• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Modified Formulation of Singular Boundary Method for Exterior Acoustics

    2023-03-12 09:00:26YiWuZhuojiaFuandJianMin

    Yi Wu,Zhuojia Fuand Jian Min

    Institute of Grid and High Performance Computing,College of Mechanics and Materials,Hohai University,Nanjing,211100,China

    ABSTRACT This paper proposes a modified formulation of the singular boundary method(SBM)by introducing the combined Helmholtz integral equation formulation (CHIEF) and the self-regularization technique to exterior acoustics.In the SBM, the concept of the origin intensity factor (OIF) is introduced to avoid the singularities of the fundamental solutions.The SBM belongs to the meshless boundary collocation methods.The additional use of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the exterior acoustics accurately and efficiently.Consequently, by using the SBM coupled with the CHIEF scheme and the self-regularization technique, the accuracy of the numerical solution can be improved, especially near the corresponding internal characteristic frequencies.Several numerical examples of two-dimensional and threedimensional benchmark examples about exterior acoustics are used to verify the effectiveness and accuracy of the proposed method.The proposed numerical results are compared with the analytical solutions and the solutions obtained by the other numerical methods.

    KEYWORDS Singular boundary method;CHIEF method;self-regularization technique;acoustic radiation and scattering

    1 Introduction

    As we all know, the main numerical methods to study acoustic radiation and scattering are the finite element method (FEM) [1–4] and the boundary element method (BEM) [5–7].The FEM is a general method for solving mathematical and physical equations.However, the FEM is difficult in dealing with the infinite domain problems and needs several additional technologies[8–10].The BEM is a boundary-type numerical algorithm after the FEM.The fundamental solutions of the BEM can automatically satisfy the Sommerfeld radiation condition at infinity,so the BEM can effectively deal with infinite domain problems.Moreover, the BEM only needs the boundary discretization on the surface of the considered computational domains, so that it can save the computational resources.Therefore,the BEM is a competitive option for infinite domain problems.However,the fundamental solution of the BEM has singularities,which leads to a great deal of difficulty in the calculation of the singular/hypersingular integrals.This is also the main factor limiting the application of BEM.

    To avoid these troublesome calculations in the BEM,the method of fundamental solutions(MFS)[11–16] was proposed.It distributes the source points outside the solution domain to overcome the singularities of the fundamental solutions, which is effective and easy to implement.However, the optimal placement of the source points is a nontrivial task, which has a big effect on the numerical stability and accuracy in the MFS, in particular the problems with multi-connected domains or complicated-geometric-shaped domains.

    Then the boundary knot method (BKM) [17–19] has been proposed, which employs the nonsingular general solutions as basis functions instead of the singular fundamental solutions.It avoids the troublesome placement of the source points in the MFS.However,it cannot be used for exterior Helmholtz problems due to the nontrivial task of the derivation of the nonsingular general solutions.To overcome this drawback,several numerical methods have been proposed to solve acoustic radiation and scattering problems in recent years, such as the singular boundary method (SBM) [20–24], the regularized meshless method (RMM) [25,26], and so on.Here we focus on the singular boundary method(SBM).

    The SBM introduces the concept of origin intensity factor (OIF) [27] to substitute the singular term in the interpolation expression,so that we can obtain the non-singular interpolation expression.In order to determine the OIF, the SBM uses the inverse interpolation technique (IIT) [28], which needs to construct the sample solution and select the sample nodes in the physical domain.However,the accuracy of numerical results will be affected sensitively by the selection of sample points,which limits the application of the method in three-dimensional problems.The improved formulation of the singular boundary method is proposed by Chen and his coworkers[29–32]to overcome this issue.The method derives the origin intensity factor through the subtracting and adding-back technique,so as to avoid the selection of sample nodes in the SBM.

    Although the improved formulation of the SBM has been applied to the acoustic wave propagation problems [33–35], it still cannot obtain the correct numerical results in the solution of the acoustic radiation and scattering problems in the infinite domain,which is caused by the non-uniqueness issue appeared near the corresponding internal characteristic frequencies.The combined Helmholtz integral equation formulation (CHIEF) method [36–38] and the Burton-Miller formulation [7,21] are two popular schemes to avoid this non-uniqueness issue.However,the CHIEF method can only avoid the uniqueness issue at some but not all characteristic frequencies.And the Burton-Miller formulation is usually difficult to calculate due to the existence of singularities and hyper-singularities in fundamental solutions.Inspire by Chen’s work[39]in indirect BEM,this study constructs a modified formulation of the SBM based on CHIEF method and self-regularization technique to deal with this non-uniqueness issue.

    This paper presents a modified formulation of the SBM in conjunction with the CHIEF method and self-regularization technique to exterior acoustics analysis.The paper is briefly summarized as follows:Section 2 introduces the modified formulation of the SBM in conjunction with the CHIEF method and self-regularization technique.Section 3 verifies the accuracy of the proposed method and compared the present solutions with the analytical solutions and the solutions of other methods through several typical benchmark examples.Finally,Section 4 presents some conclusions of the study.

    2 Methodology

    Considering the propagation of time-harmonic acoustic waves in a homogeneous isotropic, the acoustic radiation and scattering can be described by the Helmholtz equation

    and the boundary conditions

    whereDis the exterior domain,stands for the wave number, in whichcdenotes the sound velocity,ωpresents the angular frequency.Respectively,ΓDandΓNrepresent the Dirichlet boundary and Neumann boundary.For different types of the acoustics problems,the acoustic pressureu(x)can be expressed as

    where the subscriptsT,R,S,increpresent the total, radiation, scattering and incidence wave,respectively.For the physical and mechanical problems, it is required to impose the well-known Sommerfeld radiation condition on the infinite boundary conditions

    wherenstands for the dimension of the problem andi=

    2.1 Original Singular Boundary Method(SBM)

    Considering the Helmholtz equation with infinite domain,the single-layer fundamental solution is used as the interpolation basic function in the SBM.The approximate solutionsu(x)andq(x)can be expressed as

    Figure 1:Schematic configuration of the source points sj (a)the curve sj-1sj+1 on 2D problems,(b)the corresponding infinitesimal area Lj on 3D problems

    Taking the collocation points and the source points as the same set of boundary points, the following matrix form can be obtained by substituting Eqs.(6)and(7)into Eqs.(1)–(3),

    in which

    By solving Eq.(12), the unknown coefficientscan be determined.After that, the numerical acoustic pressureu(x)inside the domain and on the boundary can be calculated by using the SBM formulation(6).

    2.2 The SBM Coupled with the CHIEF Method and Self-Regularization Technique(SR-CHIEF-SBM)

    In the SBM solution of exterior acoustic problems,the resultant matrix is rank deficient when the wave frequency is exactly equal to the eigenfrequency of the corresponding interior acoustic problems,which makes the original SBM unable to obtain the correct solution.To overcome this non-uniqueness issue,it needs to introduceNCCHIEF points{xc}in the interior domain ?2Dto provideNCadditional independent constraint equations for generating a sufficient number of independent equations.

    Based on the self-regularization technique and the singular value decomposition(SVD)technique,NCadditional independent constraint equations can be represented as follows:

    whereφSVDcdenotes the right unitary vectors of the right unitary matrixΨSVD= [φSVDN,···,φSVD1]decomposed by using the singular value decomposition on the matrix [A]N×N= [ΨSVD]N×N[ΣSVD]N×Nin whichΣSVD=with the singular valuesσN≥σN-1≥··· ≥σ1, the superscriptHdenotes the Hermitian transpose.The SBM formulations (6) and (7) coupled with Eq.(13)are abbreviated as CHIEF-SBM in this study.The following matrix form of the CHIEF-SBM can be obtained by substituting Eqs.(6)and(7)into Eqs.(1)–(3),

    subjected toNCconstraint conditions(13).The SBM formulations(15)and(16)coupled with Eq.(13)are abbreviated as SR-CHIEF-SBM in this study.The following matrix form of the SR-CHIEF-SBM can be obtained by substituting Eqs.(15)and(16)into Eqs.(1)–(3),

    By solving Eq.(17), the unknown coefficientscan be determined.After that, the numerical acoustic pressureu(x)inside the domain and on the boundary can be calculated by using the SBM formulation(15).

    3 Numerical Results

    In this section,several benchmark examples are presented to verify the feasibility and accuracy of the proposed SR-CHIEF-SBM in analyzing exterior acoustic radiation and scattering behavior.The present numerical solutions are compared with the analytical solutions and the ones obtained by the original SBM,the CHIEF-SBM,and the Burton-Miller SBM(BM-SBM).To measure the accuracy,the root mean square errorRMSE(u)and the maximum errorMerr(u)are defined as follows:

    whereuana(xi)andunum(xi)represent the analytical solutions and numerical solutions atith test nodexi,Ntdenotes the number of total test nodes inside the domain.

    Example 1:Radiation problem of a hard infinite circular cylinder(Neumann boundary condition)

    Consider the acoustic radiation by a hard infinite circular cylinder.The analytical solution of the radiation fielduRis

    In the proposed SR-CHIEF-SBM implementation,the parameters are set asN=300 andNC=2,the location of 2 CHIEF points in polar coordinates are(0.8a,5π/18)and(0.8a,5π/9),the test points are placed on a circle with a radius of 2a,anda=1.Fig.2 shows the convergence rates of the proposed SR-CHIEF-SBM in comparison with the original SBM,CHIEF-SBM and BM-SBM in Example 1 withka= 5.It can be found that the numerical results obtained by the proposed SR-CHIEF-SBM,CHIEF-SBM and original SBM converge to the analytical solutions with a similar rate of convergence,while the BM-SBM provides the correct numerical results with lower accuracy due to the use of the double-layer fundamental solutions.

    Figure 2:Convergence rates of the proposed SR-CHIEF-SBM in comparison with the original SBM,CHIEF-SBM and BM-SBM in Example 1 with ka=5

    Then Tables 1–3 show the RMSE errors of the real part, imaginary part and the modulus ofunumobtained by the proposed SR-CHIEF-SBM withN= 300 andNC= 2 in comparison with the original SBM, CHIEF-SBM and BM-SBM in Example 1.It can be found from these tables that at some specific non-dimensional wavenumberska=14.372,17.616,the original SBM cannot obtain the correct numerical solutions,while both the CHIEF-SBM and SR-CHIEF-SBM provide more accurate results than the BM-SBM.

    Table 1: RMSE errors of the real part of unum

    Table 2: RMSE errors of the imaginary part of unum

    Table 3: RMSE errors of the modulus of unum

    Example 2:Acoustic radiation by a pulsating-sphere(Neumann boundary condition)

    Next,consider acoustic radiation from a pulsating sphere as shown in Fig.3.The sphere is applied with uniform radial velocityv0with radiusa.This model is a typical example to verify the efficiency of the numerical methods for exterior acoustics.The analytical solution of the radiation fielduRis

    wherez0=ρ0c0stands for the characteristic impedance of the medium,ρ0is the density of the medium andc0represents the sound velocity.

    Figure 3:Sketch of the pulsating-sphere model

    In the proposed SR-CHIEF-SBM implementation,the parameters are set asN=900 andNC=9,9 CHIEF points are evenly distributed on a spherical surface with radius of 0.1, the test points are placed on a spherical surface with a radius of 2.Fig.4 shows the convergence rates of the proposed SR-CHIEF-SBM in comparison with the original SBM,CHIEF-SBM and BM-SBM in Example 2 withka= 5.It can be found that the proposed SR-CHIEF-SBM provides the most accurate results among these four schemes.And both the CHIEF-SBM and original SBM provide accurate results with a similar rate of convergence, while the BM-SBM provides the correct numerical results with lower accuracy due to the use of the double-layer fundamental solutions.

    Figure 4:Convergence rates of the proposed SR-CHIEF-SBM in comparison with the original SBM,CHIEF-SBM and BM-SBM in Example 2 with ka=5

    Then Tables 4–6 show the RMSE errors of the real part, imaginary part and the modulus ofunumobtained by the proposed SR-CHIEF-SBM withN= 900 andNC= 9 in comparison with the original SBM, CHIEF-SBM and BM-SBM in Example 2.The tables show that at some specific non-dimensional wavenumberska=π,2π,3π, the original SBM cannot obtain the correct numerical solutions.The CHIEF-SBM can correct the numerical results at these specific non-dimensional wavenumbers, however, it may fail in the vicinity of the aforementioned specific non-dimensional wavenumberska= 3.15,6.27,9.45.The proposed SR-CHIEF-SBM performs the accurate solutions at all these non-dimensional wavenumbers.The BM-SBM can correct the numerical solutions with lower accuracy at all these non-dimensional wavenumbers.

    Table 4: RMSE errors of the real part of unum

    Table 6: RMSE errors of the modulus of unum

    Table 5: RMSE errors of the imaginary part of unum

    Table 6 (continued)ka RMSEmod Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM 6.27 1.51E-01 2.44E-02 1.51E-01 2.80E-05 3π 2.50E+00 2.95E-02 2.10E-03 3.97E-05 9.45 1.22E-01 2.96E-02 1.22E-01 4.25E-05

    Example 3:Acoustic scattering by a hard sphere(Neumann boundary condition)

    In this example, the scattering problem of a hard sphere subjected to an incident plane wave is considered.The incident plane wave is given as

    where(θ0,φ0)denotes the angle of the incident plane wave in the spherical coordinates as shown in Fig.5.

    Figure 5:Sketch of the plane wave by a spherical scatter

    The analytical solution of the total field is represented as

    In the present numerical implementation, the parameters are set asN= 1600 andNC= 9, 9 CHIEF points are evenly distributed on a spherical surface with a radius of 0.8.Fig.6 shows the real part Re(u(2a,0,0))and imaginary part Im(u(2a,0,0))of the acoustic pressures obtained by the proposed SR-CHIEF-SBM in comparison with the original SBM, CHIEF-SBM and BM-SBM in Example 3 with the varied non-dimensional wavenumberskafrom 0.01 to 10.It can be observed that, with the increasing non-dimensional wavenumberka, the original SBM may fail to obtain the correct numerical solutions at some specific non-dimensional wavenumbers.The BM-SBM provides the correct numerical results with lower accuracy,in particular at larger non-dimensional wavenumberska.Both the numerical results obtained by the CHIEF-SBM and the SR-CHIEF-SBM are in good agreement with the analytical solutions.

    Figure 6:Frequency-sweep plot:(a)Real part of acoustic pressure Re(u(2a,0,0)),(b)Imaginary part of acoustic pressure Im(u(2a,0,0))in Example 3

    In the following examples, the normal velocity on the surface is produced by a point source of spherical dilatation wave with unit intensity located at the coordinate origin,then the related analytical radiation fieldsuRhave the following unified formulation:

    Example 4:Acoustic radiation by a hard ellipsoid(Dirichlet boundary condition)

    This example considers acoustic radiation by a hard ellipsoidshown in Fig.7.

    Figure 7:Sketch of wave radiation by an ellipsoid and its node distribution

    In the present numerical implementation,the parameters are set asN=900 andNC=9,9 CHIEF points are evenly distributed on a spherical surface with a radius of 0.8.Fig.8 shows the real part Re(u(4a,0,0))and imaginary part Im(u(4a,0,0))of the acoustic pressures obtained by the proposed SR-CHIEF-SBM in comparison with the original SBM,CHIEF-SBM and BM-SBM in Example 4 with the varied non-dimensional wavenumberskafrom 0.01 to 10.It can be observed that,with the increasing non-dimensional wavenumberka,the original SBM may fail to obtain the correct numerical results at some specific non-dimensional wavenumbers.The CHIEF-SBM can correct the numerical results at some small specific non-dimensional wavenumbers, however, it may still fail at some large specific non-dimensional wavenumbers.Both the numerical results obtained by the SR-CHIEF-SBM and the BM-SBM are in good agreement with the analytical solutions.

    Figure 8:Frequency-sweep plot:(a)Real part of acoustic pressure Re(u(4a,0,0)),(b)Imaginary part of acoustic pressure Im(u(4a,0,0))in Example 4

    Example 5:Acoustic radiation by a microphone model(Neumann boundary condition)

    Consider acoustic radiation by a microphone model.Coarse and refined node distributions are shown in Fig.9.Here,the nodes are generated by COMSOL with coarse and refined meshes.

    Figure 9:Sketch of wave radiation by a microphone model and its node distributions:(a)Coarse node distribution N =794,(b)Refined node distribution N =3136

    In the present numerical implementation, 9 CHIEF points (NC= 9) are evenly distributed on a spherical surface with a radius of 0.05, coarse node distributionN= 794 is used in the SRCHIEF-SBM,CHIEF-SBM and original SBM.It should be mentioned that the BM-SBM with coarse node distributionN= 794 may fail to obtain the correct numerical results, therefore refined node distributionN= 3136 is used in the BM-SBM.Fig.10 shows the real part Re(u(0,0,2a))and imaginary part Im(u(0,0,2a))of the acoustic pressures obtained by the proposed SR-CHIEF-SBM(N= 794)in comparison with the original SBM(N= 794),CHIEF-SBM(N= 794)and BM-SBM(N= 3136) in Example 5 with the varied non-dimensional wavenumberskafrom 0.01 to 7.It can be observed that,with the increasing non-dimensional wavenumberka,the original SBM may fail to obtain the correct numerical results at some specific non-dimensional wavenumbers.The CHIEF-SBM can correct the numerical solutions at these small specific non-dimensional wavenumbers,however,it may still fail at these large specific non-dimensional wavenumbers and their adjacent regions.Both the numerical results obtained by the SR-CHIEF-SBM and the BM-SBM are in good agreement with the analytical solutions,while the BM-SBM requires more refined nodes to obtain acceptable results compared with the proposed SR-CHIEF-SBM.

    Figure 10:Frequency-sweep plot:(a)Real part of acoustic pressure Re(u(0,0,2a)),(b)Imaginary part of acoustic pressure Im(u(0,0,2a))in Example 5

    4 Conclusion

    This paper proposes a modified formulation of the singular boundary method (SBM) by introducing the combined Helmholtz integral equation formulation (CHIEF) and the self-regularization technique to exterior acoustics.In the proposed scheme, the use of the CHIEF scheme and the self-regularization technique not only guarantees the unique solution of exterior acoustics, but also improves the numerical accuracy in the solution of 2D and 3D acoustic radiation and scattering problems.

    Numerical investigations under several 2D and 3D benchmark examples show that the original SBM fails to obtain the correct numerical solutions at some specific non-dimensional wavenumbers related to the internal characteristic frequencies due to the non-uniqueness issue frequently encountered in the boundary discretization of exterior acoustics.The CHIEF-SBM can eliminate these nonuniqueness problems at the relatively small specific non-dimensional wavenumbers,but it may still fail at large specific non-dimensional wavenumbers and their adjacent regions.The BM-SBM can provide the correct numerical solutions.However,it may require more refined node discretization and usually lose the numerical accuracy due to the use of double-layer fundamental solutions.In comparison with the aforementioned three schemes, the proposed SR-CHIEF-SBM solves the non-uniqueness issue and performs the accurate results in the present numerical experiments.

    It is worth noting that with the increase of the non-dimensional wavenumber, the number and location of the CHIEF points will be sensitive to the numerical results.Some suggestions in reference[32]can be referenced to guide the way to select the CHIEF points.Extensive numerical investigations also need to be carried out to determine the optimal selection of CHIEF points.This work is under intense study and will be reported in a subsequent paper.

    Funding Statement:The work described in this paper was supported by the National Science Fund of China (Grant No.12122205) and the Six Talent Peaks Project in Jiangsu Province of China (Grant No.2019-KTHY-009).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲欧美日韩无卡精品| 成人二区视频| 中文精品一卡2卡3卡4更新| 欧美xxⅹ黑人| 精品一区二区三卡| 狂野欧美白嫩少妇大欣赏| av一本久久久久| 国产一区二区三区av在线| 看非洲黑人一级黄片| 99久久精品热视频| 色综合色国产| 性色avwww在线观看| 欧美丝袜亚洲另类| 欧美 日韩 精品 国产| 免费在线观看成人毛片| 欧美成人一区二区免费高清观看| 色播亚洲综合网| 国产成人91sexporn| 最近的中文字幕免费完整| 偷拍熟女少妇极品色| 亚洲av国产av综合av卡| 特级一级黄色大片| 99久久人妻综合| 午夜精品在线福利| 亚洲国产欧美人成| 日本色播在线视频| 欧美区成人在线视频| www.av在线官网国产| 久久精品熟女亚洲av麻豆精品 | av国产久精品久网站免费入址| 亚洲欧美日韩卡通动漫| 免费看美女性在线毛片视频| 国产精品爽爽va在线观看网站| 日韩精品青青久久久久久| 午夜福利视频精品| 国产 亚洲一区二区三区 | 91aial.com中文字幕在线观看| av国产免费在线观看| 日本wwww免费看| 欧美日韩精品成人综合77777| 国产高潮美女av| 高清午夜精品一区二区三区| 夜夜看夜夜爽夜夜摸| 欧美三级亚洲精品| 22中文网久久字幕| h日本视频在线播放| 亚洲久久久久久中文字幕| 午夜精品在线福利| 丝袜美腿在线中文| 亚洲高清免费不卡视频| videossex国产| 插阴视频在线观看视频| 亚洲av免费高清在线观看| 六月丁香七月| 国产精品久久久久久精品电影| 在线观看一区二区三区| 国产有黄有色有爽视频| 欧美高清成人免费视频www| 亚洲三级黄色毛片| 在线观看人妻少妇| 观看免费一级毛片| 联通29元200g的流量卡| 中国美白少妇内射xxxbb| 一个人看视频在线观看www免费| 老司机影院毛片| 国产毛片a区久久久久| 尾随美女入室| 亚洲在久久综合| 少妇高潮的动态图| 亚洲,欧美,日韩| 色5月婷婷丁香| 99re6热这里在线精品视频| 人人妻人人看人人澡| 色5月婷婷丁香| 成人亚洲精品一区在线观看 | 可以在线观看毛片的网站| 乱码一卡2卡4卡精品| 观看免费一级毛片| 赤兔流量卡办理| 看免费成人av毛片| 高清视频免费观看一区二区 | av在线蜜桃| 一个人看视频在线观看www免费| 联通29元200g的流量卡| 又爽又黄a免费视频| 久久精品久久久久久久性| 久久久久网色| 午夜激情欧美在线| 干丝袜人妻中文字幕| 99久国产av精品| 欧美3d第一页| 久久久久久久国产电影| 韩国高清视频一区二区三区| 亚洲婷婷狠狠爱综合网| 91久久精品国产一区二区三区| 久久久成人免费电影| av播播在线观看一区| 国产成人精品久久久久久| 亚洲在久久综合| 精品久久久久久久人妻蜜臀av| 国产在线一区二区三区精| 麻豆av噜噜一区二区三区| 午夜精品在线福利| 校园人妻丝袜中文字幕| 五月玫瑰六月丁香| 欧美bdsm另类| 亚洲熟女精品中文字幕| 久久精品人妻少妇| 1000部很黄的大片| 久久热精品热| 深夜a级毛片| 国产精品av视频在线免费观看| 国产精品1区2区在线观看.| 国产探花极品一区二区| 欧美人与善性xxx| 国产白丝娇喘喷水9色精品| 人人妻人人澡人人爽人人夜夜 | 国产有黄有色有爽视频| 精品不卡国产一区二区三区| 欧美精品一区二区大全| 国产av在哪里看| 免费无遮挡裸体视频| 成年版毛片免费区| 中文字幕人妻熟人妻熟丝袜美| 婷婷色av中文字幕| 干丝袜人妻中文字幕| 晚上一个人看的免费电影| 国产黄片美女视频| 插逼视频在线观看| 久久99蜜桃精品久久| av国产免费在线观看| 天堂中文最新版在线下载 | 18禁动态无遮挡网站| 日韩欧美国产在线观看| 日韩成人伦理影院| 亚洲国产高清在线一区二区三| 国产精品无大码| 亚洲一级一片aⅴ在线观看| 久久午夜福利片| 亚洲一区高清亚洲精品| 一级爰片在线观看| a级一级毛片免费在线观看| 国产成人午夜福利电影在线观看| 免费无遮挡裸体视频| 在线观看av片永久免费下载| 亚洲精品视频女| 精品久久久久久久久亚洲| 日韩大片免费观看网站| 综合色av麻豆| 国产综合精华液| 99九九线精品视频在线观看视频| 亚洲综合精品二区| videossex国产| 高清av免费在线| 老司机影院成人| 极品少妇高潮喷水抽搐| 18+在线观看网站| 极品教师在线视频| 亚洲美女搞黄在线观看| 联通29元200g的流量卡| 尾随美女入室| 久久久午夜欧美精品| 久久人人爽人人爽人人片va| 国产精品爽爽va在线观看网站| 最近的中文字幕免费完整| 最近最新中文字幕大全电影3| 九草在线视频观看| 免费高清在线观看视频在线观看| 免费av毛片视频| 一夜夜www| 国产成人aa在线观看| 乱码一卡2卡4卡精品| 国产熟女欧美一区二区| 亚洲av中文av极速乱| 22中文网久久字幕| 日韩精品有码人妻一区| 丰满人妻一区二区三区视频av| 一级a做视频免费观看| 婷婷六月久久综合丁香| 久久99热这里只有精品18| 亚洲精品乱久久久久久| 视频中文字幕在线观看| 麻豆乱淫一区二区| 亚洲在线自拍视频| 大陆偷拍与自拍| 成人国产麻豆网| 国产精品日韩av在线免费观看| 久久久久网色| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 在现免费观看毛片| 午夜久久久久精精品| 一个人看视频在线观看www免费| 成年版毛片免费区| 美女大奶头视频| 色吧在线观看| 一区二区三区免费毛片| 亚洲av电影不卡..在线观看| 大又大粗又爽又黄少妇毛片口| 久久亚洲国产成人精品v| 国产av码专区亚洲av| 日本与韩国留学比较| 又大又黄又爽视频免费| 2018国产大陆天天弄谢| 亚洲成色77777| 又大又黄又爽视频免费| 91久久精品国产一区二区成人| 中文乱码字字幕精品一区二区三区 | 美女高潮的动态| 亚洲在线观看片| 麻豆久久精品国产亚洲av| 日韩制服骚丝袜av| 国产亚洲最大av| 性色avwww在线观看| 久久人人爽人人片av| 亚洲欧美中文字幕日韩二区| 青春草国产在线视频| 午夜久久久久精精品| 亚洲欧美成人精品一区二区| 免费观看在线日韩| 韩国高清视频一区二区三区| 一级av片app| 99久久精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 精品人妻偷拍中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲乱码一区二区免费版| 91久久精品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲精品456在线播放app| 麻豆成人av视频| 纵有疾风起免费观看全集完整版 | 99视频精品全部免费 在线| 久久热精品热| 精品午夜福利在线看| 在线免费观看不下载黄p国产| 91精品一卡2卡3卡4卡| 免费av不卡在线播放| 久久国产乱子免费精品| 精品久久久久久久久亚洲| 日日撸夜夜添| 亚洲精品日本国产第一区| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 国产国拍精品亚洲av在线观看| 久久久久网色| 天堂av国产一区二区熟女人妻| 肉色欧美久久久久久久蜜桃 | 亚州av有码| 男插女下体视频免费在线播放| 国产色爽女视频免费观看| 精品熟女少妇av免费看| 久久久久久久久久黄片| 毛片女人毛片| 久久精品熟女亚洲av麻豆精品 | 丰满乱子伦码专区| 午夜激情福利司机影院| 国产成人一区二区在线| 婷婷色综合大香蕉| 一个人观看的视频www高清免费观看| 99热这里只有精品一区| 黄色配什么色好看| 亚洲成人中文字幕在线播放| 色播亚洲综合网| 老师上课跳d突然被开到最大视频| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 熟女人妻精品中文字幕| 国产欧美日韩精品一区二区| 久久热精品热| 91久久精品国产一区二区成人| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 简卡轻食公司| 久久精品熟女亚洲av麻豆精品 | 精品久久久久久电影网| 国产成人aa在线观看| 99久久九九国产精品国产免费| 久久久久精品久久久久真实原创| 午夜老司机福利剧场| av专区在线播放| 男人舔奶头视频| 精品久久久久久久末码| 成人欧美大片| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| 日本一本二区三区精品| 国产高潮美女av| 一级二级三级毛片免费看| 色尼玛亚洲综合影院| 中文天堂在线官网| 亚洲精品久久午夜乱码| 国产91av在线免费观看| 22中文网久久字幕| 国精品久久久久久国模美| 国产成人a区在线观看| 日韩av在线免费看完整版不卡| 嫩草影院精品99| 中文字幕免费在线视频6| 国产精品.久久久| 国产成年人精品一区二区| 啦啦啦啦在线视频资源| 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 国产亚洲av片在线观看秒播厂 | 亚洲18禁久久av| 成年人午夜在线观看视频 | 免费大片黄手机在线观看| 97超视频在线观看视频| 久久6这里有精品| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 久久久精品欧美日韩精品| 丝瓜视频免费看黄片| 永久免费av网站大全| 最近视频中文字幕2019在线8| 亚洲精品国产av蜜桃| 1000部很黄的大片| 亚洲最大成人av| 久热久热在线精品观看| 最近中文字幕2019免费版| 夫妻午夜视频| 欧美极品一区二区三区四区| 高清视频免费观看一区二区 | 免费看av在线观看网站| 波野结衣二区三区在线| 国产精品一及| 老司机影院成人| 精品久久久久久久人妻蜜臀av| 汤姆久久久久久久影院中文字幕 | 午夜激情福利司机影院| 久久久久久久久中文| 久久99精品国语久久久| 听说在线观看完整版免费高清| 亚洲精品中文字幕在线视频 | 日韩中字成人| 日本av手机在线免费观看| 亚洲av电影不卡..在线观看| 91狼人影院| 肉色欧美久久久久久久蜜桃 | 久久99热这里只有精品18| 国产在视频线精品| 亚洲在线自拍视频| 婷婷色麻豆天堂久久| 亚洲精品久久午夜乱码| 亚洲成人一二三区av| 永久免费av网站大全| 欧美一区二区亚洲| 欧美潮喷喷水| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 成年版毛片免费区| 久久久精品94久久精品| 在线观看人妻少妇| 深夜a级毛片| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 22中文网久久字幕| 亚洲国产最新在线播放| 91精品一卡2卡3卡4卡| 日韩欧美三级三区| 建设人人有责人人尽责人人享有的 | h日本视频在线播放| 美女黄网站色视频| 久久久久精品性色| 大香蕉久久网| 夫妻午夜视频| 极品教师在线视频| 亚洲欧美一区二区三区黑人 | 日本-黄色视频高清免费观看| 精品一区在线观看国产| 国产v大片淫在线免费观看| 亚洲欧美精品自产自拍| 日日干狠狠操夜夜爽| 大又大粗又爽又黄少妇毛片口| 街头女战士在线观看网站| 亚洲精品国产av成人精品| 国产成人午夜福利电影在线观看| 少妇丰满av| 国产淫片久久久久久久久| 久久鲁丝午夜福利片| 日韩三级伦理在线观看| 一级黄片播放器| 亚洲色图av天堂| 久久久久久久午夜电影| 又爽又黄a免费视频| 午夜日本视频在线| 能在线免费看毛片的网站| 免费av观看视频| 亚洲伊人久久精品综合| 久久人人爽人人片av| 看黄色毛片网站| 日日撸夜夜添| 国产精品美女特级片免费视频播放器| 免费看不卡的av| 日韩伦理黄色片| 亚洲四区av| 久久久久久久久久成人| 七月丁香在线播放| 特大巨黑吊av在线直播| 国产精品一区二区性色av| 欧美激情在线99| 国产精品麻豆人妻色哟哟久久 | 精品一区二区三区视频在线| 99久久精品一区二区三区| 日产精品乱码卡一卡2卡三| 欧美性感艳星| 干丝袜人妻中文字幕| 亚洲成人av在线免费| 亚洲av免费在线观看| 嘟嘟电影网在线观看| 男女啪啪激烈高潮av片| 超碰av人人做人人爽久久| 成人亚洲精品av一区二区| av天堂中文字幕网| 久久久国产一区二区| 最近2019中文字幕mv第一页| 亚洲精品一二三| 日本午夜av视频| 日日摸夜夜添夜夜爱| 国产乱人偷精品视频| 国内少妇人妻偷人精品xxx网站| 国模一区二区三区四区视频| 久久久久久久久中文| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 国产精品伦人一区二区| 国产精品.久久久| 亚洲欧洲日产国产| 亚洲精品一区蜜桃| 国产午夜精品久久久久久一区二区三区| 亚洲国产最新在线播放| 亚洲av二区三区四区| 免费看美女性在线毛片视频| 精品一区二区三卡| 亚洲av国产av综合av卡| 少妇猛男粗大的猛烈进出视频 | 国产淫语在线视频| 亚洲自拍偷在线| 男人和女人高潮做爰伦理| 搞女人的毛片| 国产亚洲91精品色在线| 女人被狂操c到高潮| 日韩人妻高清精品专区| 观看美女的网站| 男女那种视频在线观看| 男女啪啪激烈高潮av片| 免费观看的影片在线观看| 日本熟妇午夜| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 美女脱内裤让男人舔精品视频| 国产成人福利小说| 免费看av在线观看网站| 白带黄色成豆腐渣| 久久久久久国产a免费观看| 亚洲av在线观看美女高潮| 汤姆久久久久久久影院中文字幕 | 狠狠精品人妻久久久久久综合| 欧美日韩一区二区视频在线观看视频在线 | 嘟嘟电影网在线观看| 国内精品美女久久久久久| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 亚洲精品亚洲一区二区| 国产精品久久久久久av不卡| 久久久久久久久中文| 国产精品一及| 女人被狂操c到高潮| 久久久午夜欧美精品| 一级毛片我不卡| 高清欧美精品videossex| 搞女人的毛片| 久久久精品欧美日韩精品| 美女被艹到高潮喷水动态| 日韩欧美三级三区| 男人爽女人下面视频在线观看| 极品少妇高潮喷水抽搐| 人人妻人人澡欧美一区二区| 大片免费播放器 马上看| av专区在线播放| 美女国产视频在线观看| 欧美成人精品欧美一级黄| 国产精品无大码| 久久久久精品性色| 波野结衣二区三区在线| 亚洲精品国产成人久久av| 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 亚洲最大成人手机在线| 搞女人的毛片| 国产精品精品国产色婷婷| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 久久久久久久久中文| 久久人人爽人人爽人人片va| 老师上课跳d突然被开到最大视频| 亚洲美女视频黄频| 男人狂女人下面高潮的视频| 亚洲精品乱码久久久久久按摩| 国产精品熟女久久久久浪| 国产精品1区2区在线观看.| 国产高清国产精品国产三级 | 91aial.com中文字幕在线观看| 精品人妻熟女av久视频| 波野结衣二区三区在线| 国产黄色小视频在线观看| 欧美潮喷喷水| 在线免费观看的www视频| 亚洲国产成人一精品久久久| 日日啪夜夜撸| 国产成人aa在线观看| 国产成人精品久久久久久| 综合色丁香网| a级一级毛片免费在线观看| 日韩大片免费观看网站| 精品久久久久久成人av| 婷婷色综合大香蕉| 亚洲一区高清亚洲精品| 亚洲激情五月婷婷啪啪| 精品欧美国产一区二区三| 三级男女做爰猛烈吃奶摸视频| 国产黄色小视频在线观看| 赤兔流量卡办理| 国产男人的电影天堂91| 精品亚洲乱码少妇综合久久| 哪个播放器可以免费观看大片| 一区二区三区乱码不卡18| 成年版毛片免费区| 一个人免费在线观看电影| 欧美高清成人免费视频www| 精品午夜福利在线看| 中文在线观看免费www的网站| 亚洲欧洲国产日韩| 99久国产av精品| 亚洲成人中文字幕在线播放| 超碰97精品在线观看| 91av网一区二区| 欧美成人精品欧美一级黄| 2021天堂中文幕一二区在线观| 麻豆乱淫一区二区| 亚洲真实伦在线观看| 韩国av在线不卡| 午夜日本视频在线| 免费在线观看成人毛片| 久久精品人妻少妇| 国产麻豆成人av免费视频| 中文天堂在线官网| 国产老妇伦熟女老妇高清| 1000部很黄的大片| 亚洲成人久久爱视频| 我的老师免费观看完整版| 国产淫片久久久久久久久| av在线蜜桃| 日本欧美国产在线视频| 免费观看av网站的网址| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 狂野欧美白嫩少妇大欣赏| 亚洲精品久久久久久婷婷小说| 乱系列少妇在线播放| 午夜福利在线观看免费完整高清在| 亚洲va在线va天堂va国产| 亚洲色图av天堂| av在线播放精品| 天天一区二区日本电影三级| 最近视频中文字幕2019在线8| 久久久久久久久中文| 一级a做视频免费观看| 国产日韩欧美在线精品| 亚洲欧洲日产国产| 国产伦理片在线播放av一区| 欧美性猛交╳xxx乱大交人| 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区视频9| 极品教师在线视频| 又大又黄又爽视频免费| 亚洲图色成人| av免费在线看不卡| 青春草视频在线免费观看| 91久久精品国产一区二区三区| 看黄色毛片网站| 深爱激情五月婷婷| 成人高潮视频无遮挡免费网站| 一个人观看的视频www高清免费观看| .国产精品久久| 禁无遮挡网站| 身体一侧抽搐| 亚洲欧美一区二区三区国产| av在线观看视频网站免费| 国产v大片淫在线免费观看| 亚洲欧洲国产日韩| 久久久a久久爽久久v久久| 久久99热这里只有精品18| 亚洲精品一区蜜桃| av免费在线看不卡| 成人美女网站在线观看视频| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 最近最新中文字幕免费大全7| 99热这里只有是精品50| 亚洲综合色惰| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆| 午夜福利成人在线免费观看| 99久久精品热视频| 99热这里只有是精品50|