• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Apodized Fiber Bragg Grating Applied for Medical Sensors:Performance Investigation

    2023-03-12 09:00:14RamyaArumugamRamamoorthyKumarSamiappanDhanalakshmiKhinWeeLaiLeiJiaoandXiangWu

    Ramya Arumugam,Ramamoorthy Kumar,★,Samiappan Dhanalakshmi,Khin Wee Lai,Lei Jiaoand Xiang Wu

    1Department of Electronics and Communication Engineering,College of Engineering and Technology,SRM Institute of Science and Technology,Kattankulathur,Chengalpattu,603203,India

    2Department of Biomedical Engineering,Faculty of Engineering,Universiti Malaya,Kuala Lumpur,50603,Malaysia

    3General Hospital of Xuzhou Mining Group,Xuzhou,221000,China

    4School of Medical Information&Engineering,Xuzhou Medical University,Xuzhou,221000,China

    ABSTRACT Sensors play an important role in shaping and monitoring human health.Exploration of methods to use Fiber Bragg Grating(FBG)with enhanced sensitivity has attracted great interest in the field of medical research.In this paper,a novel apodization function is proposed and performance evaluation and optimization of the same have been made.A comparison was conducted between various existing apodization functions and the proposed one based on optical characteristics and sensor parameters.The results evince the implementation of the proposed apodization function for vital sign measurement.The optical characteristics considered for evaluation are Peak Resonance Reflectivity level,Side Lobes Reflectivity level and Full Width Half Maximum(FWHM).The proposed novel apodization novel function has better FWHM,which is narrower than the FWHM of uniform FBG.Sensor characteristics like a quality parameter,detection accuracy and sensitivity also show improvement.The proposed novel apodization function is demonstrated to have a better shiftin wavelength in terms of temperature and pulse measurement than the existing functions.The sensitivity of the proposed apodized function is enhanced with a Poly-dimethylsiloxane coating of varying thickness,which is 6 times and 5.14 times greater than uniform Fiber Bragg grating and FBG with the proposed novel apodization function,respectively,enhancing its utilization in the field of medicine.

    KEYWORDS Fiber bragg grating;apodization;optical sensing;temperature;strain;sensitivity

    1 Introduction

    Fiber Bragg Gratings(FBGs)is a fiber with a core refractive index induced with periodic variation in the direction of the fiber axis for a length called grating length.A specific wavelength is reflected back due to this periodic grating and it is known as Bragg wavelength (λB).The periodicity (Λ),modulation of the index (Δn) and length (L) of the grating determines and manages the optical properties of FBG[1–4].The advantages of these grating-based sensors are their resistance to EMI,lightweight, robustness, compact size, stability, remote sensing ability, easy fabrication, installation and maintenance [5,6].This enables their implementation in various areas of the optical field such as structural health monitoring, medical applications, measurement of temperature and strain in aerospace, as lasers, as buffers, as filters, as multiplexers [7–12], heat transfer application [13] and sewer corrosion[14].Uniform FBG has a main lobe corresponding to Bragg wavelength in addition to the presence of many side lobes.The occurrence of these side lobes affects the peak resonance detection,making it undesirable characteristics for sensing applications.Apodization is the technique that can be applied to reduce or eliminate these side lobes.Various articles [15–23] suggested implementing the existing functions or proposed novel apodization functions for the improvement of sensing characteristics,strain and temperature measurement,dispersion compensation,structural health monitoring,etc.In a few literatures,sensitivity enhancement has been achieved by using coating materials [24,25].In the earlier stage, metals and their compounds having high thermal expansion coefficients, were used to amplify temperature sensitivity [26–29].Due to the complex fabrication process and residual stress,this method was not widely applicable.Later,the utilization of polymer with high thermal expansion and thermo optic coefficient has been researched to enhance the sensitivity.Various works on different polymers such as polydimethylsiloxane,polyvinyl alcohol,polycarbonate,polymethylmethacrylate and polystyrene have been reported[30–43].The variant of grating,known as Bragg Fibers, is implemented to enhance sensing applications [44–46].The light propagated in the cladding region is measured for sensing the measure.The application of artificial intelligence improves the performance of the sensor in health care which makes it a promising future in sensor technology [47–49].In this work, a novel apodization function is proposed to enhance the sensing characteristics and to maximize the usage of FBG as a vital sign sensor,which measures pulse as strain and temperature.Enhancement in wavelength shift in the sensing signal is also measured.Improvement in sensitivity is reported using polydimethylsiloxane coating.Table 1 shows the comparison between the existing and the proposed apodization functions for various applications.

    Table 1: Comparison of existing and proposed work

    Table 1 (continued)Reference Existing apodization Proposed apodization Application[18] Uniform,Raised sine,Sinc,Gaussian,Nutall-Temperature measurement in DWDM systems.[19] Gaussian,Tanh4z g(x)=J0images/BZ_300_1070_830_1095_876.pngcosimages/BZ_300_1166_830_1197_876.png3z Limages/BZ_300_1250_830_1281_876.pngimages/BZ_300_1281_830_1306_876.png8images/BZ_300_1318_838_1341_884.pngimages/BZ_300_1328_830_1353_876.pngcosimages/BZ_300_1424_830_1455_876.png2z L -1images/BZ_300_1587_830_1618_876.pngimages/BZ_300_1618_830_1643_876.png4 Structural health Monitoring[21] Sinc,Gaussian,Raised cosine--Proposed Uniform,Gaussian,Barthan,Sine,Welch,Cones,Hamming,Blackman,Nutall,Bessel g(x)=images/BZ_300_1177_1115_1209_1160.png1–images/BZ_300_1262_1115_1291_1160.pngimages/BZ_300_1291_1128_1322_1174.pngx- L 2images/BZ_300_1441_1128_1472_1174.png2images/BZ_300_1487_1128_1537_1174.pngimages/BZ_300_1537_1128_1568_1174.pngL 2images/BZ_300_1609_1128_1640_1174.png2images/BZ_300_1654_1115_1683_1160.pngimages/BZ_300_1683_1115_1714_1160.png4 Medical sensing applications

    The organization of the present work is as follows:Section 2 gives the principle of operation and the coupled mode theory of uniform FBG,the functions of various existing apodization profiles and properties of coating materials considered for the proposed apodization function.Section 3 deals with the results and discussion.Section 4 summarizes the conclusion,followed by references.

    2 Theoretical Background

    2.1 Principle of Uniform Fiber Bragg Grating(UFBG)

    The refractive index variation of the Fiber Bragg Grating with periodic variation along its axis is given as

    where ncoreis the refractive index of the core region,z is the direction of propagation,Λis the grating periodicity,Δn is the refractive index modulation.Bragg wavelength(λB),is given as

    where neffis the core effective refractive index.Using couple mode theory,the reflectivity of uniform grating FBG is given as

    wherekis the coefficient of coupling,Δβis the detuning wave vector and is given asβ-(Π/Λ) and s2=k2–β2.k,the coupling coefficient is represented as

    where Mp is part of the power contained in fiber core.βis the propagation constant and given as 2πncore/λ.At centre wavelength,maximum reflectivity happens asΔβ=0.

    The strain-based shift in Bragg wavelength is given as

    where peis the effective photoelastic coefficient,neffis the effective refractive index and vfis the Poisson ratio.p11and p12are Pockel’s piezo coefficients for strain optic tensor.For silica,p11=0.121,p12=0.27 and vf=0.17.

    The wavelength shift due to the change in temperature is given as

    whereαfis thermal expansion coefficient andαnis thermo optic coefficient and its corresponding values are 5.5×10–7and 8.3×10–6respectively.The sensitivity of bragg wavelength for both temperature and strain can be represented as

    Fig.1 shows the diagrammatic representation of the working of FBG.

    Figure 1:Theory of FBG

    2.2 Coupled Mode Theory

    The propagation of electromagnetic waves inside the fiber core can be represented using coupled mode theory(CMT).The electric field distribution in forward and backward propagating waves can be defined by equations as shown below,respectively.

    where A(z)and B(z)are complex amplitudes and are described as

    For 0 ≤z ≤L.By applying boundary conditions B(0)=Bo and A(L)=AL and solving for closed form solutions,

    Scattering matrix is used to express the reflected and transmitted wave as

    Substituting values ofa(0)andb(L)from Eqs.(14)and(15)results in

    To obtain the general solution of coupled mode equation, an effective method known as the Transfer matrix method(T-matrix)has been used,in which a single grating is subdivided into a series of separate gratings(N)of uniform type and described aa s square 2*2 matrix.This provides greater flexibility and the precision is based on the number of sections,N.The T-matrix is described as

    where,

    The reflectivity of FBG is expressed as

    2.3 Existing Apodization Functions

    The apodization functions considered for comparison of performance evaluation are listed in this section.Apodization functions are chosen from the literature[15–21].

    1.Uniform

    2.Gaussian

    3.Barthan

    4.Sine

    5.Welch

    6.Cones

    7.Hamming

    8.Blackman

    9.Nutall

    10.Bessel[17]

    J0-Bessel function of the first kind of zero order and L is the grating length.

    2.4 Proposed Apodization Function

    In this work, we propose a new apodization function for better sensor characteristics and reflectivity level.The above mentioned characteristics can be attained by using a compact transform which results in narrow bandwidth with high resolution.The strategy to make a transform compact is to increase the power of the exponent or multiply with the increasing functions.The former one is implemented to optimize the apodization function, maximizing its usage as a sensor.The proposed

    apodization function is given in Eq.(33).

    where L is the grating length.The performance of the existing and proposed apodization functions can be analyzed based on side lobe reflectivity level(MSL),sensitivity,side lobe suppression ratio(SLSR),quality parameter and detection accuracy[16].

    The schematic representation of the proposed novel apodized FBG based sensor system is shown in Fig.2.It embodies source, FBG based sensor, circulator, data acquisition system and Optical interrogator.FBG interrogator and PC are used to measure the reflected signal to determine the measurand.The measurement of applied temperature and strain are given as a shift in peak wavelength.

    Figure 2:Schematic diagram of sensing system

    2.5 Optical Characteristics of Coating Materials

    The coating on uniform FBG enhances its sensitivity.The schematic diagram of UFBG with coating is shown in Fig.3.Polymer based materials such as Poly-dimethylsiloxane (PDMS), Polycarbonate (PC) and Polymethyl methacrylate (PMMA) have been considered for coating on FBG to enhance sensitivity.These polymers are safe on human skin and can be used directly for noninvasive measurements using FBG on human beings.These materials also have good mechanical and temperature stability.The optical properties of these materials are given in Table 2.Though all materials are safe on human skin, due to its high thermal expansion and thermo optic coefficient,PDMS is considered and performance is analyzed in enhancing the sensitivity of the proposed apodization function.The advantages of PDMS are its low cost,high thermal stability,low electrical conductivity,transparency in optical characteristics,high durability and oxidative stability,less toxicity and biocompatibility[41–43].Sylgard 184 type of PDMS is regarded for analysis.

    Figure 3:Schematic diagram of UFBG with coating

    Table 2: Optical characteristics of different polymers

    3 Results and Discussion

    Using Opti-Grating software,simulations to investigate the optical properties of various existing apodization functions with the proposed apodization function are evaluated by considering a single mode fiber(silica)with 1.46 as refractive index of core and 1.45 as refractive index of cladding.The center wavelength of 1550 nm is considered.The length of the grating has been varied from 1 mm to 15 mm and index depth is varied from 1×10–4to 2.5×10–4for performance evaluation.Fig.4 exhibits the profile of all the existing apodizations studied and the proposed novel apodization function.Compared to other existing functions,the proposed apodization provides better truncation at both the ends of the grating length which effectively reduces the side lobe levels and narrows the bandwidth.

    Figure 4: (Continued)

    Figure 4: (Continued)

    Figure 4: (Continued)

    Figure 4: (Continued)

    Figure 4: Profile of various apodizations (a) Uniform (b) Gaussian (c) Barthan (d) Sine (e) Welch(f)Cones(g)Hamming(h)Blackman(i)Nutall(j)Bessel(k)Proposed

    An increase in the reflectivity level of the main lobe,for varying grating length withΔn=0.0001 and index modulation with grating length 10 mm,is shown in Figs.5a and 5b.In uniform FBG,peak resonance level increases by 99.5%and 96.54%,respectively,for increasing index change and grating length.The proposed apodization function shows 88.4% and 98.28% increase in reflectivity level of peak resonance for increasing index change and grating length,respectively.

    Figure 5: Mainlobe reflectivity level for existing and proposed Apodization for (a) Varying Grating length(b)Varying Index Change

    Figs.6a shows the increasing reflectivity level of the left side lobe and 6b shows the reflectivity of the right-side lobe for increasing modulation index.Figs.7a and 7b show the reflectivity of the left and right-side lobes for increasing grating length.The non-linearity in the side lobe reflectivity level is due to the mismatch between the scattered light and the spacing of the high refractive zone.

    Figure 6:Reflectivity level for increasing modulation index(a)Left-side lobe(b)Right-side lobe

    Figure 7:Reflectivity level for increasing grating length(a)Left-side lobe(b)Right-side lobe

    In cones apodization function, left and right-side lobe levels increase by 22.84% and 22.43%,respectively,for increasing index change and by 63.02%and 71.04%,respectively,for increasing grating length.Likewise,for Gaussian function,left and right-side lobe level increases by 29.67%and 22.04%,respectively,for increasing index change and by 59.19%and 66.55%respectively for increasing grating length.The proposed apodization function shows 22.39%and 22.92%increase in the left and right-side lobe reflectivity levels,respectively,for increasing index modulation and 68.15%and 74.56%increase in left and right-side lobe reflectivity levels respectively for increasing grating length.

    Table 3 shows the optical properties of various apodization profiles.The Least FWHM of 0.06 nm is given by Gaussian, Hamming and Blackman apodizations.Better detection accuracy is obtained by narrow FWHM.The second lowest FWHM of 0.07 nm is achieved by the proposed apodization function,which is 41.67%lesser than the FWHM of UFBG.The proposed novel apodized function has a side lobe level of-34.6852 dB which is nearer to Gaussian and shows 148%reduction compared to UFBG.A side lobe suppression ratio of-30.3563 dB which is 71.16%more compared to UFBG has been attained by the proposed apodization function.

    Table 3: Apodization profiles:Optical properties

    Table 4 shows evaluation parameters considered for the comparison of existing and proposed apodization function.The proposed novel apodization results in a greater sensitivity of 5.9083 AU/RIU and the Uniform apodization has lower sensitivity(1.6783 AU/RIU).The sensitivity of the proposed apodization function increases by 3.52 times, compared to UFBG.The proposed novel apodization function has a detection accuracy of 22383 which is 71.42%more compared to UFBG.The Blackman apodization has the peak quality parameter of 96.5067 AU/nm-RIU.The quality parameter of 84.4043 AU/nm-RIU has been achieved by the proposed system which makes it 503% more than UFBG.Evaluations have been carried out forΔn=0.0001 and L=10 mm.The comparison between the UFBG and the proposed apodization function is tabulated in Table 5.

    Table 4: Apodization profiles:performance evaluation

    Table 5: Comparison between UFBG and the proposed apodization function

    Induced periodic refractive index modulation along the fiber core is given as

    where f(z) is apodization profile function,v is fringe visibility of index change,φ(z)is grating chirp andΔn0is the averaged index change.Eq.(37) explains the dependence of effective modulation on the apodization profile.This dependence is responsible for the shift in the wavelength,as Bragg shift depends on the effective refractive index from Eq.(2).The proposed novel apodization function has an increased wavelength shift for the applied temperature and strain based on this.Wavelength shift for the strain applied is shown in Fig.8a.The strain was applied in steps of 50 με.The proposed novel apodization function achieves a shift of 1.4 pm/με.Change in Bragg wavelength relating to varying temperature(steps of 10°C)is shown in Fig.8b.The proposed apodization function achieves a wavelength shift of 14 pm/°C(Table 4).

    Figure 8:Shift in wavelength for(a)Variation in strain(b)Variation in temperature

    Optimization of grating length (L) and index modulation (Δn) is essential to determine the maximum reflectivity of peak resonance.To achieve 100% reflectivity, a proper selection of ‘L’and ‘Δn’should be made.In this study, simulation was performed for various values of index modulation and the grating length and observations are tabulated as shown in Table 6.Fig.9 shows the graphical representation of Table 6.Reflectivity level of the left and right-side lobes for various index modulations and grating lengths, are shown in Fig.10.The optimized values are calculated as L=15 mm andΔn=0.00025, in which the reflectivity level of peak resonance is 100% and the reflectivity level of the left and right-side lobes are-23.5077 dB and-23.5921 dB,for the proposed apodization function.

    Table 6: Optimization for the proposed function for various index modulations and grating lengths

    Figure 9:Main lobe reflectivity vs.index modulation and grating length

    Sensitivity enhancement with PDMS coating for varying thickness is shown in Fig.11.The temperature sensitivity is 72 pm/°C, which is 5.14 times higher than that of the proposed apodized FBG without coating and 6 times higher than UFBG without coating.The negative thermal expansion coefficient develops a blue shift in the wavelength for increasing temperatures.There exists a nonlinearity in the wavelength shift from 50°C–70°C based on the thickness of the PDMS coating.As the present study focuses on the temperature measurement of human beings,the coating thickness does not show any effect on temperature sensitivity.Strain sensitivity does not show any change and is linear with increasing strain.The wavelength shift is 1.2 pm/μεand shows a red shift.

    Figure 10:Side lobe reflectivity vs.Index modulation and grating length(a)Left-side lobe(b)Rightside lobe

    Figure 11: Sensitivity variation for different coating thickness of PDMS (a) Varying temperature(b)Varying strain

    4 Conclusion

    Apodization functions are implemented to enhance the performance of sensors by suppressing side lobes and making FHWM narrower.The proposed novel apodization is manifested to have suitable performance parameters to implement it as a sensor in the field of medicine.Narrow FWHM,highest sensitivity (3.52 times more compared to UFBG) and detection accuracy (71.42% more than UFBG), make it a preferable solution for sensing employment.Enhancement in sensitivity as 1.4 pm/μεand 14 pm/°C is shown by the proposed novel apodization for strain and temperature measurement respectively.With optimization, maximum reflectivity of 100% has been achieved for 15 mm of grating length and index modulation of 0.00025 for the proposed apodization function.Enhancement in temperature sensitivity of 72 pm/°C was achieved by using PDMS coating, which is 5.14 times greater than the proposed apodization without coating,enabling its implementation for monitoring vital signals in human beings.

    Author Contribution Statement:Ramya Arumugam: Conceptualization, Methodology, Validation,Original Draft Preparation.Ramamoorthy Kumar: Conceptualization, Supervision, Editing and Review.Samiappan Dhanalakshmi:Conceptualization,Supervision,Editing and Review.Khin Wee Lai:Editing and Review.Lei Jiao:Editing and Review.Xiang Wu:Editing and Review.

    Funding Statement:This work was supported in part by Universiti Malaya, and ACU UK under Project No.IF063–2021.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    一级毛片 在线播放| 日日撸夜夜添| 亚洲熟女精品中文字幕| 一级,二级,三级黄色视频| 纵有疾风起免费观看全集完整版| 国产精品不卡视频一区二区| 天天影视国产精品| 丝袜脚勾引网站| 亚洲国产最新在线播放| 五月天丁香电影| 不卡av一区二区三区| 在线 av 中文字幕| 少妇 在线观看| 日韩一区二区三区影片| 三级国产精品片| 亚洲精品国产av蜜桃| 亚洲国产成人一精品久久久| 晚上一个人看的免费电影| 在线亚洲精品国产二区图片欧美| www.自偷自拍.com| 丝袜喷水一区| 国产精品不卡视频一区二区| 亚洲av电影在线进入| 国产精品成人在线| 我的亚洲天堂| 中文字幕制服av| 久久精品国产亚洲av涩爱| 2022亚洲国产成人精品| 久久热在线av| 黄色 视频免费看| 深夜精品福利| 看非洲黑人一级黄片| 日韩成人av中文字幕在线观看| 亚洲精品成人av观看孕妇| 一区福利在线观看| 18在线观看网站| 男女高潮啪啪啪动态图| 一二三四在线观看免费中文在| 男女无遮挡免费网站观看| 国产免费福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 人人妻人人澡人人爽人人夜夜| 久久精品国产自在天天线| av在线播放精品| 女的被弄到高潮叫床怎么办| 青春草视频在线免费观看| av线在线观看网站| 大香蕉久久成人网| 精品久久久精品久久久| 最近手机中文字幕大全| 一本大道久久a久久精品| 一级黄片播放器| 自线自在国产av| 美女中出高潮动态图| 日本黄色日本黄色录像| 高清黄色对白视频在线免费看| 母亲3免费完整高清在线观看 | 亚洲一区二区三区欧美精品| 欧美日韩一级在线毛片| 免费久久久久久久精品成人欧美视频| 国产成人av激情在线播放| 老司机亚洲免费影院| 水蜜桃什么品种好| 国产爽快片一区二区三区| 亚洲三级黄色毛片| 国产毛片在线视频| 亚洲精品一二三| 亚洲精品美女久久av网站| 欧美日本中文国产一区发布| 日本-黄色视频高清免费观看| 超色免费av| 少妇人妻久久综合中文| 91久久精品国产一区二区三区| 91精品伊人久久大香线蕉| 欧美日韩精品网址| www.自偷自拍.com| 亚洲精华国产精华液的使用体验| 久久国产精品大桥未久av| 制服丝袜香蕉在线| av免费观看日本| 国产男女内射视频| 在线观看免费高清a一片| 国产成人aa在线观看| av线在线观看网站| 另类亚洲欧美激情| 波野结衣二区三区在线| 男的添女的下面高潮视频| 国产欧美日韩综合在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久青草综合色| 少妇熟女欧美另类| www.自偷自拍.com| 亚洲欧美成人精品一区二区| 亚洲国产精品一区二区三区在线| 久久久久久久久久久久大奶| 老鸭窝网址在线观看| 亚洲人成电影观看| 亚洲色图 男人天堂 中文字幕| 国产成人免费观看mmmm| 久久久国产一区二区| 国产成人a∨麻豆精品| 女性被躁到高潮视频| 女性被躁到高潮视频| 国产精品国产三级国产专区5o| 久久精品国产鲁丝片午夜精品| 男人添女人高潮全过程视频| 久久久久国产网址| 边亲边吃奶的免费视频| 日韩伦理黄色片| 国产精品三级大全| 日本av手机在线免费观看| 高清欧美精品videossex| 曰老女人黄片| 国产深夜福利视频在线观看| 国产精品.久久久| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 人妻 亚洲 视频| 久久99精品国语久久久| 亚洲综合精品二区| 宅男免费午夜| 国产成人91sexporn| 老司机亚洲免费影院| 国产精品国产av在线观看| 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美亚洲二区| 交换朋友夫妻互换小说| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 亚洲一区二区三区欧美精品| 精品少妇内射三级| 80岁老熟妇乱子伦牲交| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 考比视频在线观看| 欧美日韩视频精品一区| 看免费av毛片| 亚洲av综合色区一区| 在线观看一区二区三区激情| 国产日韩欧美在线精品| 久久精品aⅴ一区二区三区四区 | 一区福利在线观看| 宅男免费午夜| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 久久ye,这里只有精品| 一本久久精品| 久久人人97超碰香蕉20202| 日韩,欧美,国产一区二区三区| 亚洲精品久久久久久婷婷小说| 搡老乐熟女国产| 97精品久久久久久久久久精品| 国产精品久久久av美女十八| 黄色配什么色好看| 中文欧美无线码| 男女边吃奶边做爰视频| 我要看黄色一级片免费的| 国产爽快片一区二区三区| 亚洲国产精品999| 18在线观看网站| 国产亚洲午夜精品一区二区久久| 亚洲四区av| 丁香六月天网| 大陆偷拍与自拍| 欧美精品人与动牲交sv欧美| 1024视频免费在线观看| 精品久久蜜臀av无| 精品少妇内射三级| 久久久久久久大尺度免费视频| 国产不卡av网站在线观看| 满18在线观看网站| 18禁裸乳无遮挡动漫免费视频| av在线播放精品| 亚洲精品在线美女| 亚洲第一av免费看| 色94色欧美一区二区| 亚洲美女黄色视频免费看| 色哟哟·www| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 日韩av免费高清视频| 99久久综合免费| 老汉色∧v一级毛片| 秋霞伦理黄片| 久久国产精品大桥未久av| 精品久久久久久电影网| 一区二区三区四区激情视频| 超碰97精品在线观看| 午夜福利,免费看| 久久99蜜桃精品久久| 国产高清国产精品国产三级| 一二三四在线观看免费中文在| 精品人妻在线不人妻| 天天操日日干夜夜撸| 在线观看三级黄色| 亚洲国产色片| 亚洲三级黄色毛片| 精品福利永久在线观看| 亚洲欧洲日产国产| 久久久久精品性色| 日韩精品免费视频一区二区三区| 永久免费av网站大全| 日韩av免费高清视频| 女性被躁到高潮视频| 亚洲三级黄色毛片| 亚洲国产精品一区二区三区在线| 日韩大片免费观看网站| 久久久久久久精品精品| 精品国产超薄肉色丝袜足j| 久久婷婷青草| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 国产黄色视频一区二区在线观看| 久热这里只有精品99| 最新的欧美精品一区二区| 日韩制服骚丝袜av| 日本猛色少妇xxxxx猛交久久| 在线观看美女被高潮喷水网站| 久久久久久久精品精品| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区久久| 丝袜脚勾引网站| 女人被躁到高潮嗷嗷叫费观| 看十八女毛片水多多多| 成年女人毛片免费观看观看9 | 国产精品99久久99久久久不卡 | 国产乱来视频区| 一区福利在线观看| 精品国产乱码久久久久久男人| 最近最新中文字幕免费大全7| av不卡在线播放| 新久久久久国产一级毛片| 亚洲国产精品一区二区三区在线| 十分钟在线观看高清视频www| 99久久综合免费| 18禁动态无遮挡网站| 看免费成人av毛片| av又黄又爽大尺度在线免费看| 性少妇av在线| 一区二区三区四区激情视频| 精品亚洲成国产av| 男女免费视频国产| 免费久久久久久久精品成人欧美视频| 九色亚洲精品在线播放| kizo精华| 美女主播在线视频| 午夜91福利影院| 一个人免费看片子| 国产福利在线免费观看视频| 夫妻午夜视频| 国产日韩欧美视频二区| 亚洲久久久国产精品| 亚洲欧美成人综合另类久久久| 咕卡用的链子| 国产淫语在线视频| 一级片免费观看大全| 久久热在线av| www.自偷自拍.com| 肉色欧美久久久久久久蜜桃| 有码 亚洲区| 免费观看无遮挡的男女| 色网站视频免费| 国产成人91sexporn| 老司机亚洲免费影院| 赤兔流量卡办理| 国产一区二区三区av在线| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 国产免费福利视频在线观看| √禁漫天堂资源中文www| 男人爽女人下面视频在线观看| 精品人妻在线不人妻| 国产精品无大码| 嫩草影院入口| 国产又爽黄色视频| 婷婷色麻豆天堂久久| 久久97久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 伊人亚洲综合成人网| 亚洲国产精品一区三区| 欧美成人午夜免费资源| 久久精品国产亚洲av高清一级| 精品一区在线观看国产| 亚洲国产欧美日韩在线播放| 国产高清不卡午夜福利| 日韩三级伦理在线观看| 一级a爱视频在线免费观看| 亚洲成av片中文字幕在线观看 | 欧美另类一区| 国产无遮挡羞羞视频在线观看| videosex国产| 又粗又硬又长又爽又黄的视频| 亚洲精品成人av观看孕妇| av有码第一页| 欧美日韩亚洲国产一区二区在线观看 | 午夜老司机福利剧场| 国产淫语在线视频| 国产精品成人在线| 好男人视频免费观看在线| 精品一区二区三卡| 中文欧美无线码| 亚洲国产欧美网| 国产xxxxx性猛交| 久久99精品国语久久久| 男男h啪啪无遮挡| 美女午夜性视频免费| 日产精品乱码卡一卡2卡三| 亚洲精品av麻豆狂野| 高清在线视频一区二区三区| 天天操日日干夜夜撸| 校园人妻丝袜中文字幕| 91成人精品电影| 亚洲精品日韩在线中文字幕| 日日摸夜夜添夜夜爱| 日韩视频在线欧美| 黄片无遮挡物在线观看| 精品卡一卡二卡四卡免费| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 天堂8中文在线网| 国产亚洲精品第一综合不卡| 一级片免费观看大全| 日本爱情动作片www.在线观看| 日本91视频免费播放| 91午夜精品亚洲一区二区三区| 高清不卡的av网站| 日本欧美视频一区| 国产一区二区三区av在线| 丰满少妇做爰视频| 蜜桃在线观看..| 国产97色在线日韩免费| 国产精品国产三级国产专区5o| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久 | 国产熟女午夜一区二区三区| 亚洲国产最新在线播放| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 午夜激情av网站| av有码第一页| 亚洲欧洲日产国产| 精品99又大又爽又粗少妇毛片| 一级片免费观看大全| 亚洲 欧美一区二区三区| 午夜影院在线不卡| 91aial.com中文字幕在线观看| 精品久久久精品久久久| 日韩在线高清观看一区二区三区| 成人手机av| 久久精品国产综合久久久| 久热这里只有精品99| 亚洲av成人精品一二三区| 日韩 亚洲 欧美在线| 成人免费观看视频高清| 夫妻午夜视频| 乱人伦中国视频| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 亚洲经典国产精华液单| 国产亚洲最大av| 免费黄频网站在线观看国产| 91国产中文字幕| 精品久久久精品久久久| 久久av网站| 国产一区亚洲一区在线观看| 黄网站色视频无遮挡免费观看| 精品国产露脸久久av麻豆| 黄片播放在线免费| 国产xxxxx性猛交| 国产欧美日韩综合在线一区二区| 黄色视频在线播放观看不卡| 色94色欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 久久国产精品男人的天堂亚洲| 制服诱惑二区| 久久久久精品性色| 亚洲人成77777在线视频| 亚洲av电影在线观看一区二区三区| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 捣出白浆h1v1| 一边亲一边摸免费视频| 乱人伦中国视频| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区| 日本免费在线观看一区| 又粗又硬又长又爽又黄的视频| 999久久久国产精品视频| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 亚洲第一青青草原| 中文精品一卡2卡3卡4更新| 亚洲美女搞黄在线观看| 麻豆av在线久日| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 国产激情久久老熟女| 国产在线一区二区三区精| 青草久久国产| 中文乱码字字幕精品一区二区三区| 国产白丝娇喘喷水9色精品| 制服人妻中文乱码| 久久久久久久亚洲中文字幕| 看非洲黑人一级黄片| 黄网站色视频无遮挡免费观看| 国产免费福利视频在线观看| 热re99久久国产66热| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 国产野战对白在线观看| 香蕉国产在线看| 最近2019中文字幕mv第一页| 中文字幕人妻丝袜制服| 一二三四中文在线观看免费高清| 欧美在线黄色| 日韩制服骚丝袜av| 黄网站色视频无遮挡免费观看| 你懂的网址亚洲精品在线观看| 亚洲,一卡二卡三卡| kizo精华| 午夜久久久在线观看| 在线观看人妻少妇| 26uuu在线亚洲综合色| 一级黄片播放器| 国产成人精品久久二区二区91 | av一本久久久久| 国产淫语在线视频| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三区在线| 亚洲精品,欧美精品| 一级a爱视频在线免费观看| 寂寞人妻少妇视频99o| 王馨瑶露胸无遮挡在线观看| 看免费成人av毛片| 人人妻人人添人人爽欧美一区卜| 久久精品aⅴ一区二区三区四区 | 国产精品99久久99久久久不卡 | 亚洲色图 男人天堂 中文字幕| 亚洲精品第二区| 人成视频在线观看免费观看| 亚洲国产精品成人久久小说| 午夜福利在线免费观看网站| 观看美女的网站| 另类亚洲欧美激情| 免费久久久久久久精品成人欧美视频| 在线观看人妻少妇| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久久久免| 18在线观看网站| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91 | xxxhd国产人妻xxx| 亚洲精华国产精华液的使用体验| 色哟哟·www| 精品一区二区三卡| 日韩中文字幕视频在线看片| 丁香六月天网| 国产成人免费观看mmmm| 高清在线视频一区二区三区| 最新中文字幕久久久久| 飞空精品影院首页| 亚洲熟女精品中文字幕| 激情视频va一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲一区中文字幕在线| 欧美xxⅹ黑人| 日本欧美国产在线视频| 免费观看在线日韩| 我要看黄色一级片免费的| 人体艺术视频欧美日本| 大片免费播放器 马上看| 精品酒店卫生间| 国精品久久久久久国模美| 捣出白浆h1v1| 最近中文字幕高清免费大全6| 免费看不卡的av| 国产片内射在线| 少妇的逼水好多| √禁漫天堂资源中文www| h视频一区二区三区| www.精华液| 久久精品aⅴ一区二区三区四区 | 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 少妇人妻精品综合一区二区| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 九色亚洲精品在线播放| 伊人亚洲综合成人网| a 毛片基地| 男的添女的下面高潮视频| a 毛片基地| 久久久亚洲精品成人影院| 9热在线视频观看99| 纵有疾风起免费观看全集完整版| 五月天丁香电影| 永久免费av网站大全| 亚洲欧美中文字幕日韩二区| 男女下面插进去视频免费观看| 9热在线视频观看99| 精品国产乱码久久久久久男人| 高清欧美精品videossex| 一级毛片黄色毛片免费观看视频| 性色avwww在线观看| 国产av码专区亚洲av| 亚洲国产最新在线播放| 人体艺术视频欧美日本| 婷婷色综合www| 亚洲欧美一区二区三区黑人 | 亚洲一码二码三码区别大吗| 老司机影院成人| 母亲3免费完整高清在线观看 | 人人妻人人爽人人添夜夜欢视频| 国产综合精华液| 黄色配什么色好看| 啦啦啦视频在线资源免费观看| 亚洲,欧美,日韩| 久久久久久久精品精品| 精品酒店卫生间| 久久韩国三级中文字幕| 黄色配什么色好看| 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 亚洲成人手机| 国产av码专区亚洲av| 热99国产精品久久久久久7| 高清黄色对白视频在线免费看| 亚洲国产色片| 亚洲av国产av综合av卡| 亚洲精品在线美女| 欧美日韩一级在线毛片| 99久久人妻综合| 一本色道久久久久久精品综合| 久久久久久久亚洲中文字幕| 欧美精品国产亚洲| 午夜福利一区二区在线看| 欧美精品av麻豆av| 欧美+日韩+精品| 啦啦啦视频在线资源免费观看| 国产免费现黄频在线看| 久久精品国产综合久久久| 黄频高清免费视频| 老司机影院成人| 这个男人来自地球电影免费观看 | 久久久久久人妻| 一本—道久久a久久精品蜜桃钙片| 男人添女人高潮全过程视频| 一级毛片电影观看| 高清视频免费观看一区二区| 黄色毛片三级朝国网站| 国产av精品麻豆| 丝袜脚勾引网站| 一区福利在线观看| 一本色道久久久久久精品综合| 久久国产精品男人的天堂亚洲| 男女边吃奶边做爰视频| 亚洲,欧美精品.| 啦啦啦中文免费视频观看日本| 国产成人精品在线电影| 99久国产av精品国产电影| 电影成人av| 丰满饥渴人妻一区二区三| av免费观看日本| 日日啪夜夜爽| av网站在线播放免费| 亚洲欧美成人精品一区二区| 最近中文字幕高清免费大全6| 久久女婷五月综合色啪小说| 久久国内精品自在自线图片| 老鸭窝网址在线观看| 一区二区三区激情视频| 国产国语露脸激情在线看| 免费黄频网站在线观看国产| www.精华液| 国产精品二区激情视频| 国产免费视频播放在线视频| 国产av精品麻豆| a 毛片基地| 国产 一区精品| 99久久人妻综合| 午夜激情久久久久久久| 国产成人午夜福利电影在线观看| 观看美女的网站| 熟女电影av网| 黄色视频在线播放观看不卡| 两性夫妻黄色片| 亚洲伊人色综图| 2018国产大陆天天弄谢| 亚洲国产精品999| 9191精品国产免费久久| 国产成人精品久久二区二区91 | xxxhd国产人妻xxx| 美女脱内裤让男人舔精品视频| 成年人午夜在线观看视频| 成人毛片60女人毛片免费| 日韩中文字幕欧美一区二区 | 久久精品国产亚洲av涩爱| videossex国产| 一级片免费观看大全| 如何舔出高潮|