• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Talcum-doped composite separator with superior wettability and heatproof properties for high-rate lithium metal batteries

    2023-03-14 06:52:04MengqiuYngYunpengJiYunfDongBotoYunLiweiDongYunpengLiuSueHoChunhuiYngXioqingWuQingqunKongJieciHnWeiongHe
    Chinese Chemical Letters 2023年1期

    Mengqiu Yng,Yunpeng Ji,Yunf Dong,Boto Yun,Liwei Dong,Yunpeng Liu,Sue Ho,c,Chunhui Yng,c,Xioqing Wu,Qingqun Kong,Jieci Hn,Weiong He,,e,*

    a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150080,China

    b National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,and Center for Composite Materials and Structures,Harbin Institute of Technology,Harbin 150080,China

    c State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150080,China

    d School of Mechanical Engineering,Chengdu University,Chengdu 610106,China

    e Chongqing Research Institute,Harbin Institute of Technology,Chongqing 401151,China

    Keywords:Lithium metal batteries Composite separator PVDF Talcum Wettability Thermal stability

    ABSTRACT Separator is supposed to own outstanding thermal stability,superior wettability and electrolyte uptake,which is essential for developing high-rate and safe lithium metal batteries (LMBs).However,commercial polyolefin separators possess poor wettability and limited electrolyte uptake.For addressing this issue,we put forward a composite separator to implement above functions by doping layered-silicate (talcum) into polyvinylidene fluoride (PVDF).With significant improvement of electrolyte absorption benefiting from the strong adsorption energy values (-1.64 ~-1.70 eV) between talcum and the electrolyte in lithium metal batteries,PVDF/Talcum (PVDF/TM) composite separator owns a small contact angle and superior electrolyte uptake.PVDF/TM composite separator with 10 wt% talcum (T-10) owns a tiny contact angle of 8°,while those of polypropylene (PP) and PVDF are 48° and 20° with commercial electrolyte.Moreover,the addition of thermotolerant talcum endows the T-10 composite separator with great thermostability,whose thermal shrinkage is only 5.39% at 150°C for 0.5 h.The cell with LiFeO4 cathode and the T-10 composite separator reaches 91.7 mAh/g in discharge capacity at 4.8 mA/cm2 (10 C),far superior to that with pure PVDF separator (56.3 mAh/g) and PP (51.4 mAh/g).

    Much effort has been made on the rechargeable lithium metal batteries (LMBs) for ever-increasing demands of novel portable electronics,long-range electric vehicles and solar/wind energy storage,owing to their high operating voltage,zero memory effect and long working lifetime [1–7].However,the increasing demand for higher energy requires continuous optimization of key components in LMBs (cathode,anode,electrolyte and separator) [8,9].As an inactive component,placed between cathode and anode,separator plays a vital role in capacity,cost-effectiveness,lifespan and safety of LMBs [10–18].

    Polyolefin-based materials,for instance,polyethylene (PE) and polypropylene (PP),are used for commercial separators in LMBs due to their high mechanical strength and low cost [19–21].However,the unsatisfactory thermal stability and wettability limit their extensive application [22–24].Massive research on polyvinylidene fluoride (PVDF) or its copolymer as separator is ongoing to address aforementioned issues,owing to its superior thermal stability and favorable wettability attributed to the strong electronabsorbing functional groups and low degree of crystallinity [22,25-28].Nonetheless,their further development is limited in two aspects: (1) short circuit caused by the low mechanical strength of PVDF-based separator associated with Li dendrites and robust electrode; and (2) rapid decay of the discharge capacity resulted from the high activity of Li anode [29,30].The stable operation of LMBs is still challenged with the unsatisfactory rate performance and heatproof [31–33],low mechanical strength of PVDFbased separators in LMBs [28,34].To break through these bottlenecks,massive strategies have been used to enhance the overall performances of PVDF-based separators [35].Recently,it has been demonstrated that polymeric separators incorporated with inorganic particles (ZrO2[36],SiO2[37],Al2O3[38] and TiO2[39]) or modified with inorganic particlesviawet method exhibit enhanced electrolyte uptake,mechanical strength and thermal stability.However,the electrolyte shows poor compatibility with the doped inorganic molecules and cells assembled with these composite separators exhibit poor rate performance,severe safety problems and low discharge specific capacity [10,28].Talcum is a type of layered silicate which is used as reinforcement material for plenty of plastics,owing to its heat-resistance,acid-resistance and insulation.Polymer incorporated with talcum shows excellent rigidity,creep-resistance and stability even at high temperature compared with those incorporated with calcium carbonate or magnesium hydrate [40–42].On one hand,layered silicate has been demonstrated owning strong interaction and showing superior compatibility with the electrolyte [8,22].Therefore,compared with inorganic particles (ZrO2,SiO2,Al2O3,and TiO2),talcum doped composite separator can improve mechanical properties without sacrificing its rate performance and safety.On the other hand,the layered structure of talcum leads to the parallel ion channels that unify the direction of Li+flows.Thus,talcum doped composite separator could improve the discharge specific capacity compared with separators doped with other inorganic particles.Talcum is widely used in composite polymers to reinforce the thermal stability and mechanical strength,reducing the cost at the same time [43].

    In our work,a high-rate,safe and low-cost half-cell is designed with the LiFePO4cathode and the composite separator fabricated by doping talcum into PVDF matrixvialiquid phase method.As compared with PVDF,PVDF/talcum (PVDF/TM) composite separator with 10 wt% talcum (T-10) owns tiny contact angle of 8° with commercial electrolyte while that of the PVDF is 20°.T-10 achieves the mechanical strength of 33 MPa while the PVDF is 15 MPa,and T-10 attains strain of 253% while that of PVDF is 107%.The cell with LiFePO4cathode and T-10 can reach 91.7 mAh/g in discharge capacity,higher than cell with PVDF separator (56.3 mAh/g) and cell with the PP separator (51.4 mAh/g) at 10 C.

    Talcum is a kind of layered silicate ore consisting of SiO2and MgO with the ratio of 2:1,which is stable with the electrolyte and the lithium when being doped with PVDF to form the composite separator [37].The crystal structure and the atomic configuration of talcum are demonstrated in Figs.S1 and S2 (Supporting information).The structural unit layer of talcum powder consists of a magnesium oxygen octahedron sandwiched by two silicon oxygen tetrahedra.After being incorporated into PVDF to form the PVDF/TM composite separator,the parallel interlayers in talcum provide active sites and uniform channels to transfer Li+[22],accelerating the transport of lithium ions as demonstrated in Fig.1a.The T-10 composite separator exhibits a more porous and uniform structure as compared with PVDF as demonstrated in Figs.1b and f.The SEM images in Fig.1c typically display the nanosheet structure of talcum,which is clearly observed in the SEM of T-10 composite separator as depictured in Figs.1f and g.The energy dispersive spectral (EDS) mapping images of Mg and Si in the T-10 composite separator show the uniform distribution of talcum particles as illustrated in Figs.1d and h.Moreover,the conclusion is further confirmed with the EDS mapping image of O in T-10 composite separator as depictured in Fig.S3 (Supporting information).The original electron image of EDS is depictured in Fig.S4(Supporting information).The crystallinities of the talcum particles,PVDF and T-10 separators are analyzedviaXRD as depictured in Fig.1e.The characteristic peaks at 9.46° and 19.49° come from the(001) and (101) planes of talcum,respectively.The peak at 28.62°is attributed to quartz,which is commonly found in clays [22].The original peak at 20.42° of PVDF becomes wide and weak after the addition of talcum,demonstrating that the addition of talcum decreases the crystallinity of the PVDF matrix slightly [44,45].The FTIR spectra of T-10 composite separator and PVDF separator are shown in Fig.1i,where the peaks at 614 cm-1and 1402 cm-1come from theαphase of PVDF [46,47].The peaks that are relevant to the stretching vibration of CF2groups appear at 485 cm-1and 1181 cm-1[22,28].The peaks at 3676 cm-1and 670 cm-1of T-10 composite separator are attributed to the presence of talcum particles.

    The thermal distribution is determined with forward looking infrared radiometer (FLIR) as demonstrated in Figs.2a-c.The T-10 and PVDF separators own the structural integrity,demonstrating the expeditious heat transfer during the whole heating process as shown in Figs.2b and c,showing a higher thermal stability than PP separators (Fig.2a).Fig.S5 (Supporting information) shows that PVDF/TM composite separators maintain the most structural integrity even after 30 min at 150°C,while PP experiences severe shrinkage with the temperature increasing.Fig.S6 (Supporting information) demonstrates that after annealing samples at different temperature,the thermal shrinkage of T-10 composite separator is 1.29% at 120°C and 5.39% at 150°C,respectively,far superior to those of PVDF and PP separators.Separators with superior mechanical strength can prevent the cell from short circuit,which is vital for the safe operation of LMBs [1,7,48,49].The mechanical behavior was investigated with strain-stress analysis as demonstrated in Fig.2d.As the ratio of talcum in PVDF/TM increases,the mechanical strength of PVDF/TM separators upgrades gently but all much higher than PVDF separator.As for the toughness of these separators,PVDF/talcum (PVDF/TM) composite separator with 5 wt%talcum (T-5) owns nearly 400% elongation,four times than that of PVDF,but sharply decreases with the continued addition of talcum.Given comprehensive comparison on mechanical strength and toughness of these composite separators,T-10 composite separator is chosen to be the ideal separator to carry on further investigation and comparison with PVDF and PP separators.Effi-cient electrolyte absorption is of great significance for transporting Li+[10,50-52].Electrolyte uptake percentages are measured by immersing the three separators in the commercial electrolyte for one hour,respectively.PVDF-based separator demonstrates a much higher electrolyte uptake percentage than PP,and T-10 composite separator owns the highest uptake percentage of 200% while PVDF of 150% and PP of 120% as demonstrated in Fig.2e.

    Thermogravimetric analysis (TGA) was conducted to further explore the heat endurance of T-10,PVDF and PP separators.The above three separators are heated ranging from 25°C to 800°C with the rate of 10°C/min.The TGA curves demonstrate that T-10 composite separator starts to lose weight at 458°C,while PVDF at 427°C and PP at 289°C,respectively (Fig.2f).Contact angle measurements are conducted on above three separators to investigate the wettability of the separators.The commercial separator PP owns the contact angle of 48° ± 1.05° due to its intrinsic hydrophobicity while PVDF with 20° ± 1.02° as depictured in Figs.2g and h [53].The T-10 composite separator owns the smallest contact angle of 8° ± 1.01° due to the intrinsic hydrophilia of PVDF and the strong compatibility of talcum with electrolyte (Fig.2i)[28].Column diagram is used to make a striking contrast among the three separators about contact angle (Fig.S7 in Supporting information).

    Rate performance of half-cell with LiFeO4cathode and PP,PVDF and PVDF/TM separators was investigated.The half-cell with LiFeO4cathode and Li anode (LFP/Li) with T-10,PVDF/talcum composite separator with 20 wt% talcum (T-20),PVDF/talcum(PVDF/TM) composite separator with 30 wt% talcum (T-30),PVDF and PP separators at 0.2 C,0.5 C,1 C,2 C,5 C and 10 C are demonstrated respectively in Fig.S8 (Supporting information).The cell with T-10 composite separator reaches 91.78 mAh/g at 10 C with the highest discharge specific capacity,far higher than those with T-20,T-30,PP and PVDF separators.To further investigate the optimal proportion of talcum in PVDF,rate performance of the cell with T-5 and PVDF/talcum composite separator with 15 wt% talcum (T-15) composite separators are selected to compare with the cells assembled with T-10 composite separator.As illustrated in Fig.S9 (Supporting information),the cell with T-10 exhibits a discharge specific capacity higher than those with T-5 and T-15 composite separators.The rate properties of the cell assembled with PP,PVDF and T-10 composite separators are selected to make a clear and strong contrast in Fig.3a.The cell with T-10 reaches discharge capacities of 154.4,152.3,149.5,141.7,117.7 and 89.8 mAh/g at 0.2 C,0.5 C,1 C,2 C,5 C and 10 C,respectively.In addition,the discharge specific capacity of the cell with the T-10 recovers to 153.7 mAh/g as 10 C rate returns to 0.2 C,which demonstrates especially stable operation of LFP/Li with T-10 composite separator.On the contrary,cell with both PVDF and PP delivers lower discharge capacity at all rates.The upgraded discharge capacity of the cell assembled with T-10 is attributed to the increased Li+channels by adding talcum which is in good agreement with Fig.1a.However,the rapid deterioration of discharge capacity happens with excessive talcum particles as a consequence of the long Li+transfer path,giving rise to the increased charge transfer resistance as demonstrated in Fig.S10 (Supporting information) [22].Given this,high-rate cycle-test is conducted on T-10 and PP separators,and discharge capacity of the battery with T-10 composite separator reaches 71.8 mAh/g while that with PP separator reaches 59.5 mAh/g in the first cycle as demonstrated in Fig.3b.LFP/Li with PVDF/TM separators are put on the working station using the cyclic voltammetry pattern to confirm the electrochemical reactivity,and the peaks at 3.3 V correspond to the reduction and 3.6 V correspond to the oxidation as demonstrated in Fig.3c,respectively.The solid electrolyte interphase (SEI) is formed during the first cycle of reduction at 3.3 V,and the other two peaks at 3.3 V are attributed to the reduction reactions of the battery.On the contrary,the three sharp peaks at 3.6 V are associated with the oxidization reactions,respectively.The cell with T-10 composite separator shows no obvious fluctuations,demonstrating the especial electrochemical stable of T-10 in half-cell which also can be confirmed in long-cycle property in Fig.3j.In addition,the CV profiles of cells with PP,PVDF,T-5,T-15,T-20 and T-30 are depictured subsequently in Fig.S11 (Supporting information).The CV curves about the first cycle of PP,PVDF and T-10 are investigated in Fig.3d,three CV curves show no difference,implying the addition of talcum in PVDF polymeric has no effect on the redox reaction of the cell.

    Fig.1.Fabrication and morphological characteristics of PVDF and T-10 separators.(a) Schematic of PVDF separator,PVDF/TM composite separator and talcum.(b,c) SEM images of PVDF and talcum particle,respectively.(d) Elemental mapping image of Mg-K in a specific acreage of T-10 composite separator.(e) XRD spectra of talcum,PVDF and T-10 separators.(f,g) SEM images of T-10 composite separator at different magnification.(h) Elemental mapping image of Si-K in a specific acreage of T-10 composite separator.(i) FT-IR spectra of T-10 and PVDF separators.

    Fig.2.Heatproof/wettability and other physical performances of PP,PVDF and T-10 separators.(a-c) FLIR pictures of PP,PVDF and the T-10 separators.(d) Tensile curves of PVDF,T-5,T-10,T-15,T-20,T-25 and T-30 separators.(e) Uptake percentage of the PP,PVDF and T-10 separators with commercial electrolyte for 1 h.(f) TG curves of PP,PVDF and T-10 separators.(g-i) Contact angles of PP,PVDF and T-10 separators.

    Fig.3.Electrochemical properties of battery with PP,PVDF and T-10 separators at room temperature.(a) Rate properties of the battery with PP,PVDF and T-10.(b) Cycling properties of the battery with PP and T-10 at 10 C.(c) CV profiles of T-10,recorded with 0.2 mV/s.(d) CV profiles of PP,PVDF and T-10,recorded with 0.2 mV/s.(e)Electrochemical impedance spectroscopy (EIS) curves of the battery with PP,PVDF,T-10,PVDF (16 μm) and T-10 (16 μm) separators.(f) Charging/discharging plots of the cell with PP,PVDF and T-10.(g-i) Charging/discharging plots of the cell with PP,PVDF and T-10,respectively.(j) Cycling properties and Coulombic efficiency of the battery assembled with PP,PVDF,T-10,PVDF (16 μm) and T-10 (16 μm) separators at 0.5 C,respectively.

    Fig.4.Electrochemical properties of cell with PP,PVDF and T-10 separators at elevated temperature.(a) EIS curves of the battery assembled with PP,PVDF and T-10 at 80 °C.(b) Cycling properties of cell with PP,PVDF and T-10 at 1 C under 80 °C.(c-e) Charging/discharging plots of cell with PP,PVDF and T-10 at 80 °C.(f) Cycling performance of cell with PP and T-10 at 1 C at 100 °C.(g) Coulombic Efficiency of cell with PP,PVDF and T-10 at 1 C under 80 °C.

    Thickness is a nonnegligible factor of the separator in lithiumbased batteries in terms of electrochemical performance and cost[12].Currently,the thickness of the academic separators is limited to about 25 μm in line with the commercial polyolefin separators.The pursue of thinner separator is becoming urgent for achieving higher energy-density and safer lithium-based batteries [54].Herein,16 μm PVDF and 16 μm T-10 separators are fabricated and assembled in the LMBs to investigate the internal resistance and cycle stability as depictured in Figs.3e and j.To acquire more direct information on the interfacial impendence,the cells with PP,PVDF,T-10,PVDF (16 μm) and T-10 (16 μm) separators are placed on the work station to explore more interface impedance information at open circuit voltage.For cells assembled with PP,PVDF and T-10 separators,minimum semicircle distance is observed in the cell with T-10 composite separator among the three Nyquist curves,demonstrating the lowest transfer impedance,as depictured in Fig.3e.What is more,cells with 16 μm PVDF and 16 μm T-10 separators show a slight decrease compared with those with 25 μm PVDF and 25 μm T-10 separators as demonstrated in Fig.3e,respectively.Results show that thin separator can reduce the internal resistance.The cells with separators sandwiched with stainless steel are fabricated to measure the ionic conductivity.The ion conductivity of T-10,PVDF and PP is calculated according to Fig.S12 and Eq.S4 (Supporting information).The ion conductivity of T-10 is 0.509 mS/cm.The symmetrical Li/Li cells with various separators are assembled and tested with 0.5 mA/cm2current density to assess the capability of the separator in suppressing the growth of Li dendrites.As demonstrated in Fig.S13 (Supporting information),the cell with T-10 composite separator shows a stable voltage profile over 480 h.In contrast,short circuit occurs on the cells assembled with PP with dramatical voltage fluctuation after 300 h.The lithium-ion transference numbers of various separators are illustrated in Fig.S14 (Supporting information).The Li+transference number is 0.534 for T-10 separator,which is slightly larger than that of PP (0.509) separators.Fig.3f illustrates the charge/discharge plots of cell with PP,PVDF and T-10 separators during the same first cycle at 0.5 C,respectively.Results show that the cell with T-10 composite separator owns a discharge specific capacity of 159.78 mAh/g,while PP of 154.67 mAh/g and PVDF of 153.69 mAh/g.The galvanostatic charging/discharging plots of the cell assembled with PP,PVDF and T-10 separators at 0.5 C are depictured in Figs.3g–i.Cycle stability plays a vital role on the stable operation of the batteries.Cyclic analysis on the cell with PP,PVDF,T-10,PVDF (16 μm) and T-10 (16 μm) separators is conducted at 0.24 mA/cm2and the active material loading is 2.83 mg/cm2,as depictured in Fig.3j.The battery with T-10 composite separator releases a higher discharge capacity of 122.6 mAh/g,which is maintained at 84% after 400 cycles,while those of the battery with PVDF and PP separators are 73% and 76%,respectively.The cells assembled with PVDF (16 μm) and T-10 (16 μm) separators deliver a slightly higher discharge specific capacity compared with cells with PVDF (25 μm) and T-10 (25 μm) separators.Especially,the cell with T-10 (16 μm) exhibits a capacity that is maintained at 96% after 400 cycles while the cell with PVDF (16 μm) overcharges after 300 cycles,which is depictured in Fig.3j.LFP/Li half-cells with the T-20 and the T-30 composite separators are also assembled to investigate the cycle stability,which is depictured in Fig.S15 (Supporting information).The linear sweep voltammetry (LSV) is conducted on symmetric Li cells with the T-10 and the PVDF separators.As shown in Fig.S16 (Supporting information),the cell with T-10 and PVDF demonstrated nearly the same voltage sweep up to 4.5 V.In conclusion,the existence of talcum in PVDF has no effect on the electrochemical window.

    Aiming to investigate the electrochemical performance of the cell assembled with these separators at high temperature,batteries with LiFPO4cathode and PP,PVDF and T-10 separators are placed on the work station to explore more interface impedance information with open circuit voltage at 80 °C.The minimum semicircle distance is observed in the cell with T-10 composite separator among the three Nyquist curves,demonstrating the lowest transfer impedance as depictured in Fig.4a.The semicircle diameters of PP,PVDF and T-10 under 80 °C in Fig.4a are all smaller than those at room temperature as depictured in Fig.3e,demonstrating that the rising in temperature can speed up the transfer of lithium ions [55].The cycle property is conducted on LFP/Li batteries with PP,PVDF and T-10 separators at 80 °C.In Fig.4b,LFP/Li battery with T-10 separator works extremely stable at 80 °C over 300 cycles,delivering 112.8 mAh/g discharge capacity with 68% retention after 300 cycles.In contrast,LFP/Li battery with PVDF and PP exhibits a sharp decrease in discharge capacity after only 120 cycles.The stable performance of LFP/Li battery with T-10 at elevated temperature is attributed to the excellent thermal stability of talcum,which is confirmed in Fig.2c and Fig.S5.The coulombic efficiency of the cell with PP,PVDF and T-10 separators is depictured in Fig.4g,demonstrating that battery with T-10 shows a more stable and higher coulombic efficiency than those with PP and PVDF separators.The galvanostatic charging/discharging plots of the cell with PP,PVDF and T-10 separators at 1 C under 80 °C is verified in Figs.4c-e.For the initial cycle,the cell with the T-10 separator performs the discharge capacity of 165.92 mAh/g at 1 C under 80 °C,while 161.67 mAh/g and 163.69 mAh/g for PVDF and PP separator as demonstrated in Figs.4c-e,respectively.The 200th cycle galvanostatic charging/discharging plots of the cell with PP,PVDF and T-10 separators are depictured in Fig.S17 (Supporting information).The temperature is raised to 100 °C to investigate the cycle stability of battery with the T-10 at higher temperature as depictured in Fig.4f.The battery with T-10 composite separator retains 40 mAh/g after 150 cycles at 100 °C while half-cell with PP shows no discharge capacity after 80 cycles.

    The enhanced electrolyte uptake featured with sharply decreased contact angle as confirmed in Figs.2e and i is associated with the strong interaction between the talcum and the electrolyte.The strong interaction between the talcum and the electrolyte is verified with the DFT simulations as demonstrated in Fig.S18 (Supporting information).The commercial electrolyte is represented by ethylene carbonate (EC),dimethyl ethylene carbonate (DEC) and ethyl methyl carbonate (EMC).The results show that the adsorption energy values between the talcum and the electrolyte are -1.65 eV for talcum-EMC,-1.70 eV for talcum-EC and -1.64 eV for talcum-DEC,which are much larger than PVDF monomer/electrolyte (-0.02 ~-0.08 eV) as demonstrated in Fig.S19 (Supporting information).Owing to the strong affinity to EMC,EC and DEC,the separator doped with talcum shows much more superior electrolyte uptake and wettability when compared with the PP and the PVDF separators.The adsorption energy value of talcum-PVDF monomer (-1.65 eV) as demonstrated in Fig.S20 (Supporting information) is analogous with hydrogen bond strength (-0.01 ~-1.68 eV),and much larger than van der Waals forces (-0.004 ~-0.04 eV) [56],demonstrating the powerful interaction between the talcum and the PVDF.The optimized model structure of electrolyte through PVDF and T-10 separators are illustrated in Fig.S21 (Supporting information),respectively.The strong interaction between the talcum and the electrolyte contributes to the large amount of electrolyte absorption on the T-10 composite separator.In contrast,only few electrolyte molecule adsorption on the PVDF as depictured in Fig.S21.

    In summary,a polymer-based composite separator with high wettability and heat resistance is fabricated by doping the lamellated-clay (talcum) into PVDF.Owing to the strong adsorption energy between the talcum and the electrolyte,the PVDF/TM composite separator owns remarkable electrolyte wettability.The enhanced mechanical strength and toughness of PVDF/TM composite separator are associated with the strong adsorption energy between the talcum and the PVDF monomer and the superior thermal stability of the composite separator is attributed to the heatproof of talcum.The existence of talcum in PVDF/TM composite separator leads to the parallel ion channels that unify the direction of Li+flows,thus improving the discharge specific capacity.Especially,the cell with the T-10 composite separator reaches a remarkable discharge capacity of 91.7 mAh/g while PVDF of 56.3 mAh/g and PP of 51.4 mAh/g at 10 C,owns extremely small contact angle of 8° with commercial electrolyte while PVDF of 20°,achieves the mechanical strength of 33 MPa while PVDF of 15 MPa,and attains strain of 253% while PVDF of 107%,respectively.This work puts forward a novel material to open up the world of the high-rate and safer lithium metal batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research is supported by the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,and the National Natural Science Foundation of China (No.12002109).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.079.

    日韩国内少妇激情av| 国产亚洲精品久久久com| 国产一级毛片在线| 日日摸夜夜添夜夜添av毛片| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件| 综合色av麻豆| 精品人妻熟女av久视频| 亚洲丝袜综合中文字幕| 高清午夜精品一区二区三区| 亚洲av成人精品一二三区| 99九九线精品视频在线观看视频| 亚洲人与动物交配视频| 99久久精品一区二区三区| 国产av码专区亚洲av| 欧美日韩在线观看h| 一边亲一边摸免费视频| 18禁裸乳无遮挡免费网站照片| 国产精品伦人一区二区| 搞女人的毛片| av免费观看日本| 有码 亚洲区| 一级毛片我不卡| 午夜福利成人在线免费观看| 欧美激情国产日韩精品一区| 日韩欧美精品v在线| 久久久久久国产a免费观看| 亚洲欧美清纯卡通| 亚洲天堂国产精品一区在线| 美女脱内裤让男人舔精品视频| 哪个播放器可以免费观看大片| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 内射极品少妇av片p| 国产高潮美女av| 国产成人免费观看mmmm| av卡一久久| 国产单亲对白刺激| 内射极品少妇av片p| 欧美又色又爽又黄视频| 深爱激情五月婷婷| 99热全是精品| 国产成人午夜福利电影在线观看| 日韩一本色道免费dvd| 亚洲一级一片aⅴ在线观看| 卡戴珊不雅视频在线播放| 亚洲一区高清亚洲精品| 国产精品国产高清国产av| 2021天堂中文幕一二区在线观| 国产一区二区在线av高清观看| 亚洲va在线va天堂va国产| 18禁动态无遮挡网站| 亚洲性久久影院| 日韩精品青青久久久久久| 天堂√8在线中文| 国语对白做爰xxxⅹ性视频网站| 亚洲美女搞黄在线观看| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 69av精品久久久久久| 超碰97精品在线观看| 国产成人午夜福利电影在线观看| 2021天堂中文幕一二区在线观| 欧美性猛交黑人性爽| 春色校园在线视频观看| 国产精品永久免费网站| 内射极品少妇av片p| 成人毛片60女人毛片免费| ponron亚洲| 亚洲真实伦在线观看| 一边亲一边摸免费视频| 简卡轻食公司| 日韩在线高清观看一区二区三区| 中文欧美无线码| 国产黄色小视频在线观看| 久久99热6这里只有精品| 少妇的逼水好多| 欧美精品一区二区大全| 狂野欧美激情性xxxx在线观看| 三级毛片av免费| 日韩一区二区视频免费看| 麻豆久久精品国产亚洲av| 爱豆传媒免费全集在线观看| av女优亚洲男人天堂| 国产色婷婷99| 国产一级毛片七仙女欲春2| 七月丁香在线播放| 欧美xxxx黑人xx丫x性爽| 内地一区二区视频在线| 插逼视频在线观看| АⅤ资源中文在线天堂| 国产精品一二三区在线看| 日韩欧美在线乱码| 亚洲精品日韩在线中文字幕| 精品免费久久久久久久清纯| 亚洲图色成人| 寂寞人妻少妇视频99o| 亚州av有码| 国产在视频线精品| 国产一区有黄有色的免费视频 | 国产伦一二天堂av在线观看| 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 国产v大片淫在线免费观看| 欧美激情国产日韩精品一区| 热99在线观看视频| 久久久久久国产a免费观看| 一级毛片久久久久久久久女| 免费看美女性在线毛片视频| 最近中文字幕高清免费大全6| 18禁在线无遮挡免费观看视频| 中文乱码字字幕精品一区二区三区 | 国产私拍福利视频在线观看| 丰满乱子伦码专区| 久久韩国三级中文字幕| 中文乱码字字幕精品一区二区三区 | a级一级毛片免费在线观看| 大话2 男鬼变身卡| 在线观看美女被高潮喷水网站| 久久草成人影院| 黄色配什么色好看| 国产私拍福利视频在线观看| 成人性生交大片免费视频hd| 特级一级黄色大片| 久久久久久伊人网av| 国产精品嫩草影院av在线观看| 国产色婷婷99| 国产乱人视频| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 日韩,欧美,国产一区二区三区 | 91精品国产九色| 久久鲁丝午夜福利片| 日韩精品有码人妻一区| 亚洲精品国产av成人精品| 天堂网av新在线| 1000部很黄的大片| 免费观看人在逋| 老司机福利观看| 一个人看的www免费观看视频| 久久婷婷人人爽人人干人人爱| 18禁在线无遮挡免费观看视频| 老女人水多毛片| 寂寞人妻少妇视频99o| 色哟哟·www| 少妇人妻精品综合一区二区| 国产毛片a区久久久久| 国内揄拍国产精品人妻在线| 99在线视频只有这里精品首页| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 日本av手机在线免费观看| 国产久久久一区二区三区| 中文亚洲av片在线观看爽| 国产成人精品婷婷| 国产精品伦人一区二区| 熟女电影av网| 亚洲内射少妇av| 免费黄色在线免费观看| 建设人人有责人人尽责人人享有的 | 久久鲁丝午夜福利片| 亚洲av男天堂| 99热6这里只有精品| 欧美人与善性xxx| 在线观看一区二区三区| 亚洲av一区综合| 欧美极品一区二区三区四区| 在线天堂最新版资源| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 亚洲性久久影院| 国产精品国产三级专区第一集| 日本免费a在线| 国产91av在线免费观看| 国产精品一区二区性色av| 一级毛片电影观看 | 国产成人精品久久久久久| 亚洲欧洲日产国产| 国产91av在线免费观看| 中文天堂在线官网| 一夜夜www| 国产在线一区二区三区精 | 久久精品久久精品一区二区三区| 午夜精品一区二区三区免费看| 日韩av在线免费看完整版不卡| 99九九线精品视频在线观看视频| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 插阴视频在线观看视频| 国产伦一二天堂av在线观看| 日韩大片免费观看网站 | 99久久九九国产精品国产免费| 亚洲美女视频黄频| 午夜激情欧美在线| 美女脱内裤让男人舔精品视频| 亚洲欧洲日产国产| 99热这里只有精品一区| 1000部很黄的大片| 卡戴珊不雅视频在线播放| videos熟女内射| 男的添女的下面高潮视频| 欧美性猛交╳xxx乱大交人| 九九爱精品视频在线观看| 日韩欧美 国产精品| 青春草亚洲视频在线观看| 内地一区二区视频在线| 亚洲精品自拍成人| 最后的刺客免费高清国语| 成人欧美大片| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久精品电影小说 | 国产精品一及| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| 亚洲自偷自拍三级| 国产精品伦人一区二区| 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 午夜精品国产一区二区电影 | 中文在线观看免费www的网站| 亚洲精品自拍成人| 亚洲va在线va天堂va国产| 国产精品人妻久久久久久| 少妇丰满av| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| 免费观看a级毛片全部| 精品久久久久久久末码| 小蜜桃在线观看免费完整版高清| 日日撸夜夜添| 99久国产av精品| 日本-黄色视频高清免费观看| 久久久精品欧美日韩精品| 国产精品永久免费网站| 亚洲成人中文字幕在线播放| 国产精品熟女久久久久浪| 中国美白少妇内射xxxbb| 日日撸夜夜添| 成人鲁丝片一二三区免费| 精品不卡国产一区二区三区| 一级二级三级毛片免费看| 午夜久久久久精精品| 国产精品国产三级专区第一集| 一区二区三区免费毛片| 久久精品国产亚洲av涩爱| 黑人高潮一二区| 色视频www国产| 成人亚洲欧美一区二区av| 舔av片在线| av黄色大香蕉| av国产免费在线观看| 亚洲av免费高清在线观看| 久久久久免费精品人妻一区二区| 色哟哟·www| 亚洲不卡免费看| 久久精品人妻少妇| 欧美成人一区二区免费高清观看| 久久久久免费精品人妻一区二区| 天堂√8在线中文| 久久久久久久国产电影| 国产亚洲5aaaaa淫片| 国产亚洲av嫩草精品影院| 中文字幕av在线有码专区| 国产成人免费观看mmmm| av线在线观看网站| 26uuu在线亚洲综合色| 国产中年淑女户外野战色| 免费观看在线日韩| 一边摸一边抽搐一进一小说| h日本视频在线播放| 久久久精品欧美日韩精品| 久久久久久久亚洲中文字幕| 久久久成人免费电影| 免费看av在线观看网站| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 国产成人freesex在线| 色哟哟·www| 国产 一区 欧美 日韩| 日本午夜av视频| 国产精品美女特级片免费视频播放器| 日本-黄色视频高清免费观看| 日韩av在线大香蕉| 特级一级黄色大片| 在线观看美女被高潮喷水网站| 日韩一区二区视频免费看| 免费电影在线观看免费观看| 久久久久久久久久久丰满| 亚洲欧美精品专区久久| 国产亚洲一区二区精品| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| 少妇高潮的动态图| 国产高清有码在线观看视频| 伦精品一区二区三区| 国产精品三级大全| 国产精品野战在线观看| 国产一区二区在线av高清观看| 观看免费一级毛片| 热99在线观看视频| 蜜桃久久精品国产亚洲av| av在线观看视频网站免费| 一区二区三区乱码不卡18| 日韩成人av中文字幕在线观看| 色视频www国产| 日韩一本色道免费dvd| 欧美zozozo另类| 中国美白少妇内射xxxbb| 国产精品乱码一区二三区的特点| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式| 免费观看在线日韩| 狠狠狠狠99中文字幕| 看片在线看免费视频| 久久精品夜夜夜夜夜久久蜜豆| 美女内射精品一级片tv| 国产亚洲av片在线观看秒播厂 | 听说在线观看完整版免费高清| 桃色一区二区三区在线观看| 伦理电影大哥的女人| 国产成人免费观看mmmm| 久久午夜福利片| av专区在线播放| 亚洲国产精品专区欧美| 国产成人aa在线观看| 内射极品少妇av片p| 九色成人免费人妻av| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 国产一区二区三区av在线| 久久综合国产亚洲精品| 久热久热在线精品观看| 特级一级黄色大片| 久久久久久久久大av| 我要看日韩黄色一级片| 美女内射精品一级片tv| 国产淫片久久久久久久久| 亚洲在久久综合| 天堂√8在线中文| 老女人水多毛片| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久| 日韩成人伦理影院| 成年女人永久免费观看视频| 亚洲人成网站在线播| 国产高潮美女av| 好男人在线观看高清免费视频| 欧美激情国产日韩精品一区| 国产一区二区亚洲精品在线观看| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 欧美激情在线99| 少妇的逼水好多| 色综合站精品国产| 国产综合懂色| 国产精品国产三级专区第一集| 少妇猛男粗大的猛烈进出视频 | 99久久无色码亚洲精品果冻| 美女高潮的动态| 久久亚洲国产成人精品v| 亚洲精品乱码久久久久久按摩| 一级毛片电影观看 | 免费电影在线观看免费观看| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清专用| 亚洲欧美日韩东京热| 精品久久国产蜜桃| 亚洲国产精品国产精品| 欧美日韩在线观看h| 成人鲁丝片一二三区免费| 国产精品一区二区性色av| 99在线视频只有这里精品首页| 亚洲av二区三区四区| 综合色av麻豆| 色5月婷婷丁香| 亚洲18禁久久av| 久久久久久久国产电影| 精品国产三级普通话版| 99热全是精品| 男女啪啪激烈高潮av片| 51国产日韩欧美| 熟女电影av网| 天天躁日日操中文字幕| 最近中文字幕2019免费版| 综合色av麻豆| 高清视频免费观看一区二区 | 国产黄片视频在线免费观看| 国产久久久一区二区三区| 亚洲成人中文字幕在线播放| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 男女边吃奶边做爰视频| 久久久久久久久中文| 色综合亚洲欧美另类图片| 国产 一区 欧美 日韩| 最新中文字幕久久久久| 内地一区二区视频在线| av免费观看日本| 中文字幕免费在线视频6| 蜜臀久久99精品久久宅男| 国产乱来视频区| 中文亚洲av片在线观看爽| 一本一本综合久久| 九九在线视频观看精品| 日本欧美国产在线视频| 最近中文字幕2019免费版| 国产亚洲精品久久久com| 成人午夜精彩视频在线观看| 最近视频中文字幕2019在线8| 成年av动漫网址| 少妇丰满av| 国产视频内射| 久久久久精品久久久久真实原创| 精品久久久久久久久久久久久| 国产不卡一卡二| 欧美成人午夜免费资源| eeuss影院久久| 在线播放国产精品三级| 国产伦精品一区二区三区视频9| 国产大屁股一区二区在线视频| 男女下面进入的视频免费午夜| 精品久久久久久久久久久久久| 精华霜和精华液先用哪个| 免费黄网站久久成人精品| 成人三级黄色视频| 午夜福利成人在线免费观看| www日本黄色视频网| 亚洲不卡免费看| 日韩中字成人| 亚洲国产精品国产精品| 九九久久精品国产亚洲av麻豆| 国产高清三级在线| 国产成人免费观看mmmm| 可以在线观看毛片的网站| 美女黄网站色视频| 亚洲丝袜综合中文字幕| 高清av免费在线| 中文字幕av在线有码专区| 日本-黄色视频高清免费观看| 高清av免费在线| 69av精品久久久久久| 大又大粗又爽又黄少妇毛片口| 男女下面进入的视频免费午夜| 久久99蜜桃精品久久| 观看美女的网站| 免费无遮挡裸体视频| 久久综合国产亚洲精品| 成人综合一区亚洲| 日韩大片免费观看网站 | 夫妻性生交免费视频一级片| 2021少妇久久久久久久久久久| 熟妇人妻久久中文字幕3abv| 亚洲怡红院男人天堂| 国产精品嫩草影院av在线观看| 国产精品乱码一区二三区的特点| 免费av毛片视频| 99久久精品国产国产毛片| 小蜜桃在线观看免费完整版高清| 国产三级在线视频| 一本久久精品| 免费一级毛片在线播放高清视频| 国产亚洲91精品色在线| 联通29元200g的流量卡| 亚洲最大成人av| 国产探花在线观看一区二区| 一级二级三级毛片免费看| 赤兔流量卡办理| 精品久久久久久久久av| 欧美人与善性xxx| 久久综合国产亚洲精品| 欧美潮喷喷水| 一夜夜www| 欧美日本视频| 女人十人毛片免费观看3o分钟| 麻豆成人av视频| 男女国产视频网站| 搞女人的毛片| 精品免费久久久久久久清纯| 欧美日韩一区二区视频在线观看视频在线 | 成年女人永久免费观看视频| 久久久精品大字幕| 亚州av有码| 日韩在线高清观看一区二区三区| 精品久久久久久久久av| 久久这里有精品视频免费| 亚洲av福利一区| 91狼人影院| 欧美性猛交╳xxx乱大交人| 国语自产精品视频在线第100页| 综合色丁香网| 久久久久久久久久成人| 亚洲五月天丁香| 国产精品一区二区三区四区免费观看| 1024手机看黄色片| 三级国产精品欧美在线观看| 久久国内精品自在自线图片| 亚洲电影在线观看av| 欧美xxxx性猛交bbbb| 日日啪夜夜撸| 午夜老司机福利剧场| 国产爱豆传媒在线观看| 久久人人爽人人片av| 国产不卡一卡二| 如何舔出高潮| 亚洲国产欧美在线一区| 亚洲av中文字字幕乱码综合| 久久精品综合一区二区三区| 免费无遮挡裸体视频| 天堂√8在线中文| av黄色大香蕉| 狂野欧美激情性xxxx在线观看| 国产又色又爽无遮挡免| 男女视频在线观看网站免费| 黄色日韩在线| 一个人观看的视频www高清免费观看| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 人妻制服诱惑在线中文字幕| av卡一久久| 午夜精品一区二区三区免费看| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 国产精品久久久久久精品电影小说 | 久久综合国产亚洲精品| 你懂的网址亚洲精品在线观看 | 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 欧美激情久久久久久爽电影| 成人性生交大片免费视频hd| 又粗又爽又猛毛片免费看| 卡戴珊不雅视频在线播放| 白带黄色成豆腐渣| 日本一二三区视频观看| 国产真实伦视频高清在线观看| 国产精品国产三级国产专区5o | 亚洲一区高清亚洲精品| 国产av在哪里看| 国产综合懂色| 床上黄色一级片| 亚洲最大成人中文| 舔av片在线| 国产精品麻豆人妻色哟哟久久 | 一级黄色大片毛片| 国产黄色小视频在线观看| 国产在线一区二区三区精 | 午夜福利在线在线| 久久人人爽人人片av| 亚洲真实伦在线观看| 精品欧美国产一区二区三| 国产av码专区亚洲av| 日韩成人av中文字幕在线观看| 国产 一区 欧美 日韩| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 国产精品99久久久久久久久| 男女视频在线观看网站免费| 色网站视频免费| 日韩一区二区三区影片| 色噜噜av男人的天堂激情| 久久精品熟女亚洲av麻豆精品 | 亚洲18禁久久av| 国产在线男女| 18禁在线无遮挡免费观看视频| 插逼视频在线观看| 久久精品夜色国产| av播播在线观看一区| 日本欧美国产在线视频| 国产精品一区二区性色av| 中文字幕亚洲精品专区| 成人国产麻豆网| 国产一级毛片在线| 色哟哟·www| 欧美激情国产日韩精品一区| 国产片特级美女逼逼视频| 三级国产精品欧美在线观看| 99热这里只有精品一区| 国产精品,欧美在线| 国产成人freesex在线| 亚洲高清免费不卡视频| 自拍偷自拍亚洲精品老妇| 久久久国产成人精品二区| 天堂√8在线中文| 亚洲性久久影院| 国产淫片久久久久久久久| 午夜福利在线在线| 国产一区有黄有色的免费视频 | 亚洲av福利一区| 精品国内亚洲2022精品成人| 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在| 成人亚洲精品av一区二区| 七月丁香在线播放| 国产精品乱码一区二三区的特点| 一区二区三区乱码不卡18| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 免费看美女性在线毛片视频| 大香蕉久久网| 最近手机中文字幕大全| 日本午夜av视频| 天堂影院成人在线观看| 少妇裸体淫交视频免费看高清| 国产精品.久久久| 久久精品国产亚洲网站| 九九久久精品国产亚洲av麻豆| 国产伦一二天堂av在线观看| 国产精品久久视频播放| 亚洲国产精品sss在线观看| 久久精品国产亚洲av天美| 欧美一区二区亚洲| 成人亚洲欧美一区二区av|