• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aggregation Operators for Interval-Valued Pythagorean Fuzzy HypersoftSet with Their Application to Solve MCDM Problem

    2023-03-12 09:01:02RanaMuhammadZulqarnainImranSiddiqueRifaqatAliFahdJaradandAiyaredIampan

    Rana Muhammad Zulqarnain,Imran Siddique,Rifaqat Ali,Fahd Jaradand Aiyared Iampan

    1Department of Mathematics,University of Management and Technology,Sialkot Campus,Lahore,51310,Pakistan

    2Department of Mathematics,University of Management and Technology,Lahore,54000,Pakistan

    3Department of Mathematics,College of Science and Arts,King Khalid University,Abha,61413,Saudi Arabia

    4Department of Mathematics,Cankaya University,Ankara,06790,Turkey

    5Department of Mathematics,King Abdulaziz University,Jeddah,22254,Saudi Arabia

    6Department of Medical Research,China Medical University Hospital,China Medical University,Taichung,404332,Taiwan

    7Department of Mathematics,School of Science,University of Phayao,Mae Ka,Mueang,Phayao,56000,Thailand

    ABSTRACT Experts use Pythagorean fuzzy hypersoftsets (PFHSS) in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators (AOs) perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper, we extend the concept of PFHSS to interval-valued PFHSS (IVPFHSS), which is the generalized form of intervalvalued intuitionistic fuzzy softset.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy softset.It is the most potent method for amplifying fuzzy data in the decision-making (DM) practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws, two inventive AOs have been established: interval-valued Pythagorean fuzzy hypersoftweighted average (IVPFHSWA) and interval-valued Pythagorean fuzzy hypersoftweighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But, the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs, a robust MCGDM technique is deliberate for material selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projected MCGDM method for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.

    KEYWORDS Interval-valued pythagorean fuzzy hypersoftset;IVPFHSWA operator;IVPFHSWG operator;MCGDM

    1 Introduction

    MCGDM is deliberated as the most suitable method for a verdict on the adequate alternative from all possible choices,following criteria or attributes.Most decisions are taken when the intentions and confines are usually unspecified or unclear in real-life circumstances.Zadeh offered the idea of the fuzzy set (FS) [1] to overcome such vague and indeterminate facts.It is a fundamental tool to handle the insignificances and hesitations in decision-making(DM).The existing FS cannot deal with the scenarios when the experts consider a membership degree(MD)in intervals form during the DM procedure.Turksen [2] presented the interval-valued FS (IVFS) with fundamental operations.The prevailing FS and IVFS cannot deliver the information about any alternative’s non-membership degree(NMD).Atanassov [3] overcame the mentioned above limitations and developed the intuitionistic fuzzy set(IFS).Wang et al.[4]introduced several operations such as Einstein product,Einstein sum,etc.,and AOs for IFS.Atanassov[5]prolonged the IFS to an interval-valued intuitionistic fuzzy set(IVIFS)with some basic operations and their properties.Garg et al.[6]protracted the idea of IFS and settled the cubic intuitionistic fuzzy set(CIFS).

    The models mentioned above have been well-recognized by the specialists.Still,the existing IFS cannot handle the inappropriate and vague data because it envisions the linear inequality among the MD and NMD.For example, if decision-makers choose MD and NMD 0.6 and 0.7, respectively,then the IFS, as mentioned earlier, cannot deal with it because 0.6 + 0.7 ≥1.Yager [7] offered the Pythagorean fuzzy set(PFS)to resolve the inadequacy mentioned above by modifying the elementary stateκ+δ≤1 toκ2+δ2≤1.He also established the score and accuracy functions to compute the ranking.Rahman et al.[8]planned Einstein weighted geometric operator for PFS and showed a multiattribute group decision-making(MAGDM)technique using their planned operator.Zhang et al.[9]developed some basic operational laws and prolonged the approach for order of preference by similarity to ideal solution(TOPSIS)to resolve multi-criteria decision-making(MCDM)problems for PFS.Wei et al.[10]offered the Pythagorean fuzzy power AOs and discussed their important features.Using their presented operators, they also established a DM technique to resolve multi-attribute decisionmaking (MADM).Wang et al.[11] demonstrated the interaction operational laws for Pythagorean fuzzy numbers (PFNs) and settled power Bonferroni mean operators.IIbahar et al.[12] offered the Pythagorean fuzzy proportional risk assessment technique to assess the professional health risk.Zhang[13]proposed a novel DM approach based on similarity measures to resolve MCGDM problems for the PFS.Peng et al.[14] offered the AOs for interval-valued PFS (IVPFS) and established a DM technique using their planned methodology.Rahman et al.[15] prolonged the weighted geometric aggregation operator for IVPFS and offered a DM technique based on their developed operator.

    All of the above techniques have broad applications, but these theories have some limitations on parametric chemistry due to their ineffectiveness.Molodtsov [16] introduced the soft sets (SS)theory and defined some basic operations with their features to handle the misperception and haziness.Maji et al.[17] extended the theory of SS and developed many basic and binary operations for SS.Maji et al.[18] developed the fuzzy soft set with some desirable properties by merging two existing notions, FS and SS.Maji et al.[19] protracted the intuitionistic fuzzy soft set (IFSS) and some important operations with their essential properties.Arora et al.[20] presented the AOs for IFSS and planned a DM technique based on their developed operators.Jiang et al.[21] introduced the interval-valued IFSS (IVIFSS) and discussed its basic properties.Zulqarnain et al.[22] planned the TOPSIS technique based on the correlation coefficient(CC)for IVIFSS to resolve MADM problems.Peng et al.[23]anticipated the Pythagorean fuzzy soft sets(PFSS)by merging two prevailing theories,PFS and SS.Zulqarnain et al.[24]presented some operational laws for PFSS and prolonged the AOs and interaction AOs for PFSS.Zulqarnain et al.[25] developed the operational interaction laws for PFSS and protracted the interaction AOs based on established operational laws.They also established the DM methodologies using their developed AOs and interaction AOs with their application in green supplier chain management.Zulqarnain et al.[26] prolonged the Einstein-ordered operational laws for PFSS and introduced the Einstein-ordered weighted ordered geometric AO for PFSS.They also established a MAGDM technique to solve complex real-life problems.Zulqarnain et al.[27]protracted the Einstein-ordered weighted ordered average AO for PFSS and offered a DM technique based on their developed operator.Zulqarnain et al.[28]settled the TOPSIS method for PFSS using correlation coefficient and developed the MADM approach to resolve DM obstacles.Zulqarnain et al.[29]prolonged the AOs for IVPFSS and presented a MAGDM approach to solving real-life difficulties.

    Samarandche [30] proposed the idea of hypersoft set (HSS), which penetrates multiple subattributes in the parameter functionf, which is a characteristic of the cartesian product with thenattribute.Samarandche HSS is the most suitable theory compared to SS and other existing concepts because it handles the multiple sub-attributes of the considered parameters.Several HSS extensions and their DM methods have been proposed.Rahman et al.[31]developed the DM techniques based on similarity measures for the possibility IFHSS.Zulqarnain et al.[32]extended the notion of IFHSS to PFHSS with fundamental operations and their properties.Rahman et al.[33] established a DM methodology for neutrosophic HSS.Saeed et al.[34]utilized the neutrosophic hypersoft mapping to diagnose the brain tumor.Zulqarnain et al.[35]extended the TOPSIS method based on the correlation coefficient for IFHSS and used it to resolve MADM complications.Zulqarnain et al.[36]expanded the AOs under the IFHSS environment and developed a DM approach based on their presented AOs.Zulqarnain et al.[37]developed the correlation-based TOPSIS approach for PFHSS and utilized their established technique to select the most appropriate face mask.PFHSS is a hybrid intellectual structure of PFSS.An enhanced sorting process fascinates investigators to crack baffling and inadequate information.Rendering to the investigation outcomes, PFHSS plays a vital role in decision-making by collecting numerous sources into a single value.The existing AOs for PFHSS cannot cope with the situation when the information of any multi-sub attribute is given in the form of intervals.To overcome the shortcomings mentioned above, we merged the IVPFS and hypersoft set (HSS) and introduced IVPFHSS,a novel hybrid structure to cope with uncertain problems.Therefore,to inspire the current research of IVPFHSS,we will state AOs based on rough data.The core objectives of the present study are given as follows:

    · The IVPFHSS capably contracts the multifaceted concerns seeing the multi sub-attributes of the deliberated parameters in the DM procedure.To preserve this benefit in concentration,we prolong the PFHSS to IVPFHSS and establish the AOs for IVPFHSS.

    · The AOs for IVPFHSS are well-known attractive estimate AOs.It has been observed that the prevalent AOs aspect is unresponsive to scratch the precise finding over the DM process in some situations.To overcome these specific complications, these AOs necessary to be revised.We determine innovative operational laws for interval-valued Pythagorean fuzzy hypersoft numbers(IVPFHSNs).

    · Interval-valued Pythagorean fuzzy hypersoft weighted average and geometric operators have been introduced with their necessary properties using developed operational laws.

    · A novel algorithm based on the planned operators to resolve the DM problem is established to resolve MCGDM issues under the IVPFHSS scenario.

    · Material selection is an imperative feature of manufacturing as it realizes the concrete conditions for all ingredients.MS is an arduous but significant step in professional development.The manufacturer’s efficiency,productivity,and eccentric will suffer due to the absence of material selections.

    · A comparative analysis of advanced MCGDM technique and current methods has been presented to consider utility and superiority.

    The organization of this paper is assumed as follows:the second section of this paper involves some basic notions that support us in developing the structure of the subsequent study.In Section 3,some novel operational laws for IVPFHSN have been projected.Also, in the same section, IVPFHSWA and IVPFHSWG operators have been introduced based on our developed operators’basic properties.In Section 4, an MCGDM approach has been constructed based on the proposed AOs.In the same section,a numerical example has been discussed to confirm the pragmatism of the established technique for material selection in the manufacturing industry.Furthermore, a brief comparative analysis has been delivered to confirm the competency of the developed approach in Section 5.

    2 Preliminaries

    This section contains some basic definitions that will structure the following work.

    Definition 2.1.[16] LetUand N be the universe of discourse and set of attributes, respectively.LetP(U)be the power set ofUandA?N.A pair(Ω,A)is called a SS overU,and its mapping is expressed as follows:

    Ω:A→P(U)

    Also,it can be defined as follows:

    (Ω,A)={Ω(t)∈P(U):t∈N,Ω(t)=?}

    Definition 2.2.[30]LetUbe a universe of discourse andP(U)be a power set ofUandt={t1,t2,t3,...,tn},(n ≥1)andTirepresented the set of attributes and their corresponding sub-attributes,such asTi∩Tj=φ,whereijfor eachn≥1 andi,j ∈{1,2,3...n}.AssumeT1×T2×T3×...×Tn=={d1h×d2k×···×dnl}is a collection of sub-attributes,where 1 ≤h≤α,1 ≤k≤β,and 1 ≤l≤γ,andα,β,γ∈N.Then the pair(F,T1×T2×T3×...×Tn=(Ω,.)is known as HSS and defined as follows:

    Ω:T1×T2×T3×...;×Tn=→P(U).

    It is also defined as

    Definition 2.3.[14]Ube a universe of discourse, andAbe any subset ofU.Then, the intervalvalued Pythagorean fuzzy set(IVPFS)AoverUis defined as

    Definition 2.4[29]Ube a universe of discourse and N be a set of attributes.Then a pair(Ω,N)is called an interval-valued Pythagorean fuzzy soft set(IVPFSS)overU.Its mapping can be expressed as

    Ω: N →?KU

    where?KUrepresents the collection of interval-valued Pythagorean fuzzy subsets of the universe of discourseU.

    3 Aggregation Operators for Interval Valued Pythagorean Fuzzy Hypersoft Sets

    In this section,we will extend the idea of IVPFSS to interval-valued Pythagorean fuzzy hypersoft sets(IVPFHSS)with some fundamental notions and introduce the operational laws for IVPFHSNs.We propose interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and intervalvalued Pythagorean fuzzy hypersoft geometric (IVPFHSWG) operators using the developed operational laws.

    Proof.The above presented IVPFHSWA operator can be proved by using the principle of mathematical induction:

    Hence,it holds form=α1+1 andn=α2+1.So,we can say that Theorem 3.1 holds for all values ofmandn.

    Example.3.1

    LetR={R1,R2,R3}be a set of experts with the given weight vectorωi=(0.38,0.45,0.17)T.The group of experts describes the beauty of a house under-considered attributes ? = {e1=lawn,e2=security system}with their corresponding sub-attributes Lawn=e1={e11=with grass,e12=without grass},security system=e2={e21=guards,e22=cameras}.Let ?=e1×e2be a set of sub-attributes ?=e1×e2={e11,e12}×{e21,e22}=[(e11,e21),(e11,e22),(e12,e21),(e12,e22)]

    3.1 Properties of IVPFHSWA Operator

    3.1.1 Idempotency

    3.1.2 Boundedness

    3.1.3 Shift Invariance

    3.1.4 Homogeneity

    Proof.Using mathematical induction,we can prove the IVPFHSWG operator as follows:

    So,it is proved the form=α1+1 andn=α2+1 holds.So,the IVPFHSWG operator holds for all values ofmandn.

    Example 3.2.LetR= {R1,R2,R3} be a set of experts with the given weight vectorωi=(0.38,0.45,0.17)T.The group of experts describes the beauty of a house under-considered attributes ? = {e1=lawn,e2=security system} with their corresponding sub-attributes Lawn =e1={e11=with grass,e12=without grass}, security system =e2= {e21=guards,e22=cameras}.Let ?=e1×e2be a set of sub-attributes

    ?=e1×e2={e11,e12}×{e21,e22}={(e11,e21),(e11,e22),(e12,e21),(e12,e22)}

    3.2 Properties of IVPFSWG

    3.2.1 Idempotency

    3.2.2 Boundedness

    3.2.3 Shift Invariance

    3.2.4 Homogeneity

    4 Multi-Criteria Group Decision-Making Approach Based on Proposed Operators

    A decision-making method has been present to resolve the MCGDM obstacles to authenticate the implication of the planned AOs.Also, a statistical illustration has been offered to confirm the pragmatism of the developed methodology.

    4.1 Proposed MCGDM Approach

    Step-1: Obtain a decision matrix in IVPFHSNs for each alternative according to the expert’s opinion.

    Step-2:Convert the cost type attributes to benefit type using the normalization rule and establish the normalized decision matrices.

    Step-3:Calculate the aggregated values for each alternative using developed IVPFHSWA and IVPFHSWG.

    Step-4:Calculate the score values for each alternative.

    Step-5:Examine the ranking of the alternatives.

    4.2 Numerical Example

    It is an intelligent transformation of fossil waste energy, such as natural gas first converted into hydrogen.In inference, despite the overdevelopment of fossil fuels and the potential for global warming,the most important renewable energy sources will originate from the description of financial or environmental reasons.The recently formed hydrogen fuel is different in weight and volume from the commonly used hydrogen fuel in power performance.This hydrogen,irrelevant to its energy capacity,is the most prominent feature.The energy content per kilogram of hydrogen is 120 MJ.The advantage of methanol is an extraordinary six times[38].Hydrogen has a bit of volumetric energy compactness associated with its particular gravimetric density.The compactness of hydrogen is determined by its accumulation state.A stable thickness of up to 700 bar is not a large enough property for hydrocarbons like gasoline and diesel.Only liquid hydrogen can affect a reasonable amount,still less than a quarter of the amount of gasoline.Therefore,hydrogen containers for motor tenders will conquer more than previously used fluid hydrocarbon containers[39].Cryogenic storage containers are also considered cryogenic storage containers.The dewar is a double-walled super-insulated container.Its vehicles fluid oxygen,nitrogen,hydrogen,helium,and argon,temperatures<110 K/163°C.

    The most significant features (parameters) to deliberate when electing a materiality dashboard DM.The assortment method initiates with a preliminary screening of the material used for the dashboard and is captivated by the validation configuration in-built into the application.Throughout the airing progression, potentially proper materials are acknowledged.Defining the ingredients that can be used by the preliminary MS of the dashboard fashioning is serious.Then select from four material assessment abilities: I1= Ti–6Al–4V, I2= SS301–FH, I3= 70Cu–30Zn,and I4= Inconel 718.The aspect of material assortment is specified as follows: L = {d1=Specific gravity = attaining data around the meditation of resolutions of numerous materials,d2=Toughness index,d3= Yield stress,d4= Easily accessible}.The corresponding subattributes of the considered parameters, Specific gravity = attaining data around the meditation of resolutions of numerous materials =d1={d11= assess corporal variations,d12= govern the degree of regularity among tasters},Toughness index=d2={d21=CharpyV-Notch Impact Energy,d22=Plane Strain Fracture Toughness}, Yield stress =d3= {d31=Yield stress}, Easily accessible =d4= {d41= Easily accessible}.Let L′=d1×d2×d3×d4be a set of sub-attributesbe a set of all sub-attributes with

    weights(0.3,0.1,0.2,0.4)T.Let{u1,u2,u3,u4}be a set of four experts with weights(0.1,0.2,0.4,0.3)T.To judge the optimal alternative,experts deliver their preferences in IVPFHSNs.

    4.2.1 By IVPFHSWA Operator

    Step-1:Decision-maker’s opinion on IVPFHSNs is given in Tables 1–4.

    Table 1: Decision matrix for I1 in the form of IVPFHSN

    Table 2: Decision matrix for I2 in the form of IVPFHSN

    Table 3: Decision matrix for I3 in the form of IVPFHSN

    Table 4: Decision matrix for I4 in the form of IVPFHSN

    Step-2:There is no need to normalize because all parameters are the same type.

    Step-3:Compute the aggregated values employing the developed IVPFHSWA operator for each alternative.

    Step-4:Using score functionS=for the IVPFSSS to calculate the score values for all alternatives.S(Θ1)=0.0599,S(Θ2)=0.0578,S(Θ3)=0.0266,andS(Θ4)=-0.0382.

    Step-5:From the above calculation,we getS(Θ1)>S(Θ2)>S(Θ3)>S(Θ4),which shows that I1is the best alternative.So,I1>I2>I3>I4.

    4.2.2 By IVPFHSWG Operator

    Step-1 and Step-2 are similar to Section 4.2.1.

    Step-3:Compute the aggregated values employing the developed IVPFHSWG operator for each alternative.

    Step-4:Use the score functioninterval-valued for the Pythagorean fuzzy soft set to calculate the score values for all alternatives such asS(Θ1)= 0.0752,S(Θ2)= 0.0654,S(Θ3)=0.0241,andS(Θ4)=0.0114.

    Step-5:From the above calculation,we get the ranking of alternativesS(Θ1)>S(Θ2)>S(Θ3)>S(Θ4).Which shows that I1is the best alternative.So,I1>I2>I3>I4.

    Subsequently,the material assessment wonders at the theoretical level through the depiction phase of the strategy;there is more possibility to the extent of the correctness of the specific materials.Facecentered cube materials are typically used at minor temperatures-163°C and I1=Ti–6Al–4V ratings first.This is steadfast in employing initial investigations and real-world maneuvers.Austenitic steels are still classically used in melted nitrogen or hydrogen storing vessels[40].

    5 Comparative Studies

    A comparison among the projected model and prevalent approaches is planned to validate the efficacy of the offered technique in the subsequent section.

    5.1 Supremacy of the Planned Technique

    The intended method is proficient and realistic;in the IVPFHSS setting,we construct an inventive MCGDM model on the IVPFHSWA and PFHSEWG operators.Our planned model is more talented than prevalent techniques and can produce the most subtle implications in MCGDM difficulties.The cooperative model is multipurpose and conversant,adjusting to evolving instability,commitment,and output.Different models have particular ranking processes,so there is a straight modification among the rankings of the anticipated methods conferring to their expectations.This systematic study and assessment determined that the outcomes attained from prevailing procedures are irregularly equated to hybrid structures.Also,due to some favorable situations,many mixed IVFS,IVIFS,IVPFS,IVIFSS,and IVPFSS grow into special in IVPFHSS.It is easy to syndicate insufficient and ambiguous data in DM procedures.Imprecise and anxious facts are mixed in the DM procedure.Hence,our scheduled method will be more proficient, crucial, superior, and better than numerous mixed FS structures.Table 5 below presents the projected technique and the characteristic analysis of some existing models.

    Table 5: Feature analysis of different models with a proposed model

    Table 5 (continued)Fuzzy information Aggregated attributes information Aggregated sub-attributes information of any attribute Aggregated information in intervals form PFHSIWG[44] √ √ √ ×Proposed IVPFHSWA√√√√Proposed IVPFHSWG√√√√

    5.2 Comparative Analysis

    To prove the usefulness of the planned technique,we equate the attained consequences with some prevailing approaches under the setting of IVPFS,IVIFSS,and IVPFSS.A summary of outcomes is specified in Table 6.Wang et al.[41]developed IVIFWA,and Xu et al.[42]presented that IVIFWG operators cannot compute the parametrized values of the alternatives.Furthermore, if any expert considers the MD and NMD whose sum exceeds 1,the AOs mentioned above fail to accommodate the scenario.Zulqarnain et al.[22] established AOs for IVIFSS that cannot accommodate the decisionmaker’s selection when the sum of upper MD and NMD of the parameters surpasses one.Peng et al.’s[14] interval-valued Pythagorean fuzzy weighted average operator and Rahman et al.[15] intervalvalued Pythagorean fuzzy weighted geometric operator cannot handle the parametrized values of the alternatives.Zulqarnain et al.[29] established the interval-valued Pythagorean fuzzy soft weighted average and interval-valued Pythagorean fuzzy soft weighted geometric operators to deal with the parameterized values of alternatives.But, these AOs fail to handle the scenario if any parameter contains a different sub-parameter.Furthermore,if any parameter has any other sub-parameter,the IVPFHSS reduces to the interval-valued Pythagorean fuzzy soft set.Suppose the sum of upper values of MD and NMD is less or equal to 1.Then,IVPFHSS is reduced to IVIFHSS.Thus,IVPFHSS is the most generalized form of interval-valued Pythagorean fuzzy set and IVPFSS.Hence,based on the details mentioned above,the anticipated operators in this paper are more influential,consistent,and prosperous.

    Table 6: Comparison of proposed operators with some existing operators

    Table 6 (continued)Authors AO I1 I2 I3 I4 Alternatives ranking Optimal choice Rahman et al.[15] IVPFWG 0.0856 0.0475 0.0786 0.0302 I1 >I3 >I2 >I4 I1 Zulqarnain et al.[22] IVIFSWA 0.0723 0.0530 0.0584 0.0235 I1 >I3 >I2 >I4 I1 Zulqarnain et al.[22] IVIFSWG 0.7234 0.2365 0.5840 0.6525 I1 >I4 >I3 >I2 I1 Zulqarnain et al.[29] IVPFSWA 0.0834 0.0377 0.0121 0.0141 I1 >I2 >I4 >I3 I1 Zulqarnain et al.[29] IVPFSWG 0.0754 0.0524 0.0251 0.0114 I1 >I2 >I3 >I4 I1 Proposed IVPFHSWA 0.0599 0.0578 0.0266 -0.0382 I1 >I2 >I3 >I4 I1 Proposed IVPFHSWG 0.0752 0.0654 0.0242 0.0114 I1 >I2 >I3 >I4 I1

    The graphical demonstration of Table 6 is given in the following Fig.1.

    Figure 1:Comparative analysis of the proposed approach with existing models

    6 Conclusion

    In manufacturing, the refined solidity of manipulation is neutral; authentic materials and fabrication encompass wide-ranging materials.Mathematical demonstration in industrial inventiveness formations exploits all assets while merging design intentions under financial,superior,and safety limitations.Inquiries must be restricted for best judgment,consulting to decision requirements.In genuine DM,the valuation of alternative facts conveyed by the professional is consistently inaccurate,irregular,and impulsive,so IVPFHSNs can be used to comport this uncertain data.The principal objective of this work is to prolong the Pythagorean fuzzy hypersoft sets to interval-valued Pythagorean fuzzy hypersoft sets.Firstly, we introduce the operational laws for the interval-valued Pythagorean fuzzy hypersoft setting.Considering the developed operational laws, we presented the IVPFHSWA and IVPFHSWG operators for IVPFHSS with their desired properties.Also, a DM method has been planned to address MCGDM complications based on the validated operators.To state the stoutness of the developed methodology, we deliver a comprehensive mathematical illustration for MS in manufacturing engineering.A comprehensive analysis of some existing procedures is described to ensure the practicality of the developed approach.Lastly, based on the consequences achieved, it is determined that the method proposed in this study is the most practical and operative way to explain the problem of MCGDM.

    Funding Statement:The authors extend their appreciation to Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No.R.G.P.327/43.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产av在哪里看| 美女脱内裤让男人舔精品视频| 男人舔奶头视频| 亚洲一级一片aⅴ在线观看| 岛国在线免费视频观看| 国产单亲对白刺激| 国内精品一区二区在线观看| 国产午夜精品久久久久久一区二区三区| 日韩欧美三级三区| 嫩草影院入口| 午夜久久久久精精品| 日韩成人伦理影院| 村上凉子中文字幕在线| 综合色丁香网| 在线免费观看不下载黄p国产| 天堂网av新在线| 九九在线视频观看精品| 免费播放大片免费观看视频在线观看 | 亚洲av日韩在线播放| 亚洲国产精品专区欧美| av卡一久久| 久热久热在线精品观看| 欧美+日韩+精品| 日本五十路高清| 一级毛片电影观看 | 女人久久www免费人成看片 | 看片在线看免费视频| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区免费观看| 亚洲欧美清纯卡通| 国产亚洲av片在线观看秒播厂 | 成人毛片a级毛片在线播放| 亚洲av免费在线观看| 午夜老司机福利剧场| 亚洲不卡免费看| 亚洲欧美日韩东京热| 2021天堂中文幕一二区在线观| a级毛片免费高清观看在线播放| 亚洲欧美中文字幕日韩二区| 亚洲人成网站在线观看播放| 亚洲精品乱码久久久久久按摩| 九色成人免费人妻av| 久久久色成人| 国产伦精品一区二区三区四那| 我的老师免费观看完整版| 国产成人免费观看mmmm| 日本欧美国产在线视频| 精品久久久久久久人妻蜜臀av| 男的添女的下面高潮视频| 亚洲国产欧洲综合997久久,| 久99久视频精品免费| 精品国内亚洲2022精品成人| 亚洲精品aⅴ在线观看| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 国产亚洲av片在线观看秒播厂 | 蜜臀久久99精品久久宅男| 综合色av麻豆| 国产v大片淫在线免费观看| 伦精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 18禁在线播放成人免费| 老司机福利观看| 不卡视频在线观看欧美| 国内揄拍国产精品人妻在线| 亚洲精品国产av成人精品| 国产亚洲av片在线观看秒播厂 | 久久99精品国语久久久| 女人十人毛片免费观看3o分钟| 午夜福利成人在线免费观看| 中文亚洲av片在线观看爽| 国产精品国产三级国产av玫瑰| 六月丁香七月| 欧美另类亚洲清纯唯美| 高清午夜精品一区二区三区| 亚洲国产欧美人成| 韩国高清视频一区二区三区| 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| 一区二区三区免费毛片| 国产探花在线观看一区二区| 国产成人精品久久久久久| 国产高清视频在线观看网站| 好男人在线观看高清免费视频| 秋霞伦理黄片| 深夜a级毛片| 免费大片18禁| 桃色一区二区三区在线观看| 日韩一区二区视频免费看| 国产白丝娇喘喷水9色精品| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 人妻系列 视频| av在线亚洲专区| 成人三级黄色视频| 插阴视频在线观看视频| 小蜜桃在线观看免费完整版高清| 成人三级黄色视频| 免费观看的影片在线观看| 久久人妻av系列| 人妻夜夜爽99麻豆av| 亚洲欧洲日产国产| 亚洲欧美日韩高清专用| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 嫩草影院入口| 成人午夜精彩视频在线观看| 精华霜和精华液先用哪个| 欧美成人a在线观看| 国产 一区 欧美 日韩| 精品熟女少妇av免费看| 亚洲最大成人av| 成人二区视频| 国产精品久久久久久久电影| or卡值多少钱| 直男gayav资源| 久久精品91蜜桃| 亚洲国产欧洲综合997久久,| 桃色一区二区三区在线观看| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 99热全是精品| 白带黄色成豆腐渣| 麻豆国产97在线/欧美| 国产精品美女特级片免费视频播放器| 亚洲国产精品合色在线| 欧美精品国产亚洲| 国产亚洲一区二区精品| 色网站视频免费| 亚洲国产欧美在线一区| 成人二区视频| 国产成人精品久久久久久| 成人特级av手机在线观看| 久久久国产成人精品二区| 看十八女毛片水多多多| 久久久久久久午夜电影| 亚洲精品乱码久久久v下载方式| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 国产单亲对白刺激| 日本黄大片高清| a级毛片免费高清观看在线播放| 国产单亲对白刺激| 永久免费av网站大全| 国产精品爽爽va在线观看网站| 国产精品蜜桃在线观看| 我的老师免费观看完整版| 听说在线观看完整版免费高清| 亚洲国产成人一精品久久久| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清| 中文字幕免费在线视频6| 国产av码专区亚洲av| 亚洲内射少妇av| 啦啦啦啦在线视频资源| 国产极品精品免费视频能看的| 淫秽高清视频在线观看| 又爽又黄a免费视频| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 蜜桃久久精品国产亚洲av| 国产精品一区二区性色av| 乱人视频在线观看| 国产亚洲av片在线观看秒播厂 | 日本色播在线视频| 精品欧美国产一区二区三| 18+在线观看网站| 男人舔女人下体高潮全视频| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 搡女人真爽免费视频火全软件| 日本欧美国产在线视频| 欧美+日韩+精品| 七月丁香在线播放| 国产精品伦人一区二区| 99视频精品全部免费 在线| 欧美性猛交黑人性爽| 18禁动态无遮挡网站| 日本免费在线观看一区| 日本爱情动作片www.在线观看| 精品人妻一区二区三区麻豆| 亚洲国产精品sss在线观看| 国产在视频线精品| 亚洲欧美日韩东京热| 亚洲av免费在线观看| 国产亚洲一区二区精品| 国产高潮美女av| 观看美女的网站| 午夜久久久久精精品| 亚洲精品日韩在线中文字幕| 能在线免费看毛片的网站| 中文字幕av在线有码专区| 26uuu在线亚洲综合色| 99在线视频只有这里精品首页| 亚洲成av人片在线播放无| 成人国产麻豆网| 成人av在线播放网站| 少妇熟女aⅴ在线视频| 亚洲国产欧美在线一区| 如何舔出高潮| 日本五十路高清| 国语对白做爰xxxⅹ性视频网站| 中文字幕av在线有码专区| 亚洲怡红院男人天堂| 三级毛片av免费| 女人久久www免费人成看片 | 国产精品.久久久| 九色成人免费人妻av| 午夜精品国产一区二区电影 | 免费一级毛片在线播放高清视频| eeuss影院久久| 在线免费十八禁| 免费看光身美女| 久久精品影院6| 国产v大片淫在线免费观看| 精品一区二区三区人妻视频| 亚洲婷婷狠狠爱综合网| 精品少妇黑人巨大在线播放 | 亚洲无线观看免费| 变态另类丝袜制服| 亚洲国产成人一精品久久久| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 国内精品一区二区在线观看| 欧美性猛交╳xxx乱大交人| 真实男女啪啪啪动态图| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 日韩人妻高清精品专区| 国产精华一区二区三区| 黄色日韩在线| 91在线精品国自产拍蜜月| 久久精品熟女亚洲av麻豆精品 | 国产精品三级大全| 国产综合懂色| 久久久久精品久久久久真实原创| 色视频www国产| 国内精品美女久久久久久| 搡老妇女老女人老熟妇| 国产成人午夜福利电影在线观看| 中文精品一卡2卡3卡4更新| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 丝袜美腿在线中文| 两性午夜刺激爽爽歪歪视频在线观看| 色综合站精品国产| 亚洲三级黄色毛片| 国产精品,欧美在线| 欧美丝袜亚洲另类| 国产精品一区二区性色av| 91在线精品国自产拍蜜月| 亚洲在线观看片| 97人妻精品一区二区三区麻豆| 欧美色视频一区免费| 亚洲国产精品合色在线| 成人漫画全彩无遮挡| 毛片女人毛片| 中文资源天堂在线| 久久99热这里只有精品18| 禁无遮挡网站| 人人妻人人看人人澡| 免费播放大片免费观看视频在线观看 | 最后的刺客免费高清国语| 联通29元200g的流量卡| 亚洲欧美精品专区久久| videossex国产| 国产探花在线观看一区二区| 人人妻人人澡欧美一区二区| 亚洲五月天丁香| 中文字幕久久专区| 亚洲成人精品中文字幕电影| 少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影 | 精品久久久久久久末码| 搞女人的毛片| 激情 狠狠 欧美| 十八禁国产超污无遮挡网站| 国产精品久久久久久精品电影| 三级国产精品片| 亚洲av日韩在线播放| 亚洲精品影视一区二区三区av| 亚洲欧美成人精品一区二区| 国产黄a三级三级三级人| 日本三级黄在线观看| 汤姆久久久久久久影院中文字幕 | 美女高潮的动态| 我的老师免费观看完整版| 美女内射精品一级片tv| 国内精品一区二区在线观看| 最近视频中文字幕2019在线8| 天堂网av新在线| 日本wwww免费看| 成人鲁丝片一二三区免费| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 九草在线视频观看| 69人妻影院| 国产成人午夜福利电影在线观看| 成人特级av手机在线观看| 日本一本二区三区精品| 国产精品久久久久久精品电影| 久久草成人影院| 亚洲精品日韩在线中文字幕| 日韩 亚洲 欧美在线| 精品熟女少妇av免费看| 亚洲va在线va天堂va国产| 看免费成人av毛片| 狠狠狠狠99中文字幕| 免费av观看视频| 亚洲欧洲日产国产| 可以在线观看毛片的网站| 日韩欧美三级三区| 国产 一区 欧美 日韩| 日韩精品有码人妻一区| 欧美极品一区二区三区四区| 国产精品无大码| 免费在线观看成人毛片| 午夜日本视频在线| 久久精品夜色国产| 国产爱豆传媒在线观看| 亚洲国产色片| 午夜福利在线观看免费完整高清在| 国产高清有码在线观看视频| 少妇熟女aⅴ在线视频| 欧美性猛交╳xxx乱大交人| 秋霞伦理黄片| 久久精品综合一区二区三区| 一级毛片aaaaaa免费看小| 日韩大片免费观看网站 | 国产精品福利在线免费观看| 青春草国产在线视频| 中文字幕av成人在线电影| 2021少妇久久久久久久久久久| 在线观看66精品国产| 免费观看性生交大片5| 成人午夜精彩视频在线观看| 国产成人福利小说| 国产精品电影一区二区三区| 国产黄a三级三级三级人| 成人综合一区亚洲| 久久精品影院6| 精品久久久噜噜| 亚洲伊人久久精品综合 | 日本与韩国留学比较| 中文乱码字字幕精品一区二区三区 | 91午夜精品亚洲一区二区三区| 国内精品宾馆在线| 国产高潮美女av| 99久国产av精品国产电影| 欧美日韩一区二区视频在线观看视频在线 | 熟女电影av网| 春色校园在线视频观看| 国产免费福利视频在线观看| 1024手机看黄色片| 日韩人妻高清精品专区| 51国产日韩欧美| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 1000部很黄的大片| 久99久视频精品免费| 久久久久久九九精品二区国产| 亚洲四区av| 欧美三级亚洲精品| 久久久色成人| 午夜福利高清视频| 免费在线观看成人毛片| 国产精品福利在线免费观看| 91精品国产九色| 深夜a级毛片| 91精品国产九色| 少妇人妻一区二区三区视频| 一级av片app| 免费观看a级毛片全部| 国产亚洲一区二区精品| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件| 欧美另类亚洲清纯唯美| 久久精品夜夜夜夜夜久久蜜豆| 一卡2卡三卡四卡精品乱码亚洲| av国产免费在线观看| 亚洲精品456在线播放app| 国产精品无大码| 久热久热在线精品观看| 欧美bdsm另类| 又爽又黄a免费视频| 美女国产视频在线观看| 久久久a久久爽久久v久久| av免费在线看不卡| 免费人成在线观看视频色| 成年女人永久免费观看视频| 18+在线观看网站| 狂野欧美激情性xxxx在线观看| 小蜜桃在线观看免费完整版高清| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 波野结衣二区三区在线| 99久国产av精品国产电影| 永久免费av网站大全| 国产黄色视频一区二区在线观看 | 欧美高清性xxxxhd video| 国产不卡一卡二| 直男gayav资源| 亚洲国产精品专区欧美| 啦啦啦观看免费观看视频高清| 国产黄a三级三级三级人| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 欧美+日韩+精品| av视频在线观看入口| 亚洲经典国产精华液单| 免费观看的影片在线观看| 我的老师免费观看完整版| 国产麻豆成人av免费视频| 久久99精品国语久久久| 中文字幕免费在线视频6| 久久99热这里只有精品18| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 亚洲国产日韩欧美精品在线观看| 69av精品久久久久久| 亚洲成色77777| 美女cb高潮喷水在线观看| 国产高潮美女av| 免费在线观看成人毛片| 色噜噜av男人的天堂激情| 又爽又黄a免费视频| 国产高清视频在线观看网站| 成人午夜精彩视频在线观看| 观看美女的网站| 女人久久www免费人成看片 | 亚洲欧美精品专区久久| 亚洲精品乱码久久久v下载方式| 免费电影在线观看免费观看| 国产精品电影一区二区三区| 国产久久久一区二区三区| 七月丁香在线播放| 免费人成在线观看视频色| 嫩草影院精品99| 伦精品一区二区三区| 免费搜索国产男女视频| 日本-黄色视频高清免费观看| 简卡轻食公司| 国产精品福利在线免费观看| 国产91av在线免费观看| 五月玫瑰六月丁香| 日韩欧美在线乱码| 国产免费视频播放在线视频 | 久久久久久久久久黄片| 99久久精品一区二区三区| 综合色av麻豆| 黄色配什么色好看| 午夜福利在线观看吧| 精品国产三级普通话版| 久久久久性生活片| 亚洲成人中文字幕在线播放| 天堂影院成人在线观看| 久久精品综合一区二区三区| 亚洲欧美日韩东京热| 午夜老司机福利剧场| av.在线天堂| 午夜爱爱视频在线播放| 日日啪夜夜撸| 特大巨黑吊av在线直播| 国产成年人精品一区二区| 看黄色毛片网站| av视频在线观看入口| 夜夜看夜夜爽夜夜摸| 精品一区二区三区视频在线| 亚洲欧美日韩无卡精品| 又爽又黄a免费视频| 天堂√8在线中文| 91精品一卡2卡3卡4卡| 91在线精品国自产拍蜜月| 99视频精品全部免费 在线| 人妻少妇偷人精品九色| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 变态另类丝袜制服| 特级一级黄色大片| 春色校园在线视频观看| 久久99精品国语久久久| 尤物成人国产欧美一区二区三区| 色综合站精品国产| 白带黄色成豆腐渣| 成人av在线播放网站| 91aial.com中文字幕在线观看| 久热久热在线精品观看| 黑人高潮一二区| 日韩在线高清观看一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲精品aⅴ在线观看| 啦啦啦啦在线视频资源| 丰满人妻一区二区三区视频av| 午夜免费男女啪啪视频观看| 天天躁日日操中文字幕| 天天躁夜夜躁狠狠久久av| 18禁动态无遮挡网站| 精品午夜福利在线看| 国产伦在线观看视频一区| 丰满少妇做爰视频| 午夜日本视频在线| 久久久久久久久久久丰满| 九色成人免费人妻av| 国产成人freesex在线| 2021少妇久久久久久久久久久| av在线观看视频网站免费| 99久久成人亚洲精品观看| 丰满乱子伦码专区| 看十八女毛片水多多多| 国产黄色视频一区二区在线观看 | 国产久久久一区二区三区| 精品久久久久久久久av| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影小说 | 简卡轻食公司| 在线观看一区二区三区| 成人一区二区视频在线观看| 一区二区三区四区激情视频| av在线蜜桃| 久久精品国产99精品国产亚洲性色| 99久久中文字幕三级久久日本| kizo精华| 亚洲va在线va天堂va国产| 国产亚洲5aaaaa淫片| 在线播放国产精品三级| 淫秽高清视频在线观看| 欧美日韩综合久久久久久| 国产麻豆成人av免费视频| 亚洲美女视频黄频| 亚洲av中文字字幕乱码综合| 欧美激情在线99| 男的添女的下面高潮视频| 国产91av在线免费观看| 欧美一区二区国产精品久久精品| 免费无遮挡裸体视频| 久99久视频精品免费| www日本黄色视频网| 精品国内亚洲2022精品成人| 69av精品久久久久久| 久久久久久九九精品二区国产| 亚洲人成网站在线播| 久久久久久国产a免费观看| 国产黄片美女视频| 秋霞在线观看毛片| 高清日韩中文字幕在线| 国产伦理片在线播放av一区| 男插女下体视频免费在线播放| 免费看a级黄色片| av在线老鸭窝| 我要搜黄色片| 1000部很黄的大片| 免费黄网站久久成人精品| 国产一区二区在线av高清观看| 三级经典国产精品| 久久精品国产亚洲网站| 亚洲av.av天堂| 欧美+日韩+精品| 久久久久网色| 色噜噜av男人的天堂激情| 麻豆一二三区av精品| 女人十人毛片免费观看3o分钟| 1000部很黄的大片| 亚洲美女搞黄在线观看| 中文字幕熟女人妻在线| 99视频精品全部免费 在线| 国产69精品久久久久777片| 日韩欧美三级三区| 精品少妇黑人巨大在线播放 | 亚洲乱码一区二区免费版| 丝袜喷水一区| 最近中文字幕高清免费大全6| 亚洲精品aⅴ在线观看| 国产久久久一区二区三区| 男女国产视频网站| 欧美日韩一区二区视频在线观看视频在线 | 2022亚洲国产成人精品| 久久精品国产鲁丝片午夜精品| 欧美一区二区亚洲| av在线蜜桃| 日本三级黄在线观看| 听说在线观看完整版免费高清| 天堂中文最新版在线下载 | 亚洲精品影视一区二区三区av| 国产精品国产三级专区第一集| 亚洲av成人精品一区久久| 久久6这里有精品| 日韩av在线免费看完整版不卡| 老师上课跳d突然被开到最大视频| 天美传媒精品一区二区| 22中文网久久字幕| 老师上课跳d突然被开到最大视频| 天美传媒精品一区二区| 日本免费一区二区三区高清不卡| 国产在线一区二区三区精 | 波多野结衣巨乳人妻| 最近手机中文字幕大全| 黄片wwwwww| 久久久欧美国产精品| 毛片女人毛片| 搡女人真爽免费视频火全软件| 久久久久免费精品人妻一区二区| 久久久色成人| 日本wwww免费看| 久久久久久久久久成人| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 九草在线视频观看| 日韩一区二区三区影片| 天堂√8在线中文| 亚洲成人av在线免费| 欧美成人精品欧美一级黄| 日韩强制内射视频| 身体一侧抽搐|