• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems

    2023-03-12 09:00:20JufengWangYongWuYingXuandFengxinSun

    Jufeng Wang,Yong Wu,Ying Xu and Fengxin Sun

    1College of Finance&Information,Ningbo University of Finance&Economics,Ningbo,315175,China

    2Faculty of Science,Ningbo University of Technology,Ningbo,315016,China

    ABSTRACT By introducing the dimensional splitting (DS) method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional (3D) singular perturbed convection-diffusion (SPCD) problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares (IIMLS) method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.

    KEYWORDS Dimension-splitting multiscale interpolating element-free Galerkin (DS-VMIEFG) method; interpolating variational multiscale element-free Galerkin (VMIEFG) method; dimension splitting method; singularly perturbed convection-diffusion problems

    1 Introduction

    In view of the advantage that the construction of the approximation function is only related to the discrete point and not related to the grid, the meshless method has received a lot of attention from many scholars in recent years [1–4].Meshless methods have been widely used in scientific and engineering problems and have shown high accuracy and effectiveness[5–9].

    Based on various construction methods of approximation functions or various discrete methods of the problem to be solved,many meshless methods have been proposed[10–14].The ordinary leastsquares (OLS) method is the best approximation [15], and it has been applied in engineering fields widely[16,17].Based on the OLS method,Lancaster et al.presented the moving least-squares method(MLS) approximation [18], which is one of the common methods used to construct approximation functions and has a wide range of applications in meshless [18].Many meshless methods have been proposed based on the MLS method,such as element-free Galerkin method[19],smoothed particle hydrodynamics [20] and meshless local Petrov-Galerkin method [21].From the research of many scholars, the meshless method based on MLS has better effectiveness [22].Based on MLS, some improved methods have also been proposed,such as complex variable moving least squares method[23,24],interpolation-type moving least-squares(IMLS)method[25].To avoid the singularity of the weight function, Cheng et al.[26–28] also proposed an improved interpolation-type moving least squares(IIMLS)method with non-singular weights.

    The element-free Galerkin (EFG) method, which couples the Galerkin weak form and the MLS method,is a widely used mesh-free method[29].In order to directly apply essential boundary conditions,the interpolating element-free Galerkin(IEFG)method is proposed by coupling the IMLS method [28,30–33].The IEFG method not only has the advantage of directly applying boundary conditions but also has the advantage of having a smaller radius of influence compared to EFG under the same basic functions.The IEFG method has been applied to potential problems [34,35],elastoplasticity problems [28], crack problems [36], structural dynamic analysis [37], prevention of groundwater contamination [38], elastoplasticity problems [39], Poisson equation [40], elastic large deformation problems[41],Oldroyd equation[42],etc.

    To improve the computational efficiency of the EFG method, by introducing the dimension splitting method[43],Cheng et al.proposed the dimension splitting element-free Galerkin(DS-EFG)method [44] and dimension splitting interpolating element-free Galerkin (DS-IEFG) method [45].The dimension splitting meshless method greatly improves the computational efficiency of the EFG method,and shows high computational efficiency and accuracy for 3D advection-diffusion problems[46],3D transient heat conduction problems[47–49],3D elasticity problems[50],3D wave equations[51,52],etc.

    For some fluid problems with large Reynolds numbers, the solution of EFG method may have non-physical oscillations.In order to avoid the physical oscillation,Ouyang et al.[53]proposed the variational multiscale element-free Galerkin(VMEFG)method by introducing variational multiscale(VM)method.The VMEFG method has high stability for fluid problems with large Reynolds numbers or singular disturbances[2,54,55].Similar to the EFG method,the DS-EFG method is also prone to nonphysical oscillations for singularly perturbed fluid problems.By coupling the VM and DS-EFG methods, Wang et al.presented the hybrid variational multiscale element-free Galerkin method for 2D convection-diffusion[4,56]and 2D Stokes problems[57].

    The convection-diffusion (CD) equation plays an important role in some physical problems[58,59], such as the transport of the quantity in air and river pollution.Since it is often difficult to obtain analytical solutions, many scholars have studied numerical methods to obtain approximate solutions.Numerical instability is prone to occur when the CD problem contains large Reynolds numbers or singularly perturbed diffusion coefficients[4].Stabilization techniques must be added to numerical methods to avoid numerical oscillations of the solution.Varying the shape parameter, a finite-difference method based on the radial basis function is introduced for 2D steady CD equations with large Reynolds’ numbers [60].Aga presented an improved finite difference method for 1D singularly perturbed CD problems [61].Using the collocation method of high-order polynomial approximation, ?mer studied the numerical solution of 3D CD problems with high Reynolds [62].Zhang et al.[63] presented a VMIEFG method for the singularly perturbed two-dimensional CD problems.

    In this paper, by introducing the dimension splitting (DS) method into the VMIEFG method,we will develop a dimension splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method for three-dimensional singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the DS method is used to decompose the 3D problem into a series of 2D problems,and the discrete equations on the 2D splitting surface will be obtained by the VMIEFG method.The IIMLS method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.And some numerical examples will be solved to verify the effectiveness of the DS-VMIEFG method.

    2 The IIMLS Method

    In order to overcome the insufficiency that the weight function must be singular in the IMLS method, by coupling the interpolation function transformation and MLS approximation, Cheng et al.[26] presented the IIMLS method.In this method, the approximation function satisfies the interpolation property,and the weight function is also non-singular.

    Letpi(x)(i=1,2,···,m)andw(x-xI)be the basis functions and nonsingular weight functions used in the IIMLS method.The approximation of the IIMLS method is

    where xI(I=1,2,···,n)is the node whose influencing domain covers x ∈Rn,andΦI(x)is the shape function given by

    with

    The element in thei-th row andj-th column of matrix

    3 The DS-VMIEFG Method for 3D SPCD Problems

    The following stationary three-dimensional convection-diffusion problem is considered:

    wherefis a known source term and Γ is the boundary of domain Ω.u=u(x)is an undetermined function,a=(a1,a2,a3)Tis the velocity field,κ?0 is the very small diffusion coefficient,anduDis a prescribed function on the boundary.

    By using the dimension splitting method,the problem in(12)can be transformed into a series of 2D problems on the coordinate plane of(x,y):

    wherezk,(k=0,1,2,···,L)denote the discretized nodes in the dimension splitting direction onz,f|z=zkf (x,y,zk)and Ωk?R2(k=0,1,2,···,L)denote the dimension splitting plane such that

    Define the subscript notation in partial derivatives as

    The variational weak form of Eq.(13)is

    Using the variational multiscale method, the functions are broken down into two parts of the coarse and fine scales as

    From Eqs.(18)and(16),we have

    Decomposing Eq.(19)into coarse-scale and fine-scale parts leads to

    and

    From Eq.(21),it follows that

    On the boundary, the fine-scale function can be seen as zero.The coefficient ccellhas the following form

    where λcell(z)is solved from the ordinary differential equation with zero boundary conditions:

    Then it follows that

    whereτ=

    Omitting the superposed bars and coupling Eqs.(20)and(33),we have

    where

    The summation expression in Eq.(34) denotes the effect of the fine scale for obtaining stale solutions.

    On Ωk,define the numerical solution space as

    where Φi(x)is solved from the IIMLS method on the 2D splitting surface Ωk.

    Omitting the higher derivatives in the stability term, from Eq.(37), we can obtain the linear equations as

    where u(k)is the vector formed by the value to be evaluated on the node in Ωk,and

    Eq.(38)is the discrete system of equations on the 2D dimension-splitting surface Ωk.Next,the global discrete equations on Ω will be realized in thezdirection using the IIMLS method.It follows from the IIMLS method that

    where Φi(zk)is calculated by the IIMLS method in thezdirections,and Λ(xk)is the index set of nodes in influence domain of nodezk.

    Using Eqs.(46)and(47)and the interpolating property,the whole discrete equations of the DSVMIEFG method for the 3D SPCD problems can be assembled as

    Substituting the boundary condition into Eq.(48)directly,the solutions for the three-dimensional convection-diffusion problem will be solved from Eq.(48).

    4 Numerical Examples

    In this section,the validity of the method of this paper will be verified by two examples.We take the cubic spline function as the weight function in the IIMLS method.The integration scheme uses a rectangular 4×4 Gaussian numerical integration.Leth1,h2andh3represent the node spacing in thex,yandzdirections,respectively.On the two-dimensional split surface,the influence domain of the node is rectangular with radius dmax×(h1,h2),and dmax is a scalar to adjust the precision of the solution.In Eq.(48),the radius of influence domain is dmax2×h3.And the linear and quadratic basis functions are used in Eqs.(36)and(46),respectively.

    Define the relative error by

    whereuhis the numerical solution andNis number of all discrete nodes.

    Example 1.The first consideration is a singularly perturbed convection-diffusion problem on a cube with an exact solution as

    The velocity field parameters are fixed to be= 1.When the small diffusion coefficient isκ=10-9and the regular 41×41×21 nodes distribution is used,the contour distribution of the exact solution and the numerical solution of the method of this paper atz=0.1,0.3,0.5,0.7,0.9 are shown in Figs.1a and 1b with dmax=1.2.And the corresponding numerical solution of the DSEFG method without the stable term is shown in Fig.1c.From Fig.1,we can see that the DS-EFG method without coupling the VM method cannot obtain the stable solution for the CD problems with an almost singular diffusion coefficient.However,the method in this paper can still bring stable numerical solutions in the case of extremely small diffusion coefficients.

    Figure 1:The contour distribution of the exact and numerical solutions at z=0.1,0.3,0.5,0.7,0.9 for Example 1

    When the small coefficients are respectivelyκ= 10-6,10-9,10-12,10-15,10-18, the corresponding relative errors for 41×41×21 and 65×65×26 regular nodes distributions are shown in Table 1.The results show that for almost singular diffusion coefficients,our method of this paper still has a very stable solution.

    When the nodes distribution is 41×41×21, the relative errors for different values of dmax =1.1,1.2,···,3 are given in Fig.2.This figure shows that the DS-VMIEFG method of this paper has higher numerical accuracy when dmax is around 1.2.

    Table 1: The relative errors for different diffusion coefficients

    Figure 2:The relative errors for different values of dmax=1.1,1.2,···,3 with the nodes distribution 41×41×21

    To study the convergence, when there are 21 splitting points in thezdirection and 17 × 17,33×33,65×65,129×129 nodes on the 2D splitting surface,the relative errors are shown in Fig.3.It can be seen that as the number of nodes increases,the numerical solution gradually converges to the exact solution.

    Figure 3: The relative errors for different regular nodes distribution of 17 × 17, 33 × 33, 65 × 65,129×129 nodes on the 2D splitting surface with dmax=1.2 and h3 =0.05

    Example 2.The second considered convection-diffusion problem has the following exact solution as[62]

    The parameters area1= cosα·cosβ,a2= cosα·sinβ,a3= sinα,whereα= 35o,β= 45o.The source termfand the boundary conditions are obtained from the analytical solution of Eq.(51).

    Whenκ=10-9and applying the regular 41×41×21 nodes distribution,we presented the contour distribution of the solution atz= 0.1,0.3,0.5,0.7,0.9 in Fig.4 with dmax = 1.2.And results of the method of this paper and the DS-EFG method are respectively shown in Figs.4b and 4c.The numerical results of our method agree well with the exact.However,the contours solved by the DSEFG method have obvious oscillations.

    Figure 4: The contour distributions of the exact and numerical solutions at z = 0.1,0.3,0.5,0.7,0.9 for Example 2

    Whenκ= 10-6,10-9,10-12,10-15,10-18, the corresponding relative errors for 41 × 41 × 11 and 65×65×21 regular nodes distributions are shown in Table 2.It can be seen from the results that the DS-VMIEFG method in this paper can still obtain higher precision solutions for the convectiondiffusion problems with high singular diffusion coefficients.

    Table 2: The relative errors for different diffusion coefficients of Example 2

    When using the regular 41×41×11 nodes distribution, we plot the relative errors of different dmax= 1.1,1.2,···,3 in Fig.5.It can be seen that when the value of dmax is around 1.2,the method in this paper can obtain higher calculation accuracy.

    When 21 splitting points are fixed in the z direction,for different node distributions of 17×17,33×33,65×65,129×129 nodes on the 2D split plane,the relative errors are shown in Fig.6.The results show that the solution of the numerical method in this paper is convergent.

    Figure 5:The relative errors for different values of dmax=1.1,1.2,···,3 with the nodes distribution 65×65×11 for Example 2

    Figure 6: The relative errors for different regular nodes distribution of 17 × 17, 33 × 33, 65 × 65,129×129 nodes on the 2D splitting surface with dmax=1.2 and h3 =0.05 for Example 2

    5 Conclusions

    By introducing the DS method into the VMIEFG method, a DS-VMIEFG method for threedimensional singular perturbed convection-diffusion problems is presented in this paper.In the DS-VMIEFG method, the 3D problem is decomposed into a series of 2D problems, and then the weak form of the Galerkin integral is only established on the 2D splitting surfaces by the VMIEFG method.The DS-VMIEFG method can avoid the construction of integral weak form on the 3D domain.The IIMLS method is used to obtain the shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the 3D SPCD problems.The numerical example verifies the effectiveness of the DS-VMIEFG method in the case of very small singularly perturbed diffusion coefficients, and the numerical solution can avoid non-physical numerical oscillations.

    Funding Statement:This work is supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025),and the Natural Science Foundation of Ningbo City,China(Grant Nos.2021J147,2021J235).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精品国产乱码久久久久久男人| 精品一区在线观看国产| 午夜福利乱码中文字幕| 手机成人av网站| 精品一区在线观看国产| 如日韩欧美国产精品一区二区三区| 国产欧美日韩精品亚洲av| 免费看av在线观看网站| 黄色毛片三级朝国网站| 波多野结衣一区麻豆| 亚洲中文av在线| 国产在线观看jvid| 97精品久久久久久久久久精品| 国产一区二区 视频在线| 极品人妻少妇av视频| 日韩制服骚丝袜av| 欧美xxⅹ黑人| 青春草视频在线免费观看| 国产欧美日韩一区二区三区在线| 狠狠精品人妻久久久久久综合| 婷婷色av中文字幕| 老汉色∧v一级毛片| 精品亚洲乱码少妇综合久久| 日韩电影二区| 国产欧美日韩精品亚洲av| 你懂的网址亚洲精品在线观看| 日韩av不卡免费在线播放| 欧美人与性动交α欧美精品济南到| 精品熟女少妇八av免费久了| 少妇的丰满在线观看| 成人18禁高潮啪啪吃奶动态图| 色视频在线一区二区三区| 一本久久精品| 亚洲精品中文字幕在线视频| 搡老岳熟女国产| 亚洲,欧美精品.| 日韩,欧美,国产一区二区三区| 观看av在线不卡| 亚洲色图 男人天堂 中文字幕| 十分钟在线观看高清视频www| 2018国产大陆天天弄谢| 黄色毛片三级朝国网站| 建设人人有责人人尽责人人享有的| av在线老鸭窝| 欧美97在线视频| 精品少妇黑人巨大在线播放| 91精品三级在线观看| 国产亚洲欧美在线一区二区| 高清黄色对白视频在线免费看| 超色免费av| 女人精品久久久久毛片| 欧美少妇被猛烈插入视频| 久久国产亚洲av麻豆专区| 在现免费观看毛片| 精品卡一卡二卡四卡免费| netflix在线观看网站| 9色porny在线观看| 亚洲国产精品一区三区| 少妇粗大呻吟视频| 国产熟女欧美一区二区| 欧美国产精品一级二级三级| 国产亚洲av高清不卡| 欧美变态另类bdsm刘玥| 制服诱惑二区| 99久久99久久久精品蜜桃| 免费高清在线观看视频在线观看| 国产视频首页在线观看| a 毛片基地| 精品一品国产午夜福利视频| 国产成人影院久久av| 欧美少妇被猛烈插入视频| 亚洲专区国产一区二区| 欧美日本中文国产一区发布| 中国美女看黄片| 国产精品 国内视频| 亚洲欧洲日产国产| 午夜久久久在线观看| 国产男人的电影天堂91| 黄色怎么调成土黄色| 老司机影院成人| 亚洲专区中文字幕在线| 一区二区日韩欧美中文字幕| 亚洲中文av在线| 日韩一本色道免费dvd| 色婷婷av一区二区三区视频| 成人影院久久| 一本久久精品| 黄色 视频免费看| 久热这里只有精品99| 最近中文字幕2019免费版| 亚洲熟女精品中文字幕| 国产亚洲午夜精品一区二区久久| 久久人人爽人人片av| 亚洲成人国产一区在线观看 | 久久国产精品人妻蜜桃| 悠悠久久av| 美女高潮到喷水免费观看| 国产一区二区在线观看av| 精品卡一卡二卡四卡免费| 亚洲专区中文字幕在线| 91精品三级在线观看| 肉色欧美久久久久久久蜜桃| 成年人黄色毛片网站| 午夜激情久久久久久久| 真人做人爱边吃奶动态| 久久久久国产精品人妻一区二区| 精品亚洲乱码少妇综合久久| 男女床上黄色一级片免费看| 欧美精品一区二区大全| 亚洲av成人精品一二三区| 国产人伦9x9x在线观看| 最近手机中文字幕大全| 中文字幕亚洲精品专区| 高清视频免费观看一区二区| 亚洲av男天堂| 日韩中文字幕欧美一区二区 | 黄色毛片三级朝国网站| avwww免费| 十八禁人妻一区二区| 久久青草综合色| 女人被躁到高潮嗷嗷叫费观| 老熟女久久久| 日韩中文字幕视频在线看片| 免费观看a级毛片全部| 制服诱惑二区| 中国国产av一级| 一级a爱视频在线免费观看| 波多野结衣av一区二区av| 久久狼人影院| 国产精品.久久久| 亚洲黑人精品在线| 又大又黄又爽视频免费| av又黄又爽大尺度在线免费看| 青春草亚洲视频在线观看| 我要看黄色一级片免费的| 国产成人欧美| 亚洲精品久久成人aⅴ小说| 99精国产麻豆久久婷婷| 别揉我奶头~嗯~啊~动态视频 | 各种免费的搞黄视频| 国产成人免费无遮挡视频| 建设人人有责人人尽责人人享有的| 午夜免费观看性视频| 99国产精品一区二区蜜桃av | 99久久人妻综合| 日本a在线网址| 成人影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 亚洲国产最新在线播放| 精品国产一区二区三区四区第35| 婷婷色综合大香蕉| 777久久人妻少妇嫩草av网站| 亚洲久久久国产精品| 国产成人一区二区三区免费视频网站 | 亚洲精品久久午夜乱码| avwww免费| 午夜av观看不卡| 欧美乱码精品一区二区三区| 91麻豆精品激情在线观看国产 | 少妇猛男粗大的猛烈进出视频| 亚洲欧美色中文字幕在线| 日韩av在线免费看完整版不卡| 高潮久久久久久久久久久不卡| 国产高清视频在线播放一区 | 啦啦啦在线观看免费高清www| 亚洲欧美激情在线| 免费观看av网站的网址| 中文字幕av电影在线播放| 十八禁高潮呻吟视频| 国产成人精品在线电影| 午夜久久久在线观看| 少妇粗大呻吟视频| 国产黄色免费在线视频| 国产在视频线精品| 国产91精品成人一区二区三区 | 观看av在线不卡| 欧美人与性动交α欧美软件| 精品人妻熟女毛片av久久网站| 99久久精品国产亚洲精品| 欧美日韩av久久| 亚洲精品美女久久久久99蜜臀 | 欧美xxⅹ黑人| 国产片内射在线| 欧美成人精品欧美一级黄| 久久中文字幕一级| 国产99久久九九免费精品| 天天影视国产精品| 精品国产乱码久久久久久小说| 国产精品熟女久久久久浪| 午夜福利乱码中文字幕| 最新在线观看一区二区三区 | 国产xxxxx性猛交| 一二三四社区在线视频社区8| 美国免费a级毛片| 欧美日韩黄片免| 精品亚洲成国产av| 91精品三级在线观看| 一区二区三区精品91| 高清av免费在线| 国产片特级美女逼逼视频| 国产精品麻豆人妻色哟哟久久| 99国产综合亚洲精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲中文日韩欧美视频| 国产爽快片一区二区三区| 岛国毛片在线播放| 婷婷色综合大香蕉| 久久99热这里只频精品6学生| 三上悠亚av全集在线观看| 亚洲国产精品999| a级毛片在线看网站| 色综合欧美亚洲国产小说| 中文乱码字字幕精品一区二区三区| 亚洲精品国产av蜜桃| 高潮久久久久久久久久久不卡| 欧美另类一区| 国产日韩欧美视频二区| 啦啦啦 在线观看视频| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| 国产免费又黄又爽又色| 一级片免费观看大全| 久久人人爽av亚洲精品天堂| 91字幕亚洲| 欧美日韩亚洲综合一区二区三区_| 国产精品三级大全| 精品少妇一区二区三区视频日本电影| 精品少妇黑人巨大在线播放| 国产一区二区在线观看av| 中文字幕精品免费在线观看视频| 亚洲成人免费av在线播放| 国产av精品麻豆| 久久久久久亚洲精品国产蜜桃av| 两个人看的免费小视频| 一本大道久久a久久精品| 在线观看人妻少妇| 久久人妻熟女aⅴ| 美女扒开内裤让男人捅视频| 亚洲欧美中文字幕日韩二区| 久久精品aⅴ一区二区三区四区| 国产精品国产三级专区第一集| av天堂久久9| 亚洲熟女毛片儿| 亚洲av美国av| 最黄视频免费看| 啦啦啦视频在线资源免费观看| 精品人妻一区二区三区麻豆| 男女之事视频高清在线观看 | 高清av免费在线| 欧美精品亚洲一区二区| 国产不卡av网站在线观看| 国产精品国产三级专区第一集| 自拍欧美九色日韩亚洲蝌蚪91| 伊人亚洲综合成人网| 国产成人影院久久av| www.精华液| 成年人午夜在线观看视频| 久久久国产欧美日韩av| 国产在线免费精品| 国产极品粉嫩免费观看在线| 久久久久久久精品精品| 黄网站色视频无遮挡免费观看| tube8黄色片| 波野结衣二区三区在线| 后天国语完整版免费观看| 中国国产av一级| 国产成人欧美| 国产精品.久久久| 性少妇av在线| av不卡在线播放| 久久天堂一区二区三区四区| 日本av免费视频播放| 热re99久久国产66热| 国产精品久久久av美女十八| 纵有疾风起免费观看全集完整版| 久久国产精品人妻蜜桃| 纯流量卡能插随身wifi吗| 精品久久久久久久毛片微露脸 | 亚洲精品美女久久久久99蜜臀 | 19禁男女啪啪无遮挡网站| 中文字幕最新亚洲高清| 国产午夜精品一二区理论片| svipshipincom国产片| 久久人人97超碰香蕉20202| 男女之事视频高清在线观看 | 亚洲欧美一区二区三区久久| av在线老鸭窝| 男女边摸边吃奶| 欧美中文综合在线视频| 在线观看www视频免费| 热99久久久久精品小说推荐| 一级,二级,三级黄色视频| 9色porny在线观看| 中文字幕亚洲精品专区| 99精国产麻豆久久婷婷| 最新在线观看一区二区三区 | 欧美在线黄色| 一区二区三区精品91| 免费在线观看日本一区| 亚洲国产精品国产精品| 国产免费福利视频在线观看| 搡老乐熟女国产| 婷婷成人精品国产| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| 又紧又爽又黄一区二区| www.av在线官网国产| 久久久久国产一级毛片高清牌| 一级黄片播放器| 19禁男女啪啪无遮挡网站| 99精品久久久久人妻精品| 别揉我奶头~嗯~啊~动态视频 | 这个男人来自地球电影免费观看| xxx大片免费视频| 亚洲国产欧美网| 每晚都被弄得嗷嗷叫到高潮| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区 | 亚洲人成网站在线观看播放| 国产国语露脸激情在线看| 欧美人与性动交α欧美软件| kizo精华| 女警被强在线播放| 欧美日韩精品网址| 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| 少妇 在线观看| av有码第一页| 精品欧美一区二区三区在线| 建设人人有责人人尽责人人享有的| videosex国产| 亚洲美女黄色视频免费看| 精品国产乱码久久久久久男人| 国产亚洲欧美精品永久| 99热全是精品| 老汉色av国产亚洲站长工具| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 国产精品免费大片| 久久精品aⅴ一区二区三区四区| 啦啦啦在线观看免费高清www| 天天躁夜夜躁狠狠躁躁| 亚洲av国产av综合av卡| 老司机午夜十八禁免费视频| 久久久久久亚洲精品国产蜜桃av| 国语对白做爰xxxⅹ性视频网站| 日韩视频在线欧美| 亚洲av日韩在线播放| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 国产在线视频一区二区| 亚洲欧美成人综合另类久久久| 精品国产国语对白av| 久久狼人影院| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 日韩大码丰满熟妇| 免费在线观看日本一区| 亚洲图色成人| 亚洲一区二区三区欧美精品| 午夜日韩欧美国产| 另类亚洲欧美激情| 菩萨蛮人人尽说江南好唐韦庄| 一级黄色大片毛片| 90打野战视频偷拍视频| 亚洲欧洲精品一区二区精品久久久| 日本五十路高清| 嫁个100分男人电影在线观看 | 亚洲人成网站在线观看播放| 久久这里只有精品19| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久男人| 青青草视频在线视频观看| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 精品少妇黑人巨大在线播放| 久久国产亚洲av麻豆专区| videosex国产| 又黄又粗又硬又大视频| 亚洲黑人精品在线| 黄网站色视频无遮挡免费观看| 在线观看免费日韩欧美大片| 亚洲国产成人一精品久久久| 99久久精品国产亚洲精品| 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频| 1024香蕉在线观看| 国产成人av激情在线播放| 欧美日本中文国产一区发布| netflix在线观看网站| 黄色视频不卡| 两个人看的免费小视频| 午夜福利乱码中文字幕| 七月丁香在线播放| 男人添女人高潮全过程视频| 国产片内射在线| 亚洲,欧美精品.| 日本av手机在线免费观看| 黄色一级大片看看| 欧美乱码精品一区二区三区| 纵有疾风起免费观看全集完整版| 国产日韩欧美视频二区| av福利片在线| 亚洲精品一区蜜桃| 一级片'在线观看视频| 两个人免费观看高清视频| 国产片内射在线| 一本一本久久a久久精品综合妖精| 亚洲欧美日韩高清在线视频 | 欧美黄色片欧美黄色片| 久久精品久久精品一区二区三区| 精品久久久久久久毛片微露脸 | 一区二区三区激情视频| 日本午夜av视频| 天天躁夜夜躁狠狠躁躁| 可以免费在线观看a视频的电影网站| 男女无遮挡免费网站观看| 激情五月婷婷亚洲| 精品人妻熟女毛片av久久网站| 少妇猛男粗大的猛烈进出视频| 最近中文字幕2019免费版| 久久精品亚洲熟妇少妇任你| 亚洲av国产av综合av卡| 中文字幕制服av| 免费不卡黄色视频| 久久亚洲精品不卡| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 老司机亚洲免费影院| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| 麻豆国产av国片精品| 午夜两性在线视频| 大香蕉久久网| 国产亚洲欧美在线一区二区| 激情五月婷婷亚洲| 国产精品麻豆人妻色哟哟久久| 国产成人免费无遮挡视频| 大香蕉久久网| 99国产精品一区二区三区| 人成视频在线观看免费观看| 亚洲熟女毛片儿| 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久 | 人妻一区二区av| 黄色毛片三级朝国网站| 国产免费福利视频在线观看| 黄网站色视频无遮挡免费观看| 别揉我奶头~嗯~啊~动态视频 | 日本a在线网址| 美女国产高潮福利片在线看| 中文欧美无线码| 亚洲av成人不卡在线观看播放网 | 一边摸一边抽搐一进一出视频| 丝袜人妻中文字幕| 韩国精品一区二区三区| 国产男女内射视频| 亚洲精品美女久久av网站| 精品国产国语对白av| 国产成人精品无人区| 国产视频一区二区在线看| 中文欧美无线码| 美女中出高潮动态图| 伦理电影免费视频| 亚洲av日韩精品久久久久久密 | 91精品三级在线观看| 午夜福利视频精品| 国产亚洲精品久久久久5区| 97精品久久久久久久久久精品| 日本午夜av视频| 久久久国产欧美日韩av| 晚上一个人看的免费电影| av福利片在线| 男女午夜视频在线观看| 少妇人妻久久综合中文| av天堂在线播放| 人人妻人人澡人人看| 另类精品久久| 一级片免费观看大全| 国产精品久久久久久精品电影小说| 免费观看人在逋| 亚洲欧美一区二区三区久久| 午夜福利免费观看在线| 啦啦啦视频在线资源免费观看| 亚洲,欧美,日韩| 国产一区二区 视频在线| 人妻一区二区av| 91老司机精品| 久久久欧美国产精品| 久久国产亚洲av麻豆专区| 满18在线观看网站| 日韩一区二区三区影片| 性少妇av在线| 国产又色又爽无遮挡免| 国产免费一区二区三区四区乱码| 亚洲激情五月婷婷啪啪| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲午夜精品一区二区久久| 黄色一级大片看看| 亚洲欧美中文字幕日韩二区| 日韩伦理黄色片| 欧美97在线视频| 久久久久久久精品精品| 男女免费视频国产| 国产成人欧美| 一级片'在线观看视频| 精品人妻熟女毛片av久久网站| 亚洲自偷自拍图片 自拍| 只有这里有精品99| 97在线人人人人妻| 亚洲欧洲精品一区二区精品久久久| 视频区欧美日本亚洲| 手机成人av网站| 欧美日韩一级在线毛片| 国产精品香港三级国产av潘金莲 | videosex国产| 久久久久国产精品人妻一区二区| 国产精品秋霞免费鲁丝片| 国产主播在线观看一区二区 | cao死你这个sao货| 亚洲国产欧美日韩在线播放| 一级片'在线观看视频| 亚洲国产日韩一区二区| 亚洲午夜精品一区,二区,三区| av福利片在线| 午夜免费观看性视频| 在线观看免费高清a一片| 国产女主播在线喷水免费视频网站| 少妇粗大呻吟视频| 亚洲国产中文字幕在线视频| 看十八女毛片水多多多| 一二三四在线观看免费中文在| 亚洲av成人精品一二三区| 国产精品久久久人人做人人爽| 亚洲中文日韩欧美视频| 丝袜人妻中文字幕| 日本91视频免费播放| 天堂8中文在线网| 日本a在线网址| 国产成人欧美| 午夜久久久在线观看| 成人免费观看视频高清| 秋霞在线观看毛片| 首页视频小说图片口味搜索 | 天天躁夜夜躁狠狠躁躁| 亚洲免费av在线视频| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 亚洲成色77777| 2021少妇久久久久久久久久久| 国产免费福利视频在线观看| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区免费开放| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 男女午夜视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利一区二区在线看| 国产视频首页在线观看| 亚洲av美国av| 免费一级毛片在线播放高清视频 | 日本av手机在线免费观看| 色94色欧美一区二区| 欧美国产精品va在线观看不卡| 国产女主播在线喷水免费视频网站| 一边摸一边做爽爽视频免费| 婷婷色综合大香蕉| 涩涩av久久男人的天堂| 亚洲国产欧美在线一区| 蜜桃在线观看..| av国产精品久久久久影院| 纵有疾风起免费观看全集完整版| 日韩制服丝袜自拍偷拍| 久久午夜综合久久蜜桃| 久久精品国产亚洲av高清一级| 久久久久久久国产电影| 搡老乐熟女国产| 欧美xxⅹ黑人| 伊人久久大香线蕉亚洲五| 国产97色在线日韩免费| 成年动漫av网址| 脱女人内裤的视频| 少妇裸体淫交视频免费看高清 | 纵有疾风起免费观看全集完整版| 99热全是精品| 视频区图区小说| 欧美精品高潮呻吟av久久| 国产人伦9x9x在线观看| 亚洲中文av在线| 亚洲欧美清纯卡通| 久久久亚洲精品成人影院| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 国产真人三级小视频在线观看| 欧美精品av麻豆av| 性高湖久久久久久久久免费观看| 婷婷色综合www| 久久久亚洲精品成人影院| 精品人妻1区二区| 亚洲精品久久午夜乱码| 日韩av在线免费看完整版不卡| 丁香六月天网| 亚洲精品久久午夜乱码| 1024视频免费在线观看| 搡老岳熟女国产| 色播在线永久视频| 91国产中文字幕| 一区二区日韩欧美中文字幕| 婷婷色综合www| 国产国语露脸激情在线看| 深夜精品福利| 亚洲精品一卡2卡三卡4卡5卡 |