• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ decoration of CoP/Ti3C2Tx composite as efficient electrocatalyst for Li-oxygen battery

    2023-03-14 06:52:06XingziZhengMengweiYunXinqingHungHuifengLiGennSun
    Chinese Chemical Letters 2023年1期

    Xingzi Zheng,Mengwei Yun,c,Xinqing Hung,Huifeng Li,*,Genn Sun

    a Beijing Key Laboratory of Energy Conversion and Storage Materials,College of Chemistry,Beijing Normal University,Beijing 100875,China

    b Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology,School of Chemistry & Chemical Engineering,Liaocheng University,Liaocheng 252059,China

    c Department of Physics and Applied Optics Beijing Area Major Laboratory,Beijing Normal University,Beijing 100875,China

    Keywords:MXene Transition metal phosphide Oxygen adsorption ability Li-oxygen battery Electrocatalyst

    ABSTRACT Application of Li-oxygen (Li-O2) battery is in urgent need of bifunctional ORR/OER electrocatalyst.A surface-functionalization CoP/Ti3C2Tx composite was fabricated theoretically,with the optimized electronic structure and more active electron,which is beneficial to the electrochemical reaction.The accordion shaped Ti3C2Tx is featured with large specific surface area and outstanding electronic conductivity,which is beneficial for the adequate exposure of active sites and the deposition of Li2O2.Transition metal phosphides provide more electrocatalytic active sites and present good electrocatalytic effect.The CoP/Ti3C2Tx composite served as the electrocatalyst of Li-O2 battery reaches a high specific discharge capacity of 17,413 mAh/g at 100 mA/g and the lower overpotential of 1.25 V,superior to those of the CoP and Ti3C2Tx individually.The composite of transition metal phosphides and MXene are applied in Li-O2 battery,not only demonstrating higher cycling stability of the prepared CoP/Ti3C2Tx composite,but pointing out the direction for their electrochemical performance improvement.

    Li-O2battery has received much attention for its high theoretical energy density (3500 Wh/kg) [1,2].The reaction principle of typical Li-O2battery is Li2O2-based reversible formation and decomposition [3].Li2O2,the product of discharge,is dielectric and insoluble,whose accumulation on the cathode surface will impede the transport of oxygen,electrons and lithium ions,thus limiting oxygen reduction reaction (ORR) and oxygen evolution reaction(OER) and causing slow kinetics of electrochemical reaction,high over potential,poor cycling stability,etc.[4,5].Over the past few decades,many studies have focused on cathodic catalysts to effectively promote Li2O2decomposition and enhance the performance of Li-O2battery [6–10].

    MXene is an emerging 2D layered compound material made from metal carbides or nitrides.It is an ideal substrate material for development of high-performance electrocatalysts because of its high electrical conductivity,large surface area and extensive chemical species [11–13].Domestic and foreign researchers have done much work on it with respect to energy storage and conversion[14–24].To meet actual demand,we are also in urgent need of electrocatalysts that can catalyze OER and ORR at the same time so as to enhance its performance in Li-O2battery.

    Transition metal phosphides (TMPs) have been receiving more and more attention for their excellent electrocatalytic activity [25–27].Systematic research has been done on the use of nickel phosphide,ferrous phosphide,molybdenum phosphide and cobalt phosphide as catalysts.Nonetheless,taking CoP for example,the binding energy of Co-P compound are negative,indicating that it is thermodynamically stable.Density functional theory calculations show that CoP exhibits metallic characteristics,and the bonding behavior between Co and P atoms in Co-P compounds is a combination of covalent and ionic properties [28].Therefore,CoP can be used as electrocatalyst because of its excellent redox performance.However,its performance is still unsatisfactory mainly for its poor electrical conductivity [29,30].Therefore,we may combine it with a high conductive material to enhance its electrical conductivity,thus improving its reactivity and stability.

    Fig.1.The optimized structures of (a) CoP and (c) CoP/Ti3C2Tx,total density of states and partial density of states of (b) CoP and (d) CoP/Ti3C2Tx structures.(e) Schematic diagram of preparation process of CoP/Ti3C2Tx.(f) XRD pattern of CoP/Ti3C2Tx,CoP and Ti3C2Tx.

    Here,we develop a simple method to grow CoP nanoparticles (CoP NPs) on the surface of MXene and between the layers,thereby forming the CoP/MXene composite catalyst.It not only prevents CoP-NPs clustering and provides enough active sites,but also significantly improves the accessibility of electrolytes and promotes charge/mass transfer and quick release of gasses during electrocatalysis.The total density of states (TDOS) was used to simulate and evaluate the electrochemical activity.Figs.1a and c were schematic diagrams of the optimized electronic structure.The TDOS for CoP and CoP/Ti3C2Txcomposite were investigated as shown in Figs.1b and d.The TDOS of the CoP/Ti3C2Txremained the metallic properties of Ti3C2Txwith the DOS passing the Fermi energy.And CoP/Ti3C2Txdemonstrated the high DOS at Fermi energy than that of CoP,indicating that CoP/Ti3C2Txwas endowed with more active electron,which were easy to be accepted and lost and facilitated the electrochemical reaction [31].

    The preparation process of CoP/Ti3C2Txcomposite was shown in Fig.1e.With the influence of HF etching,the Al atom layer of Ti3AlC2was successfully removed.Ti3C2Txwas mixed with Co(AC)2·4H2O and heated at 120 °C for 10 h,and then the obtained CoP/Ti3C2Txcomposite was prepared successfully by calcinated at 500 °C in sodium hypophosphite atmosphere,which was also confirmed by the X-ray diffraction (XRD) results in Fig.1f.With the effect of HF etching,the characteristic peak at 39.0° disappeared,which proved that Al atom layered in Ti3AlC2was removed and the formation of Ti3C2Tx.The accordion-like lamella of Ti3C2Txprovides growth sites for the synthesis of CoP/Ti3C2Txcomposite.The peaks at 31.6°,36.3°,46.2°,48.1° and 56.8° were corresponding to(011),(111),(112),(211) and (301) lattice planes of CoP (JCPDS No.29–0497),indicating that CoP was grown on the composite.The peak at 60.7°,as the laminate peak of Ti3C2Tx,remained in the CoP/Ti3C2Txcomposite,which proved that the laminate structure of Ti3C2Txwas not destroyed with the high-temperature calcination [32,33].The decrease of exposure intensity of Ti3C2Txin composite is due to better crystallinity and higher diffraction intensity of CoP sample.The successful preparation of the composite was also verified by Raman spectrum.Fig.S1 (Supporting information) presented a Raman spectrum of CoP.Several detectable signals were shown on small Raman shifts [34,35],and there were two distinguishable Raman activity patterns in CoP/Ti3C2Txcomposite,including characteristic peaks of CoP and Ti3C2Tx,which proved the correct synthesis of CoP/Ti3C2Txcomposite.

    Fig.2.The SEM images of (a) Ti3C2Tx,(b) CoP and (c) CoP/Ti3C2Tx composite.The(d) HRTEM,(e) SAED and (f) EDS of CoP/Ti3C2Tx composite.

    The microstructure and morphology of CoP/Ti3C2Txwere observed through scanning electron microscopy (SEM) and highresolution transmission electron microscopy (HRTEM).Compared with block Ti3AlC2(Fig.S2 in Supporting information),the layer spacing of Ti3C2Tx(Fig.2a) increased by the influence of HF etching.The lattice spacing of 0.251 nm were attributed to the (012)plane of the accordion-like Ti3C2Tx(Fig.S3 in Supporting information).The prepared CoP NPs showed obvious agglomeration phenomenon without adding the substrate of Ti3C2Tx(Fig.2b).It was obvious that the size distribution of CoP NPs was about 100 nm(Fig.S4 in Supporting information).In contrast,with the addition of Ti3C2Txsubstrate,the structure of MXene layer remained original after hydrothermal and calcination treatment,which provided enough space for loading of CoP NPs uniformly (Fig.2c).The HRTEM of CoP/Ti3C2Tx(Fig.2d) showed that the lattice spacing of Ti3C2Tx(012) was 0.251 nm.Lattice stripes at a spacing of 0.248 nm were attributed to the (111) plane of CoP NPs (JCPDS No.29–0497).The selected area electron diffraction (SAED) proved that the prepared CoP/Ti3C2Txhad good crystallinity and the single crystal electron diffraction of Ti3C2Tx(Fig.2e).The diffraction rings of CoP were consistent with (111),(211) and (301) planes.The uniform distribution of CoP NPs on Ti3C2Txwas further demonstrated by energy dispersive X-ray spectrometer (EDS) (Fig.2f).The above characterization confirmed the successful preparation of CoP/Ti3C2Txcomposite.

    Fig.3.The XPS spectra at high resolution of (a) Co 2p,(b) P 2p,(c) Ti 2p,(d) C 1s of CoP/Ti3C2Tx composite.

    In order to clarify the composition and valence distribution of elements in CoP/Ti3C2Txcomposite,we analyze the electrocatalyst by XPS.Fig.S5 (Supporting information) showed the presence of Ti,C,O,Co and P elements in the measured spectra.In Co 2p spectra (Fig.3a),the two peaks located at 778.7 and 793.7 eV were identified with Co-P bond in CoP [36],while 781.3 and 798.0 eV correspond to the oxidized Co (Co2+) species,which caused by the partial oxidation process on CoP species [37].Fig.3b presented the XPS spectra of P 2p.The two peaks which were located at 129.1 eV and 129.9 eV were subject to the Co-P bond and the binding energy at 133.8 eV corresponded to the POxspecies,respectively [38].Compared with Ti3C2Tx,metal-oxygen bonds were not identified,indicating the surface-functionalization process derived product covered the surface of Ti3C2Txfurther constructing the composite.In the spectrum of Ti 2p (Fig.3c),the peaks at 455.1,456.0,457.2 and 458.7 eV of Ti 2p3/2correspond to Ti-C,Ti2+,Ti3+and Ti-O,respectively[39].Compared with Ti 2p in Ti3C2Tx(Fig.S6 in Supporting information),the intensity of Ti-O peak in CoP/Ti3C2Txincreased notably,which caused by partial oxidation of Ti atoms in Ti3C2Tx.In Fig.3d,the spectrum of C 1s were matched to four peaks located at 282.2,284.8,286.7 and 288.9 eV which belonged to C–Ti,C–C,C–O and C=O bonds,respectively [40].

    Moreover,it is well known that the specific surface area and pore size are significant to electrocatalyst performance.They were studied by N2adsorption-desorption isotherm.The specific surface area of CoP/Ti3C2Txand Ti3C2Txwere 77.31 m2/g and 24.04 m2/g,respectively (Figs.S7a and b in Supoprting information).The N2adsorption-desorption isotherm of CoP/Ti3C2Txshowed a typical hysteresis loop which caused by the presence of mesoporous.The specific surface area of CoP/Ti3C2Txincreased obviously,which was mainly due to the adhesion of CoP NPs between the surface and interlayers of Ti3C2Tx.The increased specific surface area was beneficial to fully expose the active site,which can improve the performance of Li-O2battery.Figs.S7c and d (Supoprting information) exhibited the pore size of CoP/Ti3C2Txand Ti3C2Txobtained by the BJH method.The pore size of Ti3C2Txwas about 2.440 nm,and CoP/Ti3C2Txcomposite was mostly 2.441 nm.The corresponding pore size distribution of Ti3C2Txwas located in the mesoporous range which was due to the aggregation of accordionlike nanosheets [6].These results suggested that the composition of the CoP and Ti3C2Txcould prevent the aggregation of the CoP particles and provide the more and more active sites.

    As a new 2D material,Ti3C2Txfeatures a high specific surface area,superior electronic conductivity and adjustable components,etc.,which can facilitate oxygen adsorption in a reaction process of Li-O2battery and provide a proper space for discharge products storage.With good ORR/OER catalytic activity,CoP has the potential to reduce overpotential on charge process of Li-O2battery.Therefore,CoP/Ti3C2Txis expected to become an outstanding cathode material suitable for Li-O2battery.To explore electrochemical mechanism of Li-O2battery with CoP/Ti3C2Txcathode,electrochemical performance testing was carried out.As can be observed from Fig.4a,Li-O2battery with CoP/Ti3C2Txcathode provided a high discharge capacity of 17,413 mAh/g in the 1stcycle at 100 mA/g,and in the 2ndand 3rdcycles,their discharge capacity reached 11,060 mAh/g and 8536 mAh/g,respectively,which was superior to CoP and Ti3C2Tx(Fig.S8 in Supoprting information).The reason why specific capacity declines in such three cycles may be that it is difficult for discharge products to be completely decomposed during charge and thus no novel cathodes can be provided in next cycle.In comparison with CoP/Ti3C2Tx,specific capacity performance of pure CoP or Ti3C2Txwas poor;in the first cycle,their specific discharge capacity were proved to be 10,560 mAh/g and 9362 mAh/g,respectively.According to Fig.4b and Fig.S9 (Supporting information),discharge capacity of Ti3C2Tx,CoP and CoP/Ti3C2Txin the initial cycle were compared in diverse electric current densities.In the case where CoP/Ti3C2Txwas used as a cathode catalyst,the corresponding specific discharge capacity were high up to 17,413 mAh/g,9970 mAh/g and 8209 mAh/g at 100,200 and 500 mA/g,which were above those of pure CoP (10,560 mAh/g,9115 mAh/g and 6462 mAh/g) or pure Ti3C2Tx(9362 mAh/g,7215 mAh/g and 5529 mAh/g).This manifests that CoP/Ti3C2Txcomposite can effectively improve electrochemical performance of Li-O2battery.By contrast to CoP/Ti3C2Tx,Ti3C2Txwith good conductivity was short of highly active sites and thus showed insufficient electrochemical catalytic activity,enabling Li-O2battery with Ti3C2Txcathode to fail to run stably and efficiently.Even when the electric current density reached up to 500 mA/g,CoP/Ti3C2Txelectrocatalyst that combined high conductivity of Ti3C2Txand catalytic activity of CoP NPs still remained its discharge capacity at 8209 mAh/g.As presented in Fig.4c,the overpotential of CoP/Ti3C2Txcathode was 1.25 V,lower than pure CoP (1.36 V) or pure Ti3C2Tx(1.56 V),which provided that the electric current density was 500 mA/g and the specific capacity limited to 500 mAh/g.In line with such a phenomenon,it is clear that CoP/Ti3C2Txcomposite possess higher activity of ORR and OER.The cycle performance was tested as shown in Fig.4d.The CoP/Ti3C2Txcathode was able to stably run for 40 cycles at 500 mA/g.Moreover,the cyclic stability of CoP/Ti3C2Txwas significantly better than CoP and Ti3C2Tx(Fig.S10 in Supoprting information).

    To learn about electrochemical catalysis of CoP/Ti3C2Txin Li-O2battery,cyclic voltammetry (CV) based tests were performed,as given in Fig.4e.The initial redox potential and the peak current intensity of CoP/Ti3C2Txwere respectively above those of pure CoP or pure Ti3C2Tx,signifying that its ORR/OER catalytic activity was superior to Ti3C2Tx.Electrochemical impedance spectroscopy(EIS) is aimed at profoundly investigating electrochemical performance of CoP/Ti3C2Txcomposite.Nyquist plots of CoP,Ti3C2Txand CoP/Ti3C2Txbefore the cycle have been depicted in Fig.4f.All EIS images were semi-circles at high frequency,but become linear at low frequency.Relevant fitting data were listed in Table S1(Supporting information).In this table,the electrolyte resistance of Ti3C2Tx(Rs=11.80Ω) was significantly lower than CoP (Rs=12.26Ω) and CoP/Ti3C2Tx(Rs=12.03Ω).With regard to charge transfer impedance,Ti3C2Tx(Rct=29.74Ω) was apparently lower than CoP (Rct=44.93Ω) and CoP/Ti3C2Tx(Rct=30.79Ω).However,the impedance of CoP/Ti3C2Txwas significantly lower than that of CoP,showing that the introduction of Ti3C2Txprovided a conductive substrate for CoP NPs.Results described above indicate that Ti3C2Txcan effectively improve electronic conductivity of cathodes.Better performance of CoP/Ti3C2Txcomposite is derived from outstanding electrical conductivity of Ti3C2Txand active catalytic sites of CoP NPs which prevent termination of electrochemical reactions.

    Fig.4.(a) The first cycle discharge-charge profiles of CoP/Ti3C2Tx,CoP and Ti3C2Tx cathodes at 100 mA/g.(b) The comparison of the rate performance of the CoP/Ti3C2Tx,CoP and Ti3C2Tx cathodes.(c) The first discharge-charge curves and (d) cyclic performance diagram of the medium voltage and discharge-charge capacity with 500 mAh/g capacity at 500 mA/g.(e) The CV curves and (f) the EIS of CoP/Ti3C2Tx,CoP and Ti3C2Tx cathodes.(g) The SEM of discharge products.(h) The XRD and (i) Raman of CoP/Ti3C2Tx at different states.

    To explore the discharge-charge products of Li-O2battery for deeply understanding of electrochemical mechanism,the morphology changes of the CoP/Ti3C2Tx,CoP and Ti3C2Txelectrodes in the first cycle were observed in Fig.4g and Fig.S11 (Supporting information).The fresh electrode showed that the clear accordion-like surface.After the first complete discharge process (Fig.4g),a large number of flower-like discharge products deposited by nanosheets were generated on the surface of CoP/Ti3C2Tx.The reason for such flower-like discharge product is that the strong interaction between CoP/Ti3C2Txand Li2O2makes it difficult for external Li2O2monomers to aggregate into large Li2O2,leading to the isolation of Li2O2on the surface of CoP/Ti3C2Txand easier decomposition during charging process [41].However,the contact interface between Ti3C2Txand discharge products is unsatisfied,resulting in poor electron and oxygen transport in the subsequent charging process.In addition,the discharge products with small size and discrete distribution lead limited discharge capacity [42].Therefore,CoP/Ti3C2Txcomposite exhibited low overpotential and high discharge capacity.According to the XRD analysis (Fig.4h and Fig.S12 in Supporting information),there were several characteristic peaks after the first discharging.The peaks at 32.8°,34.8° and 58.5°were attributed to the crystal planes of (200),(201) and (220) in Li2O2(JCPDS No.73–1640),proving that the characteristic diffraction peaks of Li2O2were very obvious after discharging and peaks of Li2O2had disappeared on the electrode surface after charging.This result was also demonstrated by Raman spectroscopy (Fig.4i),the characteristic peak of Li2O2at 793 cm-1is obviously [7].After the charging process,the flower-shaped discharge product disappeared and the accordion-like CoP/Ti3C2Txstructure with nanoparticles grown on the surface recovered,indicating that Li2O2had completely decommissioned during the charging process,and the electrode catalyzed by CoP/Ti3C2Txhad good catalytic ability of ORR and OER with the proposed mechanism.Fig.S11 showed the surface topography of the Ti3C2Txelectrodes products.It was visibly that the number of toroid-shaped materials on the accordion Ti3C2Txwas very small after the first discharge,which meant the Ti3C2Txcathodes didn’t have enough capability to catalytic conversion more discharge product.High conductive Ti3C2Txstructure was used as conductive network,which promoted the transfer rate of electrons and Li+.CoP NPs with high catalytic activity spread evenly between the surface of CoP/Ti3C2Txlayers,which increased specific surface area of the material to accommodate more discharge product,thus the capacity of the electrode reaction was improved to achieve long cycle.

    To sum up,CoP/Ti3C2Txcomposite with more active electron was designed through theoretical simulation,and the CoP NPs were uniformly distributed on the surface and interlayer of Ti3C2Tx.When using the prepared CoP/Ti3C2Txas an electrocatalyst of Li-O2battery,it not only provided high specific discharge capacity (17,413 mAh/g at 100 mA/g) but also exhibited cyclic stability and low overpotential (1.25 V).As CoP/Ti3C2Txcomposite possess certain advantages,such as the superior electronic conductivity of MXene together with excellent electrocatalytic activity of CoP,it is appropriate material that can be adopted as electrocatalyst in Li-O2battery.In summary,this study provides a prospective strategy for designing MXene-based nanocomposites applied in cathode catalysts of Li-O2battery.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Science Foundations of China (Nos.21871028,21771024) and China Postdoctoral Science Foundation (No.2020M680430).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.045.

    av视频在线观看入口| 日本一二三区视频观看| 久久久久久国产a免费观看| 99热只有精品国产| 一a级毛片在线观看| 欧美日本亚洲视频在线播放| 日韩精品青青久久久久久| 欧美三级亚洲精品| 在线观看66精品国产| 99久久九九国产精品国产免费| 欧美人与善性xxx| 欧美日本视频| 国产在线男女| 人妻丰满熟妇av一区二区三区| 色av中文字幕| 亚洲av电影不卡..在线观看| 亚洲一区高清亚洲精品| 99热6这里只有精品| 18禁黄网站禁片午夜丰满| 无人区码免费观看不卡| 人妻少妇偷人精品九色| 久久亚洲真实| 亚洲精品影视一区二区三区av| 亚洲av熟女| 欧美成人a在线观看| 亚洲黑人精品在线| 久久午夜福利片| 狠狠狠狠99中文字幕| 深爱激情五月婷婷| 观看美女的网站| 有码 亚洲区| a级毛片免费高清观看在线播放| 女生性感内裤真人,穿戴方法视频| 日本精品一区二区三区蜜桃| 国产国拍精品亚洲av在线观看| 变态另类丝袜制服| 成年女人永久免费观看视频| 国产黄a三级三级三级人| 欧美一区二区国产精品久久精品| 欧美日韩中文字幕国产精品一区二区三区| 国产一区二区亚洲精品在线观看| 男女边吃奶边做爰视频| 欧美一区二区亚洲| 久久6这里有精品| 国产伦人伦偷精品视频| 国产精品精品国产色婷婷| 黄色视频,在线免费观看| 免费大片18禁| 日本爱情动作片www.在线观看 | 免费在线观看影片大全网站| 日本-黄色视频高清免费观看| 国产午夜福利久久久久久| 色哟哟哟哟哟哟| 日韩精品青青久久久久久| 日韩欧美精品v在线| 精品久久久久久久久亚洲 | 成年女人毛片免费观看观看9| 国产探花极品一区二区| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| 国产亚洲精品av在线| 亚洲成av人片在线播放无| 色5月婷婷丁香| 欧美+日韩+精品| 黄色配什么色好看| 国产精品亚洲一级av第二区| 身体一侧抽搐| 成人国产一区最新在线观看| 午夜影院日韩av| 一a级毛片在线观看| 久久精品国产清高在天天线| 99在线人妻在线中文字幕| 日韩强制内射视频| 一级毛片久久久久久久久女| 欧美激情在线99| 1024手机看黄色片| 夜夜夜夜夜久久久久| 又爽又黄无遮挡网站| 亚洲男人的天堂狠狠| 精品人妻一区二区三区麻豆 | 亚洲va在线va天堂va国产| 日韩欧美精品免费久久| 久久午夜亚洲精品久久| 成人av在线播放网站| 免费在线观看成人毛片| 精品午夜福利视频在线观看一区| 久久精品国产鲁丝片午夜精品 | 久久久成人免费电影| 九色成人免费人妻av| 亚洲无线在线观看| 亚洲av日韩精品久久久久久密| 欧美性猛交╳xxx乱大交人| 校园人妻丝袜中文字幕| 国产精品久久视频播放| 午夜爱爱视频在线播放| 精品人妻熟女av久视频| 人妻少妇偷人精品九色| 亚洲成a人片在线一区二区| 久99久视频精品免费| 亚洲欧美激情综合另类| 中文字幕免费在线视频6| 国内久久婷婷六月综合欲色啪| 老师上课跳d突然被开到最大视频| 久久久久久久亚洲中文字幕| 免费观看精品视频网站| 伦精品一区二区三区| 变态另类成人亚洲欧美熟女| 身体一侧抽搐| 深夜a级毛片| 亚洲av.av天堂| 国产一区二区在线av高清观看| 亚洲性夜色夜夜综合| 亚洲五月天丁香| av女优亚洲男人天堂| 欧美丝袜亚洲另类 | 午夜影院日韩av| 丰满的人妻完整版| 少妇的逼好多水| 日本爱情动作片www.在线观看 | 给我免费播放毛片高清在线观看| 夜夜夜夜夜久久久久| 精品久久久久久久久久久久久| 久久国产精品人妻蜜桃| 久久久久久久久中文| 看十八女毛片水多多多| 亚洲成人久久性| 亚洲成人精品中文字幕电影| 国产精品av视频在线免费观看| 国产成年人精品一区二区| 国产精品女同一区二区软件 | 欧美日韩国产亚洲二区| 久久精品国产亚洲av涩爱 | www.www免费av| 国产人妻一区二区三区在| 免费在线观看成人毛片| 亚洲久久久久久中文字幕| 国产精品久久电影中文字幕| 午夜久久久久精精品| 国产av麻豆久久久久久久| 天天一区二区日本电影三级| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久性| 22中文网久久字幕| 97人妻精品一区二区三区麻豆| 欧美日韩精品成人综合77777| 97超视频在线观看视频| 亚洲狠狠婷婷综合久久图片| 免费人成视频x8x8入口观看| 国产亚洲av嫩草精品影院| 很黄的视频免费| 成熟少妇高潮喷水视频| 亚洲在线观看片| 国产午夜精品论理片| 婷婷亚洲欧美| 国产极品精品免费视频能看的| 深夜a级毛片| 草草在线视频免费看| 亚州av有码| 最近视频中文字幕2019在线8| 亚洲aⅴ乱码一区二区在线播放| 国产高清有码在线观看视频| 久久天躁狠狠躁夜夜2o2o| 热99re8久久精品国产| 校园春色视频在线观看| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 国产精品一区二区性色av| 亚洲精品日韩av片在线观看| 国产精品免费一区二区三区在线| 国产一区二区三区在线臀色熟女| 色精品久久人妻99蜜桃| 国产麻豆成人av免费视频| 天堂影院成人在线观看| 尾随美女入室| 国产极品精品免费视频能看的| 日韩欧美精品v在线| 国产精品一区二区三区四区久久| 日韩欧美免费精品| 亚洲四区av| 成人亚洲精品av一区二区| 午夜日韩欧美国产| 亚洲电影在线观看av| 亚洲成人精品中文字幕电影| 97超视频在线观看视频| 精品免费久久久久久久清纯| 麻豆国产av国片精品| 人妻久久中文字幕网| 国产欧美日韩精品一区二区| 亚洲国产精品合色在线| 国产精品综合久久久久久久免费| 午夜影院日韩av| 国产国拍精品亚洲av在线观看| 一个人免费在线观看电影| 亚洲精品粉嫩美女一区| 俄罗斯特黄特色一大片| 狂野欧美激情性xxxx在线观看| 色精品久久人妻99蜜桃| 夜夜夜夜夜久久久久| 亚洲三级黄色毛片| 三级男女做爰猛烈吃奶摸视频| 日本五十路高清| 五月玫瑰六月丁香| 亚洲黑人精品在线| 色视频www国产| 久久精品国产鲁丝片午夜精品 | 国产成人福利小说| a在线观看视频网站| 亚洲久久久久久中文字幕| 国产亚洲精品av在线| 国产老妇女一区| 黄片wwwwww| 99九九线精品视频在线观看视频| 国产人妻一区二区三区在| 乱码一卡2卡4卡精品| 一个人看视频在线观看www免费| 国产乱人视频| 国产精品国产三级国产av玫瑰| 国产精品久久久久久av不卡| 亚洲人成伊人成综合网2020| 国产高清三级在线| 伦理电影大哥的女人| 亚洲精品一区av在线观看| 国产欧美日韩精品亚洲av| 欧美成人一区二区免费高清观看| 成人鲁丝片一二三区免费| 日韩一区二区视频免费看| 国产老妇女一区| 国内揄拍国产精品人妻在线| 欧美性感艳星| 18禁黄网站禁片午夜丰满| 国产高清三级在线| 国产老妇女一区| 久久99热这里只有精品18| 狠狠狠狠99中文字幕| 欧美xxxx性猛交bbbb| 观看免费一级毛片| 国产乱人伦免费视频| 日本色播在线视频| 亚洲狠狠婷婷综合久久图片| 好男人在线观看高清免费视频| 校园春色视频在线观看| 久久久久免费精品人妻一区二区| 国内精品美女久久久久久| 国产精品一及| 日韩av在线大香蕉| 欧美成人免费av一区二区三区| 91狼人影院| 又粗又爽又猛毛片免费看| 精品久久国产蜜桃| 亚洲欧美日韩高清专用| 国产色爽女视频免费观看| 日本成人三级电影网站| 国产精品av视频在线免费观看| 亚洲av熟女| 欧美3d第一页| 在线观看舔阴道视频| 国产免费一级a男人的天堂| 久久中文看片网| 日韩欧美精品免费久久| 精品99又大又爽又粗少妇毛片 | 国产黄a三级三级三级人| 久久九九热精品免费| 欧美另类亚洲清纯唯美| 国产精品亚洲美女久久久| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 麻豆成人午夜福利视频| 久久久久久久亚洲中文字幕| 婷婷精品国产亚洲av| 亚洲成人精品中文字幕电影| 黄色视频,在线免费观看| 国产淫片久久久久久久久| av在线老鸭窝| 亚洲第一区二区三区不卡| 我的女老师完整版在线观看| 欧美黑人巨大hd| 亚洲久久久久久中文字幕| 不卡视频在线观看欧美| 日本与韩国留学比较| 黄色视频,在线免费观看| 久久草成人影院| 欧美精品啪啪一区二区三区| 精华霜和精华液先用哪个| a级毛片免费高清观看在线播放| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| 国产高清视频在线播放一区| 99在线人妻在线中文字幕| 国产精品一区www在线观看 | 亚洲自偷自拍三级| 久久久色成人| 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| 99久久精品热视频| 男女视频在线观看网站免费| 一级av片app| 少妇高潮的动态图| 亚洲美女视频黄频| 一个人免费在线观看电影| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 在线观看美女被高潮喷水网站| 美女高潮的动态| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 俄罗斯特黄特色一大片| 一级黄片播放器| 欧美人与善性xxx| 午夜福利欧美成人| 亚洲五月天丁香| 中文在线观看免费www的网站| 日韩中文字幕欧美一区二区| 美女高潮喷水抽搐中文字幕| 国产精品嫩草影院av在线观看 | 一级黄色大片毛片| 少妇人妻一区二区三区视频| 两个人视频免费观看高清| 欧美国产日韩亚洲一区| 国产午夜福利久久久久久| 精品久久久久久久久av| 韩国av在线不卡| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品成人久久久久久| 毛片一级片免费看久久久久 | 国产精品久久久久久久电影| 天堂动漫精品| 熟女人妻精品中文字幕| 国产伦精品一区二区三区四那| 欧美+亚洲+日韩+国产| 美女xxoo啪啪120秒动态图| 免费在线观看成人毛片| 成人综合一区亚洲| 男人舔奶头视频| 国产高清有码在线观看视频| 亚洲一区高清亚洲精品| 黄色一级大片看看| 国产私拍福利视频在线观看| 国产真实乱freesex| 欧美人与善性xxx| 婷婷色综合大香蕉| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 非洲黑人性xxxx精品又粗又长| 欧美绝顶高潮抽搐喷水| 男女下面进入的视频免费午夜| 桃红色精品国产亚洲av| a级一级毛片免费在线观看| 精品人妻1区二区| 日日干狠狠操夜夜爽| 黄色丝袜av网址大全| 亚洲中文字幕一区二区三区有码在线看| 国产成年人精品一区二区| 国产欧美日韩一区二区精品| 国产欧美日韩精品一区二区| 精品人妻1区二区| 成人午夜高清在线视频| 国产久久久一区二区三区| 中文亚洲av片在线观看爽| 亚州av有码| 少妇人妻精品综合一区二区 | 亚洲一级一片aⅴ在线观看| 午夜爱爱视频在线播放| 色综合婷婷激情| 男人舔女人下体高潮全视频| 免费观看的影片在线观看| 午夜日韩欧美国产| 91av网一区二区| 中亚洲国语对白在线视频| 成人美女网站在线观看视频| 欧美一区二区精品小视频在线| 国产一区二区亚洲精品在线观看| 干丝袜人妻中文字幕| .国产精品久久| 九九热线精品视视频播放| 亚洲av不卡在线观看| av.在线天堂| 欧美性感艳星| 久久精品国产鲁丝片午夜精品 | 国产欧美日韩一区二区精品| 欧美日本视频| 一区福利在线观看| 久久久国产成人免费| 特级一级黄色大片| 国产精品,欧美在线| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲内射少妇av| 欧美中文日本在线观看视频| 成年版毛片免费区| 国产黄a三级三级三级人| 男人狂女人下面高潮的视频| 亚洲成人免费电影在线观看| or卡值多少钱| 亚洲天堂国产精品一区在线| 又粗又爽又猛毛片免费看| 色播亚洲综合网| 精品国内亚洲2022精品成人| 亚洲精品在线观看二区| 欧美黑人巨大hd| 日韩欧美在线乱码| 日日撸夜夜添| 两人在一起打扑克的视频| av.在线天堂| 一夜夜www| 联通29元200g的流量卡| 成人三级黄色视频| 毛片女人毛片| 搞女人的毛片| 少妇的逼好多水| 精品午夜福利视频在线观看一区| 国产视频一区二区在线看| 听说在线观看完整版免费高清| 亚洲第一电影网av| 国产av在哪里看| 色播亚洲综合网| 又紧又爽又黄一区二区| or卡值多少钱| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 国产精品乱码一区二三区的特点| 精品午夜福利在线看| 又爽又黄无遮挡网站| 国产爱豆传媒在线观看| 男女视频在线观看网站免费| 日韩欧美在线乱码| 国产精品一及| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看.| or卡值多少钱| 天堂网av新在线| 国产高清激情床上av| 51国产日韩欧美| 99视频精品全部免费 在线| 美女xxoo啪啪120秒动态图| 欧美国产日韩亚洲一区| 久久热精品热| 亚洲精华国产精华精| 搞女人的毛片| 国产av不卡久久| 日本在线视频免费播放| 波多野结衣高清无吗| 久久6这里有精品| 在线国产一区二区在线| 久久中文看片网| 性欧美人与动物交配| 亚洲成人久久性| 中亚洲国语对白在线视频| 尾随美女入室| 国产欧美日韩精品亚洲av| 日韩欧美在线二视频| 亚洲精品一区av在线观看| 国产精华一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲内射少妇av| 色尼玛亚洲综合影院| 在线观看午夜福利视频| 99热精品在线国产| 久久久成人免费电影| 麻豆av噜噜一区二区三区| 不卡一级毛片| 狠狠狠狠99中文字幕| 免费一级毛片在线播放高清视频| 精品一区二区免费观看| 久久久国产成人精品二区| 大型黄色视频在线免费观看| videossex国产| 欧美人与善性xxx| 久久久久久大精品| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 亚洲人成伊人成综合网2020| 国内精品美女久久久久久| videossex国产| 国产精品国产高清国产av| 舔av片在线| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片 | 美女 人体艺术 gogo| 国产极品精品免费视频能看的| 久久午夜福利片| 亚洲国产精品合色在线| 18禁在线播放成人免费| 人人妻人人看人人澡| 亚洲av成人av| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 亚洲成a人片在线一区二区| 大型黄色视频在线免费观看| 毛片女人毛片| 夜夜看夜夜爽夜夜摸| 嫩草影院入口| 欧美不卡视频在线免费观看| 一级毛片久久久久久久久女| 小蜜桃在线观看免费完整版高清| 十八禁网站免费在线| 精品人妻一区二区三区麻豆 | 成年版毛片免费区| 国产黄色小视频在线观看| 人人妻人人看人人澡| 亚洲国产欧美人成| 免费观看精品视频网站| 免费高清视频大片| 九色国产91popny在线| 国产精品一及| 久久精品国产鲁丝片午夜精品 | 免费在线观看成人毛片| 日韩人妻高清精品专区| 亚洲国产色片| 日本-黄色视频高清免费观看| 成人无遮挡网站| 麻豆一二三区av精品| 婷婷六月久久综合丁香| 99热6这里只有精品| 国产乱人视频| 精品一区二区三区视频在线| 国产一级毛片七仙女欲春2| 亚洲欧美清纯卡通| 99视频精品全部免费 在线| 午夜福利在线观看吧| 亚洲专区国产一区二区| 色精品久久人妻99蜜桃| 色综合色国产| 毛片一级片免费看久久久久 | 午夜福利欧美成人| 亚洲精品456在线播放app | 51国产日韩欧美| 欧美+亚洲+日韩+国产| 麻豆成人午夜福利视频| 亚洲电影在线观看av| 国产成人影院久久av| 国产视频一区二区在线看| 亚洲五月天丁香| av天堂中文字幕网| 国产精品久久视频播放| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 亚洲成av人片在线播放无| 日韩强制内射视频| 中文字幕高清在线视频| 女生性感内裤真人,穿戴方法视频| 国产aⅴ精品一区二区三区波| 自拍偷自拍亚洲精品老妇| 亚洲成人久久爱视频| 麻豆久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 少妇高潮的动态图| 女人十人毛片免费观看3o分钟| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 成人国产综合亚洲| 亚洲欧美日韩卡通动漫| 欧美绝顶高潮抽搐喷水| 亚洲七黄色美女视频| 少妇高潮的动态图| 嫩草影院入口| 在线观看免费视频日本深夜| 午夜免费激情av| 成年女人看的毛片在线观看| 国产亚洲av嫩草精品影院| 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看 | 99久久中文字幕三级久久日本| 中文在线观看免费www的网站| 免费电影在线观看免费观看| 国产综合懂色| 亚洲av美国av| av专区在线播放| 狂野欧美激情性xxxx在线观看| 亚洲无线观看免费| 搡老妇女老女人老熟妇| 亚洲av五月六月丁香网| 国产91精品成人一区二区三区| 男女那种视频在线观看| 亚洲av成人av| 波多野结衣巨乳人妻| 综合色av麻豆| 国产精品不卡视频一区二区| 极品教师在线免费播放| 搡老熟女国产l中国老女人| 69人妻影院| 免费av不卡在线播放| 禁无遮挡网站| 22中文网久久字幕| 亚洲成a人片在线一区二区| 亚洲精品成人久久久久久| 蜜桃久久精品国产亚洲av| 久久人人精品亚洲av| 如何舔出高潮| 99久久精品热视频| 99热这里只有是精品50| 床上黄色一级片| 国产精品亚洲美女久久久| 女人十人毛片免费观看3o分钟| 国产精品98久久久久久宅男小说| 午夜免费激情av| 久久久久久九九精品二区国产| bbb黄色大片| 亚洲国产精品sss在线观看| 亚洲男人的天堂狠狠| 在线免费观看的www视频| 免费在线观看日本一区| 淫秽高清视频在线观看| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 麻豆久久精品国产亚洲av| 很黄的视频免费| 日韩中字成人| 男女那种视频在线观看| 成人特级av手机在线观看| 伦精品一区二区三区|