.4.Current-voltage characteristics along the TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr) directions for sensing responses of HCOH.

    Fig.4 shows the current-voltage characteristics along the TMα-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr) after the adsorption of a HCHO molecule.When a voltage of 0.4 V is applied,the sensing response is the highest for HCHO for all of transport directions.As an applied voltage increases,the sensing response follows the order,Au>>Zr>Nb>Hf>Ta>substrate.Therefore,at an applied voltage of 0.4 V,it is concluded that Au-α-CeO2(100) shows excellent sensitivity performance than other TM-α-CeO2(100) sensor.

    In conclusion,we proposed two CeO2phases (Fmˉ3m andP42/mnm),three facets (CeO2(100),CeO2(110) and CeO2(111)) and three adsorption sites (top,bridge and hollow) as substrate models.DFT calculation reveals that (i) The hollow site for HCHO ofα-CeO2(100) and the top site for HCHO ofβ-CeO2(100) are considered to be suitable for the adsorption of HCHO by comparing adsorption energies; (ii) TM-α-CeO2(100) (TM=Au,Hf,Nb,Ta,Zr)are screened as candidate materials to absorb HCHO on account of TM doped improves the performance of adsorbing HCHO; (iii) TM doped changes the d orbit,rearranges the electrons of Ce,causesα-CeO2(100) with lower free energy result in TM doped improves the performance ofα-CeO2(100) for adsorbing HCHO; (iv) C atom gets electrons and forms covalent bond with TM contribute to improve the performance of surfaces for adsorbing HCHO.These findings would provide a route to design HCHO sensor materials with superior performance.

    Declaration of competing interest

    We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work,there is no professional or other personal interest of any nature or kind in any product,service and/or company that could be construed as influencing the position presented in,or the review of,the manuscript entitled.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.22005269); the NSFC-Zhejiang Joint Fund for Integration of Industrialization and Diversification (No.U1809214);the National Natural Science Foundation of Zhejiang Province(No.LQ21B030007) and the Science and Technological program of Ningbo (No.2021S136)

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.04.074.

    精品一区二区三区四区五区乱码| xxx96com| h日本视频在线播放| av天堂在线播放| 日韩欧美一区二区三区在线观看| 国产黄色小视频在线观看| 麻豆国产av国片精品| 欧美极品一区二区三区四区| 不卡av一区二区三区| 日韩精品青青久久久久久| 深夜精品福利| 最近最新免费中文字幕在线| 99久久综合精品五月天人人| 国产伦在线观看视频一区| 又粗又爽又猛毛片免费看| 国产成年人精品一区二区| 亚洲黑人精品在线| 久久久国产成人精品二区| 一级毛片高清免费大全| 嫩草影视91久久| 亚洲18禁久久av| 久久精品91无色码中文字幕| 国产人伦9x9x在线观看| 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| 高清毛片免费观看视频网站| www.熟女人妻精品国产| 国产精品1区2区在线观看.| 午夜影院日韩av| 亚洲国产欧美人成| 亚洲精华国产精华精| 99riav亚洲国产免费| 成人鲁丝片一二三区免费| 脱女人内裤的视频| 一个人看视频在线观看www免费 | 成人精品一区二区免费| 精品不卡国产一区二区三区| 久久99热这里只有精品18| 搡老妇女老女人老熟妇| 老司机午夜福利在线观看视频| 国产激情偷乱视频一区二区| 亚洲 国产 在线| 男女床上黄色一级片免费看| 一边摸一边抽搐一进一小说| 高清在线国产一区| 白带黄色成豆腐渣| 黄色女人牲交| 高清毛片免费观看视频网站| 99久久精品国产亚洲精品| 欧美3d第一页| 91在线观看av| 亚洲美女黄片视频| 日本免费a在线| 人妻久久中文字幕网| 国内久久婷婷六月综合欲色啪| 成人高潮视频无遮挡免费网站| 亚洲精品一区av在线观看| 亚洲国产欧美人成| bbb黄色大片| 亚洲欧美日韩高清在线视频| 亚洲人成网站在线播放欧美日韩| 丰满人妻一区二区三区视频av | 免费搜索国产男女视频| 成人三级做爰电影| h日本视频在线播放| 色噜噜av男人的天堂激情| 偷拍熟女少妇极品色| 久久久久性生活片| 又黄又粗又硬又大视频| 欧美在线黄色| 精品久久久久久久末码| 国产 一区 欧美 日韩| 亚洲av五月六月丁香网| 久久99热这里只有精品18| 国产精品 国内视频| 色av中文字幕| 欧美日韩综合久久久久久 | 国产成人aa在线观看| 亚洲 欧美一区二区三区| 色哟哟哟哟哟哟| 国产成年人精品一区二区| 国产精华一区二区三区| 亚洲 欧美一区二区三区| 欧美日韩黄片免| 国产免费av片在线观看野外av| 国产精品久久久久久人妻精品电影| 国产v大片淫在线免费观看| 免费在线观看视频国产中文字幕亚洲| 搡老岳熟女国产| 亚洲av第一区精品v没综合| 狠狠狠狠99中文字幕| 国产精品自产拍在线观看55亚洲| 黄色视频,在线免费观看| xxxwww97欧美| 波多野结衣巨乳人妻| 午夜福利高清视频| 国产伦精品一区二区三区视频9 | 亚洲国产精品999在线| 午夜福利18| 国产精品av视频在线免费观看| 在线免费观看的www视频| 19禁男女啪啪无遮挡网站| a级毛片a级免费在线| 日韩欧美免费精品| 母亲3免费完整高清在线观看| 亚洲精品久久国产高清桃花| 午夜激情欧美在线| 人妻久久中文字幕网| 亚洲欧洲精品一区二区精品久久久| 观看免费一级毛片| 一级毛片高清免费大全| 九九在线视频观看精品| 国产男靠女视频免费网站| 色在线成人网| 在线免费观看的www视频| 九九热线精品视视频播放| 亚洲七黄色美女视频| 性色avwww在线观看| 一级作爱视频免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 欧美一区二区三区| 国产成+人综合+亚洲专区| 亚洲国产精品sss在线观看| 国产伦人伦偷精品视频| 国产av一区在线观看免费| 黄色成人免费大全| 久久精品影院6| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频| 国产三级中文精品| 舔av片在线| 国产亚洲欧美98| 亚洲成av人片在线播放无| 国产野战对白在线观看| 天天躁日日操中文字幕| 99热这里只有是精品50| 亚洲专区中文字幕在线| 国产黄色小视频在线观看| 熟女少妇亚洲综合色aaa.| 精品福利观看| 久久精品国产亚洲av香蕉五月| 亚洲国产欧洲综合997久久,| 俄罗斯特黄特色一大片| 久久久久久久精品吃奶| 精品无人区乱码1区二区| 精品久久久久久久久久免费视频| 一个人看视频在线观看www免费 | 国产精品99久久久久久久久| 在线观看66精品国产| 精品国产亚洲在线| 999精品在线视频| 又粗又爽又猛毛片免费看| 日本 av在线| 亚洲精品美女久久av网站| 中文字幕人妻丝袜一区二区| 精品国产美女av久久久久小说| 最新中文字幕久久久久 | 69av精品久久久久久| 老鸭窝网址在线观看| 国产美女午夜福利| 日本在线视频免费播放| 男女那种视频在线观看| 一级毛片高清免费大全| 免费无遮挡裸体视频| 久久久久亚洲av毛片大全| 99热只有精品国产| 很黄的视频免费| 欧美乱码精品一区二区三区| 一区福利在线观看| 亚洲国产精品成人综合色| 日本在线视频免费播放| 日韩免费av在线播放| 久久久精品欧美日韩精品| 91麻豆av在线| 成人特级黄色片久久久久久久| 日韩欧美三级三区| av片东京热男人的天堂| 熟妇人妻久久中文字幕3abv| 色吧在线观看| 老司机午夜十八禁免费视频| 精品福利观看| 丰满人妻一区二区三区视频av | 亚洲精华国产精华精| 中文在线观看免费www的网站| 国产精品一区二区精品视频观看| 97人妻精品一区二区三区麻豆| 国产精品一区二区三区四区久久| 天天躁日日操中文字幕| 亚洲欧美精品综合久久99| 久久人妻av系列| 亚洲一区二区三区不卡视频| 男人舔奶头视频| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 国产成人av教育| 日本三级黄在线观看| 成人欧美大片| 日韩中文字幕欧美一区二区| 国产精品,欧美在线| 黄频高清免费视频| 欧美色欧美亚洲另类二区| 日本一本二区三区精品| 国产精品亚洲一级av第二区| 免费电影在线观看免费观看| 亚洲五月婷婷丁香| 中文字幕最新亚洲高清| 成人国产综合亚洲| 亚洲av免费在线观看| av片东京热男人的天堂| 999精品在线视频| 日韩欧美免费精品| 亚洲av中文字字幕乱码综合| 一区福利在线观看| 欧美色欧美亚洲另类二区| 免费av不卡在线播放| 天堂√8在线中文| 成人鲁丝片一二三区免费| 久久香蕉精品热| 久久久精品欧美日韩精品| svipshipincom国产片| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 怎么达到女性高潮| 久久精品国产亚洲av香蕉五月| 国产美女午夜福利| 99视频精品全部免费 在线 | 亚洲专区国产一区二区| 听说在线观看完整版免费高清| 法律面前人人平等表现在哪些方面| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 午夜久久久久精精品| av中文乱码字幕在线| 久久精品91无色码中文字幕| 欧美乱色亚洲激情| 哪里可以看免费的av片| 成人三级做爰电影| av天堂在线播放| 丝袜人妻中文字幕| 亚洲最大成人中文| 嫩草影院精品99| 亚洲第一电影网av| 一级a爱片免费观看的视频| 午夜福利视频1000在线观看| 亚洲最大成人中文| 成年女人永久免费观看视频| 制服人妻中文乱码| 精华霜和精华液先用哪个| 亚洲色图 男人天堂 中文字幕| 日本熟妇午夜| 床上黄色一级片| 日韩欧美在线二视频| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 亚洲最大成人中文| 嫩草影院精品99| 最近最新中文字幕大全电影3| 亚洲自拍偷在线| 久久九九热精品免费| 超碰成人久久| 亚洲无线在线观看| 日本一本二区三区精品| 国产伦精品一区二区三区视频9 | 99久久成人亚洲精品观看| 国产精品久久久久久亚洲av鲁大| 毛片女人毛片| 小说图片视频综合网站| 夜夜爽天天搞| 9191精品国产免费久久| 国产午夜精品久久久久久| www.精华液| 嫩草影视91久久| 国产成人影院久久av| 国产精品亚洲美女久久久| 国产高清视频在线观看网站| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 亚洲国产色片| 国产精品久久久久久久电影 | 狂野欧美激情性xxxx| 午夜视频精品福利| 国产成人影院久久av| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 黄片小视频在线播放| 99久国产av精品| 国产乱人视频| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 狂野欧美激情性xxxx| 免费在线观看影片大全网站| 午夜a级毛片| 男插女下体视频免费在线播放| 小蜜桃在线观看免费完整版高清| 99国产极品粉嫩在线观看| 天天添夜夜摸| 精品99又大又爽又粗少妇毛片 | 又黄又爽又免费观看的视频| 九九久久精品国产亚洲av麻豆 | 日本一本二区三区精品| 久久精品91蜜桃| 欧美黑人欧美精品刺激| 成人性生交大片免费视频hd| 又黄又爽又免费观看的视频| 少妇丰满av| 亚洲无线在线观看| 成人性生交大片免费视频hd| 天堂网av新在线| 身体一侧抽搐| 日韩三级视频一区二区三区| 嫁个100分男人电影在线观看| 久久热在线av| 久久久久亚洲av毛片大全| 日日干狠狠操夜夜爽| 人妻久久中文字幕网| 脱女人内裤的视频| 精品电影一区二区在线| 99国产综合亚洲精品| 一本精品99久久精品77| 国产三级中文精品| 中亚洲国语对白在线视频| 级片在线观看| 亚洲熟女毛片儿| 嫩草影院精品99| 给我免费播放毛片高清在线观看| 最近最新中文字幕大全电影3| 国产三级中文精品| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 国产乱人伦免费视频| 久久99热这里只有精品18| 午夜亚洲福利在线播放| 精品午夜福利视频在线观看一区| 日本三级黄在线观看| 中文亚洲av片在线观看爽| АⅤ资源中文在线天堂| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| 国产爱豆传媒在线观看| 天堂√8在线中文| 国产亚洲精品久久久com| 国产伦精品一区二区三区四那| 欧美一区二区精品小视频在线| 国产精品av久久久久免费| 成人亚洲精品av一区二区| 黄色日韩在线| 97超视频在线观看视频| 三级毛片av免费| 久久精品亚洲精品国产色婷小说| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 日日摸夜夜添夜夜添小说| 成人三级黄色视频| 18禁裸乳无遮挡免费网站照片| 美女被艹到高潮喷水动态| 欧美av亚洲av综合av国产av| 免费搜索国产男女视频| 99热精品在线国产| 国产三级在线视频| 免费人成视频x8x8入口观看| 国产av麻豆久久久久久久| 色在线成人网| 国产单亲对白刺激| 国产爱豆传媒在线观看| 国产精品久久久久久人妻精品电影| 国产成人av激情在线播放| 成人三级黄色视频| 最新在线观看一区二区三区| 2021天堂中文幕一二区在线观| 亚洲人成伊人成综合网2020| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 欧美日韩瑟瑟在线播放| 色播亚洲综合网| 又黄又爽又免费观看的视频| 一个人观看的视频www高清免费观看 | 伦理电影免费视频| 国产91精品成人一区二区三区| 国产精品久久电影中文字幕| 日本与韩国留学比较| bbb黄色大片| 国产三级中文精品| 性欧美人与动物交配| 在线视频色国产色| 最新在线观看一区二区三区| 午夜福利欧美成人| 国内久久婷婷六月综合欲色啪| 日韩欧美一区二区三区在线观看| 久久热在线av| 十八禁网站免费在线| 夜夜躁狠狠躁天天躁| 1024香蕉在线观看| 脱女人内裤的视频| 久久久精品欧美日韩精品| 好看av亚洲va欧美ⅴa在| 制服丝袜大香蕉在线| 超碰成人久久| 午夜福利在线观看吧| 99视频精品全部免费 在线 | 天天躁狠狠躁夜夜躁狠狠躁| 99久久综合精品五月天人人| 在线永久观看黄色视频| 国产人伦9x9x在线观看| 天堂√8在线中文| 亚洲av中文字字幕乱码综合| 国产精品女同一区二区软件 | 中亚洲国语对白在线视频| 日本成人三级电影网站| 亚洲成av人片免费观看| 又粗又爽又猛毛片免费看| 在线看三级毛片| 婷婷精品国产亚洲av在线| 日本黄色片子视频| 一区福利在线观看| 黑人欧美特级aaaaaa片| 色综合站精品国产| 一个人看视频在线观看www免费 | 午夜久久久久精精品| 欧美黑人欧美精品刺激| 国产成人精品久久二区二区免费| 51午夜福利影视在线观看| 欧美日韩精品网址| 日本一二三区视频观看| 欧美+亚洲+日韩+国产| 国产亚洲欧美98| 国产成人系列免费观看| 国产av一区在线观看免费| 深夜精品福利| 天堂网av新在线| 欧美午夜高清在线| 蜜桃久久精品国产亚洲av| 久久精品国产综合久久久| 亚洲中文av在线| 看黄色毛片网站| 欧美日韩乱码在线| 亚洲专区国产一区二区| 观看美女的网站| 欧美日韩精品网址| 亚洲欧美日韩高清专用| 网址你懂的国产日韩在线| 成人无遮挡网站| 日本黄大片高清| 亚洲黑人精品在线| 999久久久精品免费观看国产| 亚洲av电影在线进入| 9191精品国产免费久久| 久久久久久久精品吃奶| 免费在线观看视频国产中文字幕亚洲| 欧美成人一区二区免费高清观看 | 脱女人内裤的视频| 18禁国产床啪视频网站| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 麻豆国产av国片精品| 黄色成人免费大全| 午夜福利视频1000在线观看| 国产精品影院久久| 国产激情久久老熟女| 日本免费一区二区三区高清不卡| 狂野欧美白嫩少妇大欣赏| 亚洲乱码一区二区免费版| av黄色大香蕉| 国产精品自产拍在线观看55亚洲| 禁无遮挡网站| 啦啦啦观看免费观看视频高清| 午夜视频精品福利| 亚洲av第一区精品v没综合| av黄色大香蕉| 好男人电影高清在线观看| 国产精品久久视频播放| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| 日本免费a在线| 日韩大尺度精品在线看网址| 免费看a级黄色片| 69av精品久久久久久| 观看免费一级毛片| 久久这里只有精品中国| 久久久久国内视频| 欧美高清成人免费视频www| 国产精品九九99| 成年免费大片在线观看| 一进一出抽搐gif免费好疼| 首页视频小说图片口味搜索| av中文乱码字幕在线| 最近在线观看免费完整版| 村上凉子中文字幕在线| 熟女人妻精品中文字幕| 亚洲成人中文字幕在线播放| 最新在线观看一区二区三区| 国产精品久久久久久精品电影| 精品久久久久久成人av| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 国产又色又爽无遮挡免费看| 久久国产精品人妻蜜桃| 国产蜜桃级精品一区二区三区| 国产激情欧美一区二区| 中文字幕人妻丝袜一区二区| 久久精品亚洲精品国产色婷小说| a在线观看视频网站| 欧美一区二区精品小视频在线| 久久午夜亚洲精品久久| 亚洲欧美日韩无卡精品| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 国内精品久久久久精免费| 免费观看人在逋| 看片在线看免费视频| 99国产精品一区二区蜜桃av| 国产午夜福利久久久久久| 久久久久国内视频| 日本五十路高清| 亚洲国产中文字幕在线视频| 草草在线视频免费看| 免费一级毛片在线播放高清视频| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看 | 99久久成人亚洲精品观看| 国产成人福利小说| 亚洲在线自拍视频| 九色成人免费人妻av| 久久热在线av| 亚洲熟女毛片儿| 免费av不卡在线播放| 搡老妇女老女人老熟妇| 久久国产精品人妻蜜桃| 97超视频在线观看视频| 日本黄色片子视频| 国产精品影院久久| 一个人观看的视频www高清免费观看 | 动漫黄色视频在线观看| 极品教师在线免费播放| 欧美乱码精品一区二区三区| 久久99热这里只有精品18| 中文在线观看免费www的网站| 欧美午夜高清在线| 色综合欧美亚洲国产小说| www日本黄色视频网| 99精品久久久久人妻精品| 亚洲一区二区三区色噜噜| 日韩欧美免费精品| 国产精品亚洲美女久久久| 婷婷精品国产亚洲av在线| 国产视频内射| 免费看光身美女| 亚洲国产精品成人综合色| 亚洲午夜理论影院| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| 亚洲狠狠婷婷综合久久图片| 亚洲成人免费电影在线观看| 高清毛片免费观看视频网站| 国产av在哪里看| x7x7x7水蜜桃| 18禁国产床啪视频网站| 午夜福利成人在线免费观看| 久久久久久国产a免费观看| 亚洲在线观看片| av视频在线观看入口| 真人做人爱边吃奶动态| 国模一区二区三区四区视频 | 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 99久久精品热视频| 久久热在线av| av视频在线观看入口| 又黄又粗又硬又大视频| 国产淫片久久久久久久久 | 精品一区二区三区四区五区乱码| 国产高潮美女av| 亚洲精品乱码久久久v下载方式 | 中文字幕熟女人妻在线| 美女被艹到高潮喷水动态| 亚洲精华国产精华精| 男人舔奶头视频| 欧美3d第一页| 国产黄a三级三级三级人| 免费看光身美女| 18美女黄网站色大片免费观看| 久久欧美精品欧美久久欧美| 无人区码免费观看不卡| 久久人人精品亚洲av| 亚洲人成网站高清观看| 国产私拍福利视频在线观看| 国产伦在线观看视频一区| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 国产精品永久免费网站| 国产男靠女视频免费网站| 亚洲成a人片在线一区二区| 久久精品国产清高在天天线| 狂野欧美激情性xxxx| 99热只有精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 日韩av在线大香蕉| 国产爱豆传媒在线观看| 亚洲精品456在线播放app | 在线十欧美十亚洲十日本专区| 欧美乱妇无乱码| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 91在线精品国自产拍蜜月 | 99久久久亚洲精品蜜臀av| 久久午夜亚洲精品久久| 久久亚洲精品不卡| 国产亚洲精品一区二区www| 色综合站精品国产| 在线观看免费视频日本深夜| 国产单亲对白刺激| 亚洲国产看品久久| 中文字幕高清在线视频| 午夜免费激情av| 精品电影一区二区在线|