• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Modified Bi-Directional Evolutionary Structural Optimization Procedure with Variable Evolutionary Volume Ratio Applied to Multi-Objective Topology Optimization Problem

    2023-03-12 09:00:46XudongJiangJiaqiMaandXiaoyanTeng

    Xudong Jiang,Jiaqi Ma and Xiaoyan Teng

    1School of Mechanical and Power Engineering,Harbin University of Science and Technology,Harbin,150080,China

    2College of Mechanical and Electrical Engineering,Harbin Engineering University,Harbin,150001,China

    ABSTRACT Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization (BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue, the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness, a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly, the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization.

    KEYWORDS Bi-directional evolutionary structural optimization; variable evolutionary volume ratio; multi-objective optimization;weighted sum;topology optimization

    1 Introduction

    Topology optimization aims to produce design solutions of high performance by finding the optimal structural layout in structural design.It has the computational ability to solve great problems and produce reliable solutions to various engineering problems, therefore creating an immense opening for research in applied mechanics.During the last three decades,many gradient-or heuristic based optimization methods have been extensively investigated, according to [1], including density approach, topological derivatives, level set approach, phase field approach and evolutionary approaches.Among them, the convergent and mesh-independent bi-directional evolutionary structural optimization(BESO)developed by Huang et al.[2],iteratively removing inefficient material in addition to add material to the most demanding places,has become a widely adopted methodology for both academic research and engineering application[3,4].

    In the classic BESO procedure, the number of elements to be rejected at the current iteration is prescribed by its ratio to the total number of elements at the previous iteration.This ratio is called as Evolutionary Volume Ratio(ER).The rejected elements are removed due to representing unnecessary regions so that their stiffness matrices are deleted.Based on the philosophy,the conventional BESO procedure can produce the following numerical issue due to improper ER.The smaller the value of the evolutionary volume ratio used, the more accurate is the final design, at the expense of larger computation time.The use of larger evolutionary volume ratio will reduce the number of elements of the resulting design more rapidly,whereas it may result in removing efficient elements incorrectly and fail to evolve to optimal solution.To address this issue,SESO(Smoothing Evolutionary Structural Optimization)procedure presents an organization of elements where a defined p%of rejected elements at each iteration are removed and (1 - p%) of them are returned to the structure [5,6].For an unnecessary element for the structure,its corresponding structural stiffness gradually reduces till it no more contributes to the structure.This procedure can provide a typical characteristic of the continuous optimization.However, the key parameter of p% is selected according toa prioriknowledge of optional solution without deterministic formula[7–9].In this context,this paper applies an alternative topological optimization technique that provides a variable evolutionary volume ratio along the iterative process inside an extended fixed domain for a structure.It is suggested that one could use a high evolutionary volume ratio to sharply decrease the number of elements at early iterations while a low evolutionary volume ratio to obtain the sufficiently precious optimum at final iterations.This technique is an extension of the Morphing ESO methodology by Luo et al.[10].The present variant of BESO presents advantages over the classical BESO method and these are demonstrated in this work.The numerical examples demonstrate that the improvements included in the formulation provide a compromise between sufficient accuracy and significant time saving.

    Attenuation of unwanted vibrations is important in engineering structures as they could have detrimental effects on structural performances.Precious topology optimization focuses mainly on maximizing single dynamic performance like natural frequency [11,12], modal damping [13], or frequency response [14].Topology optimization minimizing dynamic responses in time domain is another case of more difficulties.The equivalent static load(ESL)method is an increasingly popular approach to solve dynamic response structural optimization problems.By ESL method the dynamic topology optimization of a structure can be transformed into a static one under multiple loading cases[15,16].Sun et al.[17]performed topology optimization of a three-dimensional flexible multibody system via equivalent static load in the moving morphable components (MMC) based frame.Xu et al.[18] proposed a method for the concurrent topology optimization of macro-and microstructural material distribution under dynamic loading based on ESL in the time domain.Up to the present, dynamic stiffness and frequency behavior of structures as two important factors in real-design problems have been deeply studied as separate objective functions.Therefore, achieving a trade-off between these two performances can have vital importance during structural design and analysis related to shipbuilding,automotive and aviation industries.

    Over the last decades, a considerable effort has been devoted to single-objective optimization problems.But there may be several objective functions,usually conflicting in many real cases.As such,it is more appropriate to generate a set of optimal solutions which constitute the so-called Pareto set.For example,Simonetti et al.[19]explored the application of an evolutionary optimization technique for multi-objective optimization problems using the stress and strain energy criteria.Xu et al.[20]performed a mixed integer linear programming for multi-objective optimization of tensegrity structures using the ground structure method.Sleesongsom et al.[21]presented a multi-objective reliability-based topology optimization considering uncertain structural parameters using a fuzzy set model.Recently,Teimouri et al.[22] and Zhu et al.[23] have performed multi-objective optimization of continuum structures considering static stiffness and natural frequency.Crescenti et al.[24] generated minimal Pareto sets in multi-objective topology optimization of the wing box structural layout using smart normal constraint method.Lim et al.[25] obtained the optimal topology of a periodic spaceframe structure for maximal effective flexural and torsional stiffnesses along with minimal mass by Genetic Algorithm.Simonetti et al.[26]explored the application of the SESO technique to implement a parallel optimization to minimize the Von Mises stress and the internal strain energy growth.

    In the conventional optimal design procedure, the natural frequency and the dynamic stiffness are exclusively considered as two independent factors for practical design problems.Consequently,it is of significance to establish a balance between these two indexes at the conceptual design stage.In this article,a multi-objective optimization scheme is implemented to obtain optimal topologies of a structure considering the natural frequency and the dynamic stiffness.The modified BESO with variable EVR is also introduced to improve the efficiency and stability during optimization.

    The remainder of the article is organized as follows.Section 2 introduces the variable evolutionary volume ratio representing the dynamic removal behavior during optimization.Section 3 formulates the mono-objective optimization problem in the natural frequency and the dynamic stiffness.A weighted sum technique according to the sensitivity information obtained from mono-objective optimization is employed to carry out the multi-objective optimization.Section 4 presents several numerical examples to verify the proposed algorithm.Concluding remarks are made in Section 5.

    2 Modified BESO with Variable Evolutionary Volume Ratio

    Huang et al.[2]treated material removal and addition with a fixed evolutionary volume ratio to impose modifications on the topology of a structure, using the optimality criterion for the gradual removal of the finite elements in the mesh,which do not effectively contribute to a better performance of the structure.According to[2],the target volume for the next iteration(Vk+1)needs to be given first before elements are removed from or added to the current design.The evolution of the volume can be expressed by

    whereERis the evolutionary volume ratio, which is an input datum which is applied to control the evolutionary process of the structure.Vkis the target volume for the previous iteration.Then all the elements,both solid and void are sorted according to the values of their sensitivity numbers(from the highest to lowest).With the optimality criterion,the binary design variables of elements are updated until the constraint volume is achieved and the convergence is satisfied.

    The evolutionary volume ratio in the BESO method plays the similar role as the move limit in mathematical programming and the step size in optimality criteria methods.Therefore, it is an important parameter impacting on evolution process and optimal solution.It is expected that a high evolutionary volume ratio is used to significantly decrease the number of inefficient elements at early iterations while a low evolutionary volume ratio to obtain the sufficiently accurate optimum at final iterations.Consequently,a reasonable evolutionary strategy should gradually reduce the evolutionary volume ratio as the iteration proceeds.The evolutionary procedure proposed can be performed byER(Vk), an evolutionary volume ratio function, using a trigonometric function like sinusoidal and arctan function,an inverse proportional function or a linear function,which are defined by

    whereER0,ERminare the initial and minimal evolutionary volume ratio,respectively,where the former is always greater than the latter.V0is the volume of initial design domain andV*the prescribed total structural volume.

    These functions are continuous and differentiated with an image varying from 0 to 1, as shown in Fig.1.Nonetheless, here the sinusoidal function is used to regulate the evolution process.It is noteworthy that for larger value ofER0and smaller value ofERminused by the proposed optimization criterion,the optimal process attains a tradeoff between adequate precision and computational cost.

    Figure 1:Variable evolutionary volume ratio function

    3 Multi-Objective Design Optimization

    Topological design considering multiple dynamic characteristics is of great importance for a real engineering structure.A multi-objective topology optimization technique is implemented to obtain optimal topology for Maximizing dynamic stiffness and natural frequency.In this case, weighting factors are imposed on multi-objective sensitivity numbers to reflect the importance of both dynamic stiffness and natural frequency.As a result, using several combinations of weighting factors, the resulting different topology dependent on the level of importance is obtained representing a Paretooptimal solution.

    3.1 Sensitivity Number for Dynamic Stiffness

    To attenuate the unwanted vibration, the averaging summation of the dynamic strain energy during the time domain is defined as the objective function for dynamic stiffness in this research.The general formulation can be stated as follows:

    In the above formulation,C(x)is called as dynamic compliance representing structural average strain energy under dynamic load vector F(ti)and u(x,ti)is the displacement response vector corresponding to F(ti).x is the N-dimension vector of design variables in the design domain.The binary design variablexiindicates the corresponding element’s status,namely 1 representing element presence(solid)and 0 representing element absence(void).The volume constraint is formulated with the element volumeand the objective volumeV*.

    Using the vibration theory with the finite element method,the dynamic behavior of a continuum structure is expressed by the following differential equations:

    where M(x)is the global mass matrix, K(x)is the global stiffness matrix, the acceleration vector is defined by ¨u(x,ti).

    Based on equivalent static loads method(ESLM)proposed by Jang et al.[15]for dynamic response topology optimization and verified by Stolpe [16], an ESL set, feq(x,ti)which generates the same displacement filed as dynamic loads at each time stepti,is expressed as

    where us(x,ti)is the static displacement vector under the equivalent static loads feq(x,ti)imposed on the structure.It is assumed that the value of us(x,ti)at the initial iteration is equal to that of u(x,ti).

    Then the present topology optimization problem can be transformed into that for multiple load cases,which can be rewritten as

    According to [2,4], the sensitivity number for static stiffness with single load case is generally defined by the following equation:

    With the static multiple load case in Eq.(9)equivalent to the original one in Eq.(6),the sensitivity of the dynamic strain energy with the design variable can be written as

    3.2 Sensitivity Number for Natural Frequency

    For a solid-void design, the topological optimization problem of maximizing thel-th natural frequencyωl(x)can be stated as Maximizeωl(x)

    Using finite element analysis, the dynamic behavior of a structure may be expressed by the following eigenvalue equation:

    whereφl(x)is the normalized eigenvector corresponding to the eigenvaluex).

    The sensitivity number of thej-th element for natural frequency can be formulated as[8]

    wherepis the penalty factor,indicates the stiffness matrix of thej-th solid element andthe mass matrix of thej-th solid element.

    3.3 Multi-Objective Sensitivity Number

    Since the obtained multi-objective sensitivity number for dynamic stiffness should be combined with the sensitivity number for natural frequency,it is normalized as follows:

    whereandare the maximum and minimum sensitivity numbers for dynamic stiffness,respectively.

    In the same way,the sensitivity numbers for natural frequency can be normalized by the following equation:

    whereαmax,fandαmin,fare the maximum and minimum sensitivity numbers for natural frequency,respectively.

    The multi-objective sensitivity number for both dynamic stiffness and natural frequency is defined by the following Eq.(17),where the weighting factors of both dynamic stiffness and natural frequency are imposed on sensitivity numbers for them to reflect the importance of dynamic stiffness and natural frequency,respectively.

    whereandre the weighting factors of sensitivity numbers for both dynamic stiffness and natural frequency.

    3.4 Checkerboard Elimination

    To circumvent the checkerboard pattern,a smoothing filter scheme[4]is implemented to blur the element sensitivities using a low-pass filter of radiusrmin.This scheme is briefly summarized into two steps.First the raw element sensitivityis equally distributed to its nodes aswhich are called as nodal sensitivities and defined as follows:

    whereMdenotes the total number of elements connected to thej-th element.

    Then the above nodal sensitivity numbers will be converted to smoothed elemental sensitivity numbers by summing up weightedusing a weighting function

    whereM′is the total number of nodes in the subdomain which is a circle of radiusrmincentered at the centroid ofj-th element.is the linear weight factor defined as

    whererj′jis the distance between the center of thej-th element andj’-th node in the subdomain.

    Figure 2:Flowchart for a multi-objective topology optimization

    Therefore,in terms of the above discussion,the flowchart of multi-objective topology optimization problem is shown in Fig.2.To verify the modified BESO method,the multi-objective optimization problem is solved using the classic BESO method compared with the resulting optimal designs generated by the present methodology.

    4 Numerical Examples

    The design domain and loading condition of a long slender beam is illustrated in Fig.3.The beam is 140 mm long and 20 mm high.All the degrees of freedom at the left and right sides are fixed.A dynamic force with amplitude 2.0 kN and duration 0.2 s, is applied at the center of the bottom edge.The structure is discretized into 2800 four nods plane stress elements.The Young’s modulus,the Poisson’s ratio, and the density areρ= 7860 Kg/m3,E= 724 GPa,μ= 0.3, respectively.The final volume is restricted as 50%of the initial design.

    According to the comprehensive sensitivity number in Eq.(17), the five weighted factorsfor the dynamic stiffness -0, 0.3, 0.5, 0.7 and 1, are considered to obtain the Pareto solutions.The algorithm’s parameters for the present methodology are as follows:initial evolutionary volume ratioER0= 0.06, minimal evolutionary volume ratioERmin= 0.01, penal factorp= 3, allowable convergence tolerancesε= 0.02, filter radiusrmin= 3mm.It is convenient for comparison between the present methodology and classic BESO that the two techniques have identical parameters except for the constant evolutionary volume ratioER=0.04 for the latter.

    Figure 3:A long slender beam with both ends built-in under dynamic load(a)design domain of a long slender beam(b)dynamic load

    Figs.4–8 illustrate the evolution histories of dynamic compliance,natural frequency as well as the volume fraction for various weighted factors using the modified BESO method.In terms of Figs.4–8,large weighted factorfor dynamic compliance results in an increasing importance in comprehensive design objective, which guides the optimal topology to a rigid structure with low natural frequency.Once the weighted factorreaches one, the multi-objective problem is transformed into a monoobjective problem with the minimal dynamic compliance.As is expected, the weighted factorfor natural frequency imposes the similar influence on the optimal solution.Fig.9 shows the resulting optimal topology corresponding to various weighted factors.It is observed that the central beam-like members are significant to improve the structural stiffness and their absence can lead to an increase of the natural frequency.Therefore,a middle optimal topology attains a tradeoff between these two performances,which is of great importance in real-design problems.

    Figure 4:Evolutionary histories:weight factorby Modified BESO method(a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 5: Evolutionary histories: weight factor0.3 by Modified BESO method (a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 6: Evolutionary histories: weight factor 0.5, 0.5 by Modified BESO method(a)volume constraint(b)dynamic strain energy and natural frequency

    Figure 7: Evolutionary histories: weight factor 0.3, 0.7 by Modified BESO method(a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 8:Evolutionary histories:weight factor1 by Modified BESO method(a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 9:Pareto-optimal topology solution by Modified BESO method(a)0.3(c).5,0.5(d)0.3,0.7(e)0,1

    Figs.10–14 show the evolution histories of dynamic compliance,natural frequency as well as the volume fraction for various weighted factors using the classic BESO method with constant EVR.Fig.15 depicts the resulting optimal topology corresponding to various weighted factors.Table 1 compares the results obtained by the classic BESO with those obtained by the modified BESO.It is evident that the modified BESO method can reproduce the optimal solutions obtained from the classic BESO.It is verified that the dynamic removal strategy with variable EVR substantially saves the computational time when compared with that with constant EVR.It attributes to the fact that high EVR at early iterations is favorable to significantly remove inefficient elements while low EVR at final iterations to obtain the sufficiently accurate optimum.

    Figure 10:Evolutionary histories:weight factor = 0 by classic BESO method(a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 11:Evolutionary histories:weight factor 0.0.3 by classic BESO method(a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 12:Evolutionary histories:weight factor0.5,0.5 by classic BESO method(a)volume constraint(b)dynamic strain energy and natural frequency

    Figure 13:Evolutionary histories:weight factor0.3,0.7 by classic BESO method(a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 14:Evolutionary histories:weight factor 1 by classic BESO method(a)volume fraction(b)dynamic strain energy and natural frequency

    Figure 15:Pareto-optimal topology solution by classic BESO method(a)0.7,0.3(c)0.5,0.5(d)0.3,0.7(e)0,1

    Table 1: Comparison between Modified BESO and classic BESO for Pareto-optimum

    5 Conclusions

    The dynamic stiffness and natural frequency are parallelly optimized as a two-objective function in the structural topology by modified BESO method.A weighted sum method is introduced to establish a balance between these two objectives.The numerical results reveal that the optimal topology from the multi-objective optimization problem is provided with a large dynamic stiffness compared with that exclusively from maximization of natural frequency,and a high natural frequency compared with that exclusively from minimization of dynamic stiffness.Any improvement in one objective performance requires a certain amount of compensation with the other objective performance.This type of topology optimization scheme is suitable for structural design in vehicle and aerospace industries where dynamic stiffness and natural frequency are equally important.

    The present examples demonstrate that the modified BESO method with variable EVR can produce similar Pareto-optimum sets to those generated by classic BESO method with constant EVR.However,the dynamic removal strategy with the variable EVR presents a low computational cost since it consumes a small number of iterations to capture the accurate optimal topology using the constant EVR.Although only two objective functions are considered in this study,the scheme can be extended to other multiple objectives such as stress,displacement and frequency or even to thermal,fluidic and acoustic applications.These will be investigated and reported in the near future.

    Funding Statement:This study was funded by the National Natural Science Foundation of China(Grant No.51505096), and the Natural Science Foundation of Heilongjiang Province (Grant No.LH2020E064).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产高清国产精品国产三级| 欧美黄色淫秽网站| 黄色女人牲交| 麻豆久久精品国产亚洲av | 女同久久另类99精品国产91| 男男h啪啪无遮挡| 国产成人啪精品午夜网站| 在线观看免费日韩欧美大片| 夜夜爽天天搞| 免费观看人在逋| 亚洲第一青青草原| 午夜a级毛片| 国产99白浆流出| 91大片在线观看| 欧美色视频一区免费| cao死你这个sao货| 啦啦啦 在线观看视频| 国产精品日韩av在线免费观看 | 亚洲午夜精品一区,二区,三区| 高清在线国产一区| 国产色视频综合| 一级毛片久久久久久久久女| 舔av片在线| 美女xxoo啪啪120秒动态图 | 一进一出抽搐动态| 精品免费久久久久久久清纯| 亚洲熟妇中文字幕五十中出| 成人av一区二区三区在线看| 久久久久久久午夜电影| 久久精品人妻少妇| 看片在线看免费视频| 亚洲男人的天堂狠狠| 精品无人区乱码1区二区| 99久久无色码亚洲精品果冻| 亚洲国产欧美人成| 美女免费视频网站| 精品久久久久久,| 国产一级毛片七仙女欲春2| 熟妇人妻久久中文字幕3abv| 国产色婷婷99| 丰满人妻熟妇乱又伦精品不卡| 99久久成人亚洲精品观看| 国产精品一区二区免费欧美| 黄色一级大片看看| 亚洲精品一区av在线观看| 午夜影院日韩av| av中文乱码字幕在线| 成人毛片a级毛片在线播放| 中文字幕av在线有码专区| 国产精品久久电影中文字幕| 久久久国产成人精品二区| 极品教师在线视频| 看免费av毛片| 一本综合久久免费| 两性午夜刺激爽爽歪歪视频在线观看| 一级黄色大片毛片| 欧美日韩综合久久久久久 | 国产美女午夜福利| 日本在线视频免费播放| 国产熟女xx| 国产毛片a区久久久久| 亚洲美女黄片视频| 亚洲精品成人久久久久久| 国产男靠女视频免费网站| 国产真实伦视频高清在线观看 | 黄色一级大片看看| 免费看光身美女| 国产精品亚洲美女久久久| 9191精品国产免费久久| av福利片在线观看| 亚洲最大成人中文| 日本黄色视频三级网站网址| av在线观看视频网站免费| 欧美bdsm另类| 十八禁网站免费在线| 亚洲最大成人av| 色精品久久人妻99蜜桃| 国产精品美女特级片免费视频播放器| xxxwww97欧美| 特大巨黑吊av在线直播| 观看免费一级毛片| 欧美潮喷喷水| 99国产精品一区二区三区| 网址你懂的国产日韩在线| av天堂中文字幕网| 麻豆久久精品国产亚洲av| 久久人人精品亚洲av| 国产精品免费一区二区三区在线| 色哟哟·www| 久久亚洲真实| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 国产探花极品一区二区| 大型黄色视频在线免费观看| 丰满的人妻完整版| 欧美黑人欧美精品刺激| 日本免费a在线| 国产美女午夜福利| www.熟女人妻精品国产| 免费看光身美女| 亚洲真实伦在线观看| 丰满的人妻完整版| 一个人免费在线观看的高清视频| 中国美女看黄片| 日本黄色片子视频| 少妇的逼水好多| 精品不卡国产一区二区三区| 2021天堂中文幕一二区在线观| 深夜精品福利| 免费大片18禁| 欧美乱妇无乱码| 婷婷丁香在线五月| 久久久久免费精品人妻一区二区| av天堂中文字幕网| 好男人电影高清在线观看| 免费看a级黄色片| 日韩中字成人| 亚洲av电影在线进入| 精品欧美国产一区二区三| 99精品久久久久人妻精品| 免费看日本二区| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 国产av不卡久久| 成人无遮挡网站| 亚洲人成网站在线播| 赤兔流量卡办理| 悠悠久久av| 久久人人爽人人爽人人片va | 亚洲成a人片在线一区二区| 夜夜躁狠狠躁天天躁| 又黄又爽又免费观看的视频| 两个人的视频大全免费| 此物有八面人人有两片| av在线观看视频网站免费| 亚洲国产精品sss在线观看| 少妇丰满av| 亚洲av美国av| 听说在线观看完整版免费高清| 国产伦人伦偷精品视频| 最近在线观看免费完整版| 蜜桃久久精品国产亚洲av| 欧美日本视频| 国产高潮美女av| 久久人人爽人人爽人人片va | 亚洲欧美激情综合另类| 99热这里只有是精品50| a级一级毛片免费在线观看| 欧美不卡视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 97碰自拍视频| 88av欧美| 免费搜索国产男女视频| 欧美色欧美亚洲另类二区| 国产 一区 欧美 日韩| 国产精品野战在线观看| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 亚洲综合色惰| 国产黄色小视频在线观看| 午夜福利视频1000在线观看| 久久草成人影院| 国产大屁股一区二区在线视频| 欧美潮喷喷水| 欧美区成人在线视频| 国产亚洲精品久久久久久毛片| 亚洲中文字幕一区二区三区有码在线看| 夜夜看夜夜爽夜夜摸| 国产老妇女一区| 亚洲 国产 在线| 婷婷六月久久综合丁香| 99久久无色码亚洲精品果冻| 日本在线视频免费播放| 亚洲国产精品合色在线| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 三级毛片av免费| 怎么达到女性高潮| 国产精品不卡视频一区二区 | 亚洲国产欧美人成| 亚洲第一区二区三区不卡| 国产高清激情床上av| 国产91精品成人一区二区三区| 亚洲片人在线观看| 一区福利在线观看| 久久久久久大精品| 欧美成狂野欧美在线观看| 午夜久久久久精精品| 日本黄色视频三级网站网址| 在线免费观看的www视频| 欧美性感艳星| 日韩有码中文字幕| 欧美最黄视频在线播放免费| 国内精品美女久久久久久| 久久人人爽人人爽人人片va | 国产成人啪精品午夜网站| 99国产精品一区二区三区| 久久精品91蜜桃| 无遮挡黄片免费观看| 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 国产淫片久久久久久久久 | 免费av不卡在线播放| 亚洲美女视频黄频| 性插视频无遮挡在线免费观看| 老司机午夜福利在线观看视频| 久久久久久久久中文| 不卡一级毛片| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 欧美丝袜亚洲另类 | 麻豆国产av国片精品| 亚洲av不卡在线观看| 久久久精品大字幕| 人妻制服诱惑在线中文字幕| 国产真实伦视频高清在线观看 | 免费搜索国产男女视频| 别揉我奶头 嗯啊视频| 老熟妇乱子伦视频在线观看| 免费av毛片视频| 男人的好看免费观看在线视频| 久久伊人香网站| 欧美三级亚洲精品| 丰满乱子伦码专区| 国产亚洲欧美98| 欧美绝顶高潮抽搐喷水| 五月伊人婷婷丁香| 性插视频无遮挡在线免费观看| 男女那种视频在线观看| 91久久精品电影网| 听说在线观看完整版免费高清| 一级黄片播放器| 18+在线观看网站| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 国产69精品久久久久777片| 黄色配什么色好看| 午夜a级毛片| 欧美成人a在线观看| 97超级碰碰碰精品色视频在线观看| 又爽又黄a免费视频| 1000部很黄的大片| 国产主播在线观看一区二区| 成人午夜高清在线视频| 国产精品久久电影中文字幕| 一区二区三区激情视频| 国产精品三级大全| 国产日本99.免费观看| 一个人看视频在线观看www免费| eeuss影院久久| 十八禁人妻一区二区| 老司机午夜福利在线观看视频| 久久久久免费精品人妻一区二区| 久久国产乱子免费精品| 搡老妇女老女人老熟妇| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 久久中文看片网| 熟女人妻精品中文字幕| 搡老熟女国产l中国老女人| 久久人人精品亚洲av| 亚洲黑人精品在线| av黄色大香蕉| 1000部很黄的大片| 女生性感内裤真人,穿戴方法视频| 国产麻豆成人av免费视频| 99国产精品一区二区三区| 热99在线观看视频| 一边摸一边抽搐一进一小说| 免费观看精品视频网站| 午夜福利在线在线| 欧美又色又爽又黄视频| 国产精品久久久久久久电影| 琪琪午夜伦伦电影理论片6080| 老司机午夜福利在线观看视频| 国产精品一区二区三区四区免费观看 | 嫩草影院精品99| 老司机午夜福利在线观看视频| 亚洲精品在线美女| 69人妻影院| 又爽又黄a免费视频| 国产爱豆传媒在线观看| 露出奶头的视频| 在线免费观看不下载黄p国产 | 人人妻人人看人人澡| 人人妻人人澡欧美一区二区| 在线观看美女被高潮喷水网站 | 亚洲av五月六月丁香网| 丰满人妻一区二区三区视频av| 一本久久中文字幕| 高潮久久久久久久久久久不卡| 日韩人妻高清精品专区| 国产黄色小视频在线观看| aaaaa片日本免费| 国语自产精品视频在线第100页| 国产蜜桃级精品一区二区三区| 99国产精品一区二区蜜桃av| 精品99又大又爽又粗少妇毛片 | 12—13女人毛片做爰片一| 我要搜黄色片| 亚洲成av人片免费观看| 国内精品久久久久精免费| 国产男靠女视频免费网站| 色哟哟·www| 亚洲精品色激情综合| 99在线视频只有这里精品首页| 91狼人影院| 热99在线观看视频| 国产精品嫩草影院av在线观看 | 亚洲av一区综合| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| www.999成人在线观看| 精品人妻熟女av久视频| 韩国av一区二区三区四区| 深夜a级毛片| 久久久久国内视频| 精品久久久久久久人妻蜜臀av| 婷婷六月久久综合丁香| 欧美黑人巨大hd| 亚洲人成网站高清观看| 日本与韩国留学比较| 69av精品久久久久久| 国产在视频线在精品| 日韩人妻高清精品专区| 天美传媒精品一区二区| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| 综合色av麻豆| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 国内毛片毛片毛片毛片毛片| 亚洲第一电影网av| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 国产成人欧美在线观看| 日韩中文字幕欧美一区二区| 嫩草影院精品99| 在线播放国产精品三级| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 国产精品98久久久久久宅男小说| 久久精品影院6| 欧美另类亚洲清纯唯美| 91字幕亚洲| 国产精品久久视频播放| 亚洲,欧美,日韩| 国产一区二区在线av高清观看| 久久99热6这里只有精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产精品成人综合色| av在线老鸭窝| 色在线成人网| 18禁裸乳无遮挡免费网站照片| 国产av麻豆久久久久久久| 中文字幕人成人乱码亚洲影| 精品一区二区三区视频在线| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 丁香六月欧美| 精品久久久久久久久亚洲 | 久久久久久久精品吃奶| 欧美潮喷喷水| 美女免费视频网站| 亚洲成人久久爱视频| av福利片在线观看| 黄色视频,在线免费观看| 日日夜夜操网爽| 久久婷婷人人爽人人干人人爱| www.www免费av| 亚洲一区二区三区不卡视频| 一进一出好大好爽视频| 中出人妻视频一区二区| 91久久精品电影网| 亚洲精华国产精华精| 国产亚洲精品av在线| 丰满的人妻完整版| 很黄的视频免费| 网址你懂的国产日韩在线| 99在线人妻在线中文字幕| xxxwww97欧美| 免费av不卡在线播放| 国产一区二区三区在线臀色熟女| 观看免费一级毛片| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| 欧美乱色亚洲激情| 亚洲av免费在线观看| 欧美成人免费av一区二区三区| 小说图片视频综合网站| 九九久久精品国产亚洲av麻豆| 精品一区二区三区视频在线| 欧美绝顶高潮抽搐喷水| 床上黄色一级片| 日韩欧美在线二视频| 此物有八面人人有两片| 青草久久国产| 一个人看的www免费观看视频| 露出奶头的视频| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| 最近在线观看免费完整版| 波野结衣二区三区在线| 99国产综合亚洲精品| 精品一区二区三区av网在线观看| av国产免费在线观看| 午夜福利视频1000在线观看| 搡老熟女国产l中国老女人| 香蕉av资源在线| 国产麻豆成人av免费视频| h日本视频在线播放| 综合色av麻豆| 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2| 精品免费久久久久久久清纯| 午夜久久久久精精品| 亚洲国产精品sss在线观看| 美女cb高潮喷水在线观看| 亚洲中文日韩欧美视频| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 一级a爱片免费观看的视频| 欧美乱妇无乱码| 欧美日本视频| 婷婷六月久久综合丁香| 午夜精品在线福利| 婷婷亚洲欧美| 亚洲内射少妇av| 欧美成人免费av一区二区三区| 国产乱人视频| 国产精品嫩草影院av在线观看 | 一级黄片播放器| 97碰自拍视频| 国产真实乱freesex| 精品一区二区三区视频在线观看免费| 亚洲国产精品成人综合色| 亚洲一区二区三区不卡视频| 久久久久久国产a免费观看| 老女人水多毛片| 深夜a级毛片| 一级作爱视频免费观看| 国内精品一区二区在线观看| 嫩草影院精品99| 国产精品野战在线观看| 国产精品久久久久久精品电影| 桃色一区二区三区在线观看| 成人毛片a级毛片在线播放| 国产成人影院久久av| 国语自产精品视频在线第100页| 国产日本99.免费观看| 好男人电影高清在线观看| 18禁裸乳无遮挡免费网站照片| 老司机深夜福利视频在线观看| 成人精品一区二区免费| 日韩人妻高清精品专区| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院| 观看美女的网站| 色5月婷婷丁香| 丰满乱子伦码专区| 波多野结衣巨乳人妻| 久久人人爽人人爽人人片va | 在线观看66精品国产| 亚洲黑人精品在线| 少妇熟女aⅴ在线视频| 欧美性感艳星| 国产激情偷乱视频一区二区| 精品久久国产蜜桃| 日韩欧美国产在线观看| 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 久久国产乱子免费精品| 欧美3d第一页| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 国产精品综合久久久久久久免费| 亚洲av第一区精品v没综合| 日本一本二区三区精品| 精品一区二区免费观看| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 成人性生交大片免费视频hd| 一区二区三区激情视频| 精品久久久久久久末码| 久久精品国产亚洲av涩爱 | 国产高清视频在线观看网站| 高清在线国产一区| 亚洲美女视频黄频| 夜夜夜夜夜久久久久| 中文字幕av成人在线电影| 一级作爱视频免费观看| 麻豆久久精品国产亚洲av| 简卡轻食公司| 日韩欧美 国产精品| 亚洲成人久久爱视频| av福利片在线观看| 欧美在线一区亚洲| 国产精品一区二区三区四区免费观看 | 午夜亚洲福利在线播放| 免费av观看视频| 国产精品精品国产色婷婷| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 夜夜躁狠狠躁天天躁| 最新中文字幕久久久久| 老司机福利观看| 一级a爱片免费观看的视频| 能在线免费观看的黄片| 精品国产亚洲在线| 男人的好看免费观看在线视频| 欧美+日韩+精品| 亚洲七黄色美女视频| 久久精品国产亚洲av涩爱 | 久久性视频一级片| 亚洲中文字幕日韩| 久久久久国内视频| 亚洲精品一卡2卡三卡4卡5卡| 两个人视频免费观看高清| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 老女人水多毛片| 最新中文字幕久久久久| 久久久国产成人精品二区| 91字幕亚洲| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 最后的刺客免费高清国语| 特级一级黄色大片| 深爱激情五月婷婷| 99热精品在线国产| 我的女老师完整版在线观看| 又爽又黄a免费视频| 国产精品av视频在线免费观看| 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三| 天堂影院成人在线观看| 香蕉av资源在线| 国产单亲对白刺激| 精品国产三级普通话版| 观看免费一级毛片| 深夜a级毛片| 亚洲avbb在线观看| 久久精品国产自在天天线| 久久久久性生活片| av在线观看视频网站免费| 麻豆成人午夜福利视频| 在线十欧美十亚洲十日本专区| 九九热线精品视视频播放| 国产精品电影一区二区三区| 色吧在线观看| 日韩欧美在线二视频| 3wmmmm亚洲av在线观看| 欧美黄色淫秽网站| 午夜影院日韩av| 在线免费观看不下载黄p国产 | 91九色精品人成在线观看| 噜噜噜噜噜久久久久久91| 国产在线男女| 波多野结衣高清作品| 久久久久久久亚洲中文字幕 | 成年女人毛片免费观看观看9| 亚洲欧美日韩无卡精品| 免费看日本二区| 少妇被粗大猛烈的视频| 免费在线观看成人毛片| 亚洲美女黄片视频| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 欧美日韩黄片免| 91久久精品国产一区二区成人| 成人欧美大片| 欧美一区二区国产精品久久精品| 午夜视频国产福利| 免费大片18禁| 老熟妇乱子伦视频在线观看| 国产精品久久久久久人妻精品电影| 亚洲,欧美,日韩| 亚洲无线在线观看| 免费人成在线观看视频色| 成年女人永久免费观看视频| 成人精品一区二区免费| 成年女人永久免费观看视频| 色5月婷婷丁香| 免费搜索国产男女视频| 欧美三级亚洲精品| 精品无人区乱码1区二区| 日韩中字成人| 观看免费一级毛片| 亚洲狠狠婷婷综合久久图片| 少妇高潮的动态图| 国产欧美日韩一区二区精品| 国产av在哪里看| 欧美国产日韩亚洲一区| 亚洲激情在线av| 亚洲三级黄色毛片| 国产一区二区在线av高清观看| 好看av亚洲va欧美ⅴa在| 欧美在线一区亚洲| 三级国产精品欧美在线观看| 两人在一起打扑克的视频| 久久婷婷人人爽人人干人人爱| 日日夜夜操网爽| 亚洲av第一区精品v没综合| 亚洲电影在线观看av| 非洲黑人性xxxx精品又粗又长| avwww免费| 窝窝影院91人妻| 欧美zozozo另类| 欧美三级亚洲精品| 神马国产精品三级电影在线观看|