• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Fractional Investigation of Fornberg-Whitham Equation Using an Efficient Technique

    2023-03-12 09:00:06HassanKhanPoomKumamAsifNawazQasimKhanandShahbazKhan

    Hassan Khan,Poom Kumam,Asif Nawaz,Qasim Khan and Shahbaz Khan

    1Department of Mathematics,Abdul Wali Khan University,Mardan,23200,Pakistan

    2Department of Mathematics,Near East University TRNC,Mersin,10,Turkey

    3Center of Excellence in Theoretical and Computational Science(TaCS-CoE)&KMUTTFixed Point Research Laboratory,Room SCL 802 Fixed Point Laboratory,Science Laboratory Building,Departments of Mathematics,Faculty of Science,King Mongkut’s University of Technology Thonburi(KMUTT),Bangkok,10140,Thailand

    4Department of Medical Research,China Medical University Hospital,China Medical University,Taichung,40402,Taiwan

    ABSTRACT In the last few decades,it has become increasingly clear that fractional calculus always plays a very significant role in various branches of applied sciences.For this reason, fractional partial differential equations (FPDEs) are of more importance to model the different physical processes in nature more accurately.Therefore,the analytical or numerical solutions to these problems are taken into serious consideration and several techniques or algorithms have been developed for their solution.In the current work, the idea of fractional calculus has been used, and fractional Fornberg Whitham equation(FFWE)is represented in its fractional view analysis.A well-known method which is residual power series method(RPSM),is then implemented to solve FFWE.The RPSM results are discussed through graphs and tables which conform to the higher accuracy of the proposed technique.The solutions at different fractional orders are obtained and shown to be convergent toward an integer-order solution.Because the RPSM procedure is simple and straightforward,it can be extended to solve other FPDEs and their systems.

    KEYWORDS Caputo derivative;fractional partial differential equations;fornberg-whitham;residual power series method

    1 Introduction

    In mathematical physics,the Fornberg-Whitham equation is a fundamental mathematical model.The Fornberg-Whitham equation[1,2]is written as:

    This equation was introduced to investigate how non-linear dispersive water waves break.The Fornberg-Whitham equation is shown to allow peakon solutions, as well as the occurrence of wave breaking,as a mathematical model for waves of limiting height.Fractional calculus(FC)is now widely used and accepted, owing to its well-established applications in a wide range of seemingly disparate domains of science and engineering[3–7].Many scholars,including Gupta et al.[8],Merdan et al.[9],Singh et al.[10],have examined the fractional extension of the Fornberg-Whitham equation relevant to the Caputo fractional derivative.

    FC has the potential to explain various difficult phenomena like memory and heredity.In recent years,researchers have taken a keen interest in the subject of fractional differential equations(FDEs), such as viscoelasticity, fluid mechanics, nanotechnology, electrochemistry, modelling for shape memory polymers,biological population models,optics and signal processing,modelling control theory,the damping behaviour of materials,economics and chemistry,signal processing,creeping and relaxation for viscoelastic materials and diffusion and reaction processes[11–13].Accurate modelling of time-fractional two-mode coupled burgers equation is done with the help of fractional derivatives(FD)[14].

    Analytical and numerical techniques are frequently used for the solution of FPDEs and their systems.The fractional problems that have been modelled by using FPDEs are found in various disciplines,because the mathematical modelling of real-life phenomena is usually modelled accurately by using FPDEs.

    In this connection, the important fractional mathematical models are solved by using various techniques such as Chun-hui He’s algorithm [15], reproducing kernel method [16], Runge-Kutta method for time discretization and Fourier transform for spatial discretization[17],Fourier spectral method[18],He-Laplace method[19],Fractional variational iteration method[20],operational matrix of fractional Riemann-Liouville integration with Legendre basis and zeros of Chebyshev polynomials[21].Khan et al.[22] have solved nonlinear fractional differential equations using an efficient approach.The non-linear differential equations are solved by using perturbation transform method and He’s polynomials[23].The one-dimensional non-homogeneous partial differential equations with a variable coefficient are solved by using homotopy perturbation method and Laplace transformation[24].Linear and non-linear differential equations arising in circuit analysis are investigated by using Maclaurin series method [25].The analysis of Caputo fractional-order dynamics of Middle East Lungs Coronavirus(MERS-CoV)model are discussed in[26].He’s fractional derivative and fractional complex transform are implemented for the time fractional Camassa-Holm equation [27].The fractional complex transform is utilised to solve time-fractional Schr¨odinger equation [28].A twoscale fractal theory is suggested for the population dynamics[29].The idea of the two-scale fractal is utilised to model the time-fractional tsunami wave traveling on an unsmooth surface[30].A study of projectile motion in a quadratic resistant medium via fractional differential transform method [31].The design of a variable fractional delay(VFD)FIR filter is handled using least square method[32].Homotopy analysis Sumudu transform method is applied to solve delay Fractional Bagley-Torvik equation(HASTM)[33].Coupled fractional Navier-Stokes equation is computed numerically using the proposed q-homotopy analysis transform method (q-HATM) [34].The solutions of the fifthorder dispersive equations with porous medium type non-linearity is investigated by the classical Riccati equations method [35].The analytical solution of time-fractional Navier-Stokes equation is calculated by using Adomian decomposition method [36] and similarly the Residual power series method(RPSM)was used to analyze the solution of fractional partial differential equations[37].

    Many researchers have worked hard to find the solutions to FPDEs by using RPSM and other novel techniques that have been used for the solutions of FPDEs like:Senol et al.[38]solved the timefractional nonlinear coupled Jaulent-Miodek system with energy-dependent Schrodinger Potential using RPSM in 2019, Korpinar et al.[39] have analysed the solution of the fractional cancer model by RPSM, Kurt [40] has implemented RPSM to obtain the solution of fractional Bogoyavlensky-Konopelchenko equation,Xu et al.[41]have implemented RPSM to obtain the solution of fractional Boussinesq equations, Freihet et al.[42] have found the solution of fractional Burgers-Huxley equations in by using RPSM.Jena et al.[43] have found the solution of the fractional model of the vibration equation of large membranes using RPSM.

    In the current work,the solution of FFWE is investigated by RPSM.The RPSM was found to be a very effective technique for finding the analytical solution of FFWE[44].In the current work,we have applied the RPSM technique to solve different FPDEs and obtained the series form solutions.The closed form series solution is achieved for FFWE by using the proposed analytical technique.The accuracy of RPSM is represented by using graphs and tables.The solutions at different fractional orders are of greater interest, which show the useful information about the actual dynamics of the given problems.The graphs show the convergence of fractional solutions of the targeted problem towards integer order solution.The proposed method is also applied to other physical problems in applied sciences and engineering.The article layout is organized as follows; the fundamental concepts regarding FC are described in Section 2;the basic methodology is discussed in Section 3;the application of RPSM in the Fornberg-Whitham equation involving the Caputo fractional derivative is contained in Section 4;results and discussion are in Section 5 and the conclusion is given in Section 6.

    2 Basic Definitions

    In this section,we discussed some preliminaries and definitions.

    2.1 Definition

    The integral operator of Reimann-Liouville having order?is given as[45,46]:

    Its fractional derivative for?≥0 is defined as:

    where m is an integer.

    2.2 Definition

    The Caputo FD operator of the fractional orderσis given as[46]:

    The operatorsDσandIσsatisfy the following properties:

    2.3 Definition

    A Power Series(PS)expansion is defined as[47]:

    Theorem

    Assume thatu(?,ξ)has a multiple fractional PS representation atξ=ξoof the form[48],

    Ifare continuous onI×(ξo,ξo+?),n=0,1,···,then the coefficients offn(?)are given as:

    3 RPSM Methodology

    To the understand the procedure of RPSM[49–54],let consider FPDEs of the form

    having initial condition,

    u(?,0)=f(?),

    whereis Caputo type fractional derivative of the functionu(?,ξ),L(u)is linear term andN(u)is the non-linear term.Initially,RPSM is used by taking the fractional PS expansion about a fix pointξ=ξo,that is,

    the 0thRPSM approximate solutions ofu(?,ξ)is given below as:

    uo(?,0)=f(?).

    Letuk(?,ξ)represent thekthterm,

    exchange thekthtruncated seriesuk(?,ξ)and of Eq.(3)in Eq.(2)which is thekthresidual function and is given as:

    Also obtainResu(?,ξ)=It is observed thatResu(?,ξ)=0, ?values of ? ∈[a,b].This Resu(?,ξ)is infinitely differentiable at ? =aandResuk(?,0)which provide the basic rule of RPSM technique,allowing it to solve a broad range FPDEs.To determine thekthRPSM solution,we review Eq.(3)and then differentiate with respect to independent variables? andξand finally replaceξ= 0,we obtainfand constant parameters.By replacing these constant parameters inuk(?,ξ),we obtain the kth truncated series,which we then assign to Eq.(4)to obtain an approximate solution.This method can be repeated using RPSM solutions for other arbitrary coefficient orders of Eq.(4).

    4 Solution of Time-Fractional F-W Equation

    Let us consider the time fractional F-W equation,

    with initial condition,

    Letuk(?,ξ)denote thekthtruncated series ofu(?,ξ),we have

    We define thekthresidual function of FW equation as:

    For the first step,k=1 put in FW equation Eq.(8),in the form as:

    Now we can write Eq.(7),fork=1,as:

    Differentiating of Eq.(10),and put Eq.(9),we have

    from Eq.(11),andξ=0,we have

    therefore

    then from Eq.(7),and Eq.(12),we get

    using Eq.(6),put in Eq.(13),then we have

    Step 2.fork=2,put in Eq.(8),can be written as:

    Now we can written Eq.(7),fork=2,as:

    Similarly,

    applyingon both sides of Eq.(16)and then putξ=0,yields

    Now using Eq.(12)and Eq.(17),in Eq.(15),we get

    Putting Eq.(6),and Eq.(12),in Eq.(18),we have

    For the third step,puttingk=3,in FW Eq.(8),as:

    From Eq.(7),putk=3,the truncated series as:

    same as the above procedure

    Applyingon both sides of Eq.(21)and then putξ=0,yields

    therefore

    Using Eq.(6),Eq.(12),and Eq.(18),put in Eq.(22),we have

    Equivalence of the 3rd-order approximate solution ofu3(?,ξ)with the exact solution is required to demonstrate the capability of the RPSM.Even when a low-order approximate solution,u3(?,ξ),is used,the numerical results show that RPSM performs admirably for the FW equation.The accuracy can be improved by using a higher-order RPSM solution.Eq.(23) provides the 3rd approximate solution of the FW equation.The results are discussed through graphs and tables in the next section of the paper.

    5 Results and Discussion

    In Fig.1,the exact and RPSM solutions atσ=1 are presented,respectively.The RPSM solution is calculated fork=3,that is up to the third iteration.From Fig.1,it is very clear that the exact and RPSM solutions are very close to each other.The comparison also confirmed the greater accuracy of the present method.The domain of the given problem is -4 ≤? ≤4, while 0 ≤ξ≤4.Fig.2 shows the RPSM solution up to the 3rd iteration atσ= 0.9 andσ= 0.8.The solution graph at the fractional orderσ= 0.9 is slightly different as compared to the integer order solution, which shows another useful dynamics of the given physical problem.Similarly,another solution plot of the targeted problem is discussed atσ= 0.8 is slightly different as compared to the fractional orderσ=0.9.The plots atσ=0.9 andσ=0.8 are vary closed to each other.In Fig.3,the solution graphs of various mathematical models with different fractional orders of the FW equation are displayed.A very consistent relationship is observed between the solutions graphs at various fractional ordersσ.The overall graphical analysis of the problem has provided the opportunity to select that mathematical model of the fractional order which has a close relationship with the actual data of the problem.It is concluded that we have upgraded the existing model with the fractional order derivative to represent the dynamics of any physical problem in a rather sophisticated manner as compared to an integer model.In Fig.3,the 2D solution plot is presented which shows the exact solution of the FW equation.Fig.4 shows the approximate solution of the given problem atσ=1,which is nearly equal to the exact solution.The solutions graphs obtained by exact and approximate solutions are compared with each other.The 2D plots in Figs.3 and 4 are very close to each other in the same fractional order.Another plot in Fig.4 shows us the combined graphs of RPSM solutions at different fractional ordersσ.

    Figure 1:Comparison plots of exact and approximate solutions at the fractional order σ =1

    Figure 2:Comparison plots of approximate solutions at the fractional order σ =0.9 and σ =0.8

    Figure 3:Combine 3D graphs for different fractional orders σ and exact solution of 2D plot

    Figure 4:2D plot and combine plot for various fractional order σ

    Table 1 lists the result of RPSMu3(?,ξ)solution at various fractional ordersσ.The numerical results have shown that RPSM works excellently to solve FPDEs, even when using low-order approximate solution.The accuracy can be improve by using higher-order approximate solutions of FFWE.The Numerical results for various particular cases ofσare presented in Figs.1–3.

    Table 1: Comparison table of exact and RPSM solutions of u3(?,ξ)

    Table 1 (continued)? ξ Exact σ =1 σ =0.9 σ =0.8 σ =0.7 σ =0.6 σ =0.5-1 0.01 0.8033340940 0.8046741005 0.8020743991 0.7978910586 0.7912464160 0.7808694041 0.7650268336 0 0.01 1.3244740080 1.3266833050 1.3223971220 1.3154999600 1.3045447970 1.2874359960 1.2613160130 1 0.01 2.1836884690 2.1873309860 2.1802642650 2.1688927670 2.1508307550 2.1226231120 2.0795585410 2 0.01 3.6002936290 3.6062991210 3.5946480680 3.5758996370 3.5461204150 3.4996138740 3.4286123980 3 0.01 5.9358806850 5.9457820710 5.9265727310 5.8956617930 5.8465641560 5.7698878340 5.6528261920 4 0.01 9.7866127450 9.8029373700 9.7712665230 9.7203030030 9.6393546840 9.5129368000 9.3199347810

    In Table 2,the solutions comparison of RPSM with He’s HPM is discussed.It is analyzed that the RPSM solution up to three terms is quite closed to the He’s HPM solutions which is calculated up to five terms.The tables and graphs have confirmed the higher degree of accuracy of RPSM.In Table 3,some nomenclatures are given which are frequently used in this paper.

    Table 2:Comparison table of Absolute error(AE)of RPSM(upto third term)and He’s HPM(upto fifth term)[55]solutions

    Table 3: Nomenclature

    6 Conclusion

    In this work,we have implemented an efficient analytical technique,which is known as RPSM,to get an approximate series solution of FFWE with initial conditions.The suggested problems are first converted into their fractional form of the derivative and then incorporated the Caputo definition into the given problem to define FD.The general formulation for the proposed problem is discussed and then implemented for the solutions of FFWE.The proposed technique is applied to both fractional and integer orders of the suggested problem.It is observed that the procedure of the present technique is very effective and straight-forward.For verification and a better understanding of the obtained solutions,the graphical and tabular scenarios are presented.In Figs.1–3,the exact and approximate solutions of the problem are presented, respectively.The solution graphs are presented at different fractional orders of the derivatives and show the various useful dynamics of the problem.It is investigated through numerical results and graphs that the fractional solutions are convergent to the integer-order solution.The analysis has shown the best contact between the RPSM and the exact solutions to the problem.For this purpose,the 2D graphs are discussed through Graphs 3 and 4.The 2D graphs clearly indicate that the proposed technique provides sufficient accuracy for problems with fractional orders.On the basis of the above analysis,it can be concluded that the proposed technique can be expanded easily to solve other problems in science and engineering.The values of the exact and approximate solutions of various fractional orders of the proposed method are given in Table 1,respectively.The exact and RPSM solution analyses given in Table 1 confirmed the higher accuracy.

    Authors Contribution:Hassan Khan (Supervision), Poom Kumam (Funding, Draft Writing), Asif Nawaz(Methodology),Qasim Khan(Methodology,Investigation),Shahbaz Khan(Draft Writing).

    Availability of Data and Material:Not applicable.

    Funding Statement:The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT.This research project is supported by Thailand Science Research and Innovation(TSRI)Basic Research Fund:Fiscal year 2022 under Project No.FRB650048/0164.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    美女视频免费永久观看网站| 美女大奶头黄色视频| 久久精品成人免费网站| 性少妇av在线| 国产av国产精品国产| 亚洲三区欧美一区| 国产精品香港三级国产av潘金莲 | 啦啦啦中文免费视频观看日本| 日韩 亚洲 欧美在线| tube8黄色片| 国产亚洲欧美在线一区二区| 久久性视频一级片| 欧美少妇被猛烈插入视频| 最近手机中文字幕大全| tube8黄色片| 老司机影院毛片| 美女主播在线视频| 久久精品久久精品一区二区三区| 国产精品国产三级国产专区5o| 日韩精品免费视频一区二区三区| 亚洲黑人精品在线| 国产成人欧美在线观看 | 午夜福利在线免费观看网站| 久久精品国产亚洲av涩爱| 欧美国产精品一级二级三级| 亚洲美女黄色视频免费看| 香蕉国产在线看| 日韩伦理黄色片| 狠狠婷婷综合久久久久久88av| 亚洲伊人色综图| 国产亚洲一区二区精品| 久久久精品区二区三区| 亚洲三区欧美一区| 亚洲欧美激情在线| 国产精品国产三级国产专区5o| 天堂俺去俺来也www色官网| 丰满饥渴人妻一区二区三| 晚上一个人看的免费电影| 国产成人欧美| 中文字幕制服av| 波多野结衣av一区二区av| 亚洲,欧美,日韩| 十八禁人妻一区二区| 国产精品免费大片| 欧美成人午夜精品| 午夜免费男女啪啪视频观看| 精品福利永久在线观看| 伦理电影免费视频| 欧美日韩黄片免| 亚洲男人天堂网一区| 18在线观看网站| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 人人妻人人爽人人添夜夜欢视频| 欧美人与性动交α欧美精品济南到| 久久国产精品人妻蜜桃| 欧美 日韩 精品 国产| 人人妻人人爽人人添夜夜欢视频| 精品熟女少妇八av免费久了| 啦啦啦视频在线资源免费观看| 欧美亚洲日本最大视频资源| 视频区欧美日本亚洲| 操出白浆在线播放| 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 国产精品.久久久| 日韩伦理黄色片| 亚洲精品av麻豆狂野| 少妇粗大呻吟视频| 久久国产精品大桥未久av| 国产精品秋霞免费鲁丝片| 美女福利国产在线| 国产在线观看jvid| 亚洲精品日韩在线中文字幕| 亚洲精品久久午夜乱码| 老熟女久久久| 高清黄色对白视频在线免费看| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡| 日韩精品免费视频一区二区三区| 亚洲国产欧美一区二区综合| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 午夜福利,免费看| 在线观看免费日韩欧美大片| 丁香六月欧美| 波多野结衣av一区二区av| 精品免费久久久久久久清纯 | 久久av网站| 欧美激情极品国产一区二区三区| 男女午夜视频在线观看| 午夜福利乱码中文字幕| 永久免费av网站大全| 夫妻午夜视频| 妹子高潮喷水视频| 夫妻性生交免费视频一级片| 成人三级做爰电影| 国产精品国产三级国产专区5o| 一本一本久久a久久精品综合妖精| 久久精品亚洲av国产电影网| 国产成人a∨麻豆精品| av天堂在线播放| 99国产综合亚洲精品| 成人国产av品久久久| 国产精品人妻久久久影院| 在线 av 中文字幕| kizo精华| 久久精品亚洲av国产电影网| 午夜91福利影院| 久久久国产欧美日韩av| 亚洲七黄色美女视频| 国产男女内射视频| 国产成人欧美| 51午夜福利影视在线观看| 国产亚洲欧美精品永久| 国产精品99久久99久久久不卡| 国产不卡av网站在线观看| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 在线观看人妻少妇| 久久精品成人免费网站| 丝袜美足系列| 午夜免费观看性视频| 亚洲精品自拍成人| 丁香六月欧美| tube8黄色片| 老鸭窝网址在线观看| 国产片内射在线| 激情视频va一区二区三区| 老汉色av国产亚洲站长工具| 国产精品人妻久久久影院| 精品福利观看| 女人久久www免费人成看片| 一级毛片 在线播放| 一边摸一边抽搐一进一出视频| 人妻 亚洲 视频| 青草久久国产| 午夜福利影视在线免费观看| 久久狼人影院| 欧美日韩成人在线一区二区| 热re99久久国产66热| 91成人精品电影| 国产福利在线免费观看视频| 欧美日韩视频高清一区二区三区二| 少妇粗大呻吟视频| 黑丝袜美女国产一区| 国产精品人妻久久久影院| 久久久久国产精品人妻一区二区| 看十八女毛片水多多多| 免费av中文字幕在线| 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 国产不卡av网站在线观看| 99香蕉大伊视频| 99久久99久久久精品蜜桃| 精品国产一区二区三区四区第35| 观看av在线不卡| 一本久久精品| 国产91精品成人一区二区三区 | 国产精品 国内视频| 精品第一国产精品| 99久久人妻综合| 国产成人精品无人区| 制服人妻中文乱码| 韩国精品一区二区三区| 男女边摸边吃奶| xxxhd国产人妻xxx| 欧美黑人精品巨大| 国产一区二区在线观看av| 五月天丁香电影| 久久亚洲国产成人精品v| 国产欧美日韩综合在线一区二区| 午夜福利影视在线免费观看| 国产欧美日韩精品亚洲av| 两人在一起打扑克的视频| 一边摸一边抽搐一进一出视频| 亚洲男人天堂网一区| 久久这里只有精品19| 老司机亚洲免费影院| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 在线 av 中文字幕| 国产一区二区激情短视频 | 热99国产精品久久久久久7| 蜜桃在线观看..| 欧美日韩福利视频一区二区| 亚洲欧美一区二区三区国产| 欧美日韩亚洲综合一区二区三区_| 国产激情久久老熟女| 国产精品久久久久久精品古装| 国产精品一区二区在线观看99| av网站在线播放免费| 婷婷成人精品国产| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 免费少妇av软件| 免费人妻精品一区二区三区视频| 免费日韩欧美在线观看| 亚洲中文av在线| 成人三级做爰电影| 人人妻,人人澡人人爽秒播 | 国产精品熟女久久久久浪| 亚洲精品一二三| 午夜老司机福利片| 黄色毛片三级朝国网站| 亚洲精品日本国产第一区| 精品熟女少妇八av免费久了| 久久久久视频综合| 激情五月婷婷亚洲| av国产久精品久网站免费入址| 纵有疾风起免费观看全集完整版| 日本一区二区免费在线视频| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av高清一级| 99久久精品国产亚洲精品| 久久精品久久精品一区二区三区| 少妇 在线观看| 亚洲av成人不卡在线观看播放网 | h视频一区二区三区| 国产av精品麻豆| 美女大奶头黄色视频| 狂野欧美激情性xxxx| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 国产欧美日韩一区二区三 | 亚洲五月婷婷丁香| 日韩免费高清中文字幕av| 赤兔流量卡办理| 成年人黄色毛片网站| 一边亲一边摸免费视频| 亚洲男人天堂网一区| 99国产精品一区二区蜜桃av | 久久精品国产亚洲av高清一级| 永久免费av网站大全| 免费不卡黄色视频| 搡老乐熟女国产| 久久综合国产亚洲精品| 国产片特级美女逼逼视频| 亚洲 国产 在线| 欧美黑人欧美精品刺激| 美女大奶头黄色视频| 国产一区亚洲一区在线观看| 少妇猛男粗大的猛烈进出视频| 热re99久久精品国产66热6| 另类亚洲欧美激情| 国产精品国产三级专区第一集| 精品少妇内射三级| 捣出白浆h1v1| 日韩av免费高清视频| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻丝袜一区二区| 黑人猛操日本美女一级片| 亚洲精品一区蜜桃| av福利片在线| 亚洲欧美激情在线| 亚洲av欧美aⅴ国产| 99久久综合免费| 宅男免费午夜| 国产成人啪精品午夜网站| 国产在线一区二区三区精| 亚洲人成电影观看| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品人与动牲交sv欧美| 2021少妇久久久久久久久久久| 国产一区二区三区综合在线观看| 成人18禁高潮啪啪吃奶动态图| 无遮挡黄片免费观看| 观看av在线不卡| 狂野欧美激情性bbbbbb| 大型av网站在线播放| 国产成人精品久久二区二区免费| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| 两个人免费观看高清视频| 日韩大片免费观看网站| 亚洲伊人色综图| 亚洲熟女精品中文字幕| 亚洲三区欧美一区| 久久精品成人免费网站| 日韩 亚洲 欧美在线| 免费观看人在逋| 91精品国产国语对白视频| 黄片小视频在线播放| 色综合欧美亚洲国产小说| 成人国产一区最新在线观看 | 乱人伦中国视频| 中文欧美无线码| 水蜜桃什么品种好| 最近最新中文字幕大全免费视频 | 日韩人妻精品一区2区三区| 91九色精品人成在线观看| 国产一区二区三区综合在线观看| 搡老乐熟女国产| 男人添女人高潮全过程视频| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 国产精品秋霞免费鲁丝片| 亚洲精品中文字幕在线视频| 久久九九热精品免费| 亚洲欧美精品综合一区二区三区| 黄频高清免费视频| 女人爽到高潮嗷嗷叫在线视频| 久久鲁丝午夜福利片| 中国国产av一级| 久久狼人影院| 亚洲精品国产一区二区精华液| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| 日韩伦理黄色片| 久久久久久免费高清国产稀缺| 久久久亚洲精品成人影院| 免费日韩欧美在线观看| 大话2 男鬼变身卡| 久久久久网色| 亚洲七黄色美女视频| 一级毛片我不卡| 国产亚洲欧美在线一区二区| 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 日日夜夜操网爽| 1024香蕉在线观看| 中国国产av一级| 久久久精品免费免费高清| 可以免费在线观看a视频的电影网站| 亚洲伊人色综图| 国产极品粉嫩免费观看在线| 女人被躁到高潮嗷嗷叫费观| 久9热在线精品视频| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 亚洲精品成人av观看孕妇| 男女下面插进去视频免费观看| 又黄又粗又硬又大视频| 日本a在线网址| 一本久久精品| 久久人妻熟女aⅴ| av国产久精品久网站免费入址| 女人久久www免费人成看片| 免费在线观看日本一区| 亚洲国产日韩一区二区| 丁香六月欧美| 亚洲av电影在线进入| 国产1区2区3区精品| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 亚洲久久久国产精品| 中文字幕最新亚洲高清| 国产成人一区二区在线| 久久99热这里只频精品6学生| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 国产又色又爽无遮挡免| 国产一区二区 视频在线| 热99久久久久精品小说推荐| 成人18禁高潮啪啪吃奶动态图| 午夜免费男女啪啪视频观看| 国产日韩一区二区三区精品不卡| 一本一本久久a久久精品综合妖精| av一本久久久久| 午夜免费观看性视频| 国产激情久久老熟女| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 国产亚洲av片在线观看秒播厂| 九色亚洲精品在线播放| 美女脱内裤让男人舔精品视频| 午夜91福利影院| 成在线人永久免费视频| av电影中文网址| 欧美日韩亚洲综合一区二区三区_| 丰满少妇做爰视频| 性色av乱码一区二区三区2| 国语对白做爰xxxⅹ性视频网站| 人体艺术视频欧美日本| 热99国产精品久久久久久7| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 免费女性裸体啪啪无遮挡网站| 又黄又粗又硬又大视频| 天天操日日干夜夜撸| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美 | 男人操女人黄网站| 三上悠亚av全集在线观看| 国产欧美日韩综合在线一区二区| 亚洲精品一区蜜桃| 爱豆传媒免费全集在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲综合色网址| 日韩精品免费视频一区二区三区| 精品一区在线观看国产| 亚洲国产精品999| 亚洲情色 制服丝袜| 人妻一区二区av| 亚洲情色 制服丝袜| 99re6热这里在线精品视频| 久久99热这里只频精品6学生| 啦啦啦 在线观看视频| 高清不卡的av网站| 最近中文字幕2019免费版| 人妻人人澡人人爽人人| 国产女主播在线喷水免费视频网站| 手机成人av网站| 男女边摸边吃奶| 又紧又爽又黄一区二区| 国产色视频综合| 悠悠久久av| 麻豆国产av国片精品| 一级a爱视频在线免费观看| 天堂中文最新版在线下载| 青春草亚洲视频在线观看| 国产日韩欧美亚洲二区| 青草久久国产| 一级a爱视频在线免费观看| 你懂的网址亚洲精品在线观看| 在线观看国产h片| 精品亚洲成a人片在线观看| 久久天躁狠狠躁夜夜2o2o | 国产高清视频在线播放一区 | 日韩,欧美,国产一区二区三区| 久久久久视频综合| 好男人电影高清在线观看| 日韩av在线免费看完整版不卡| 人妻人人澡人人爽人人| 黄色视频不卡| 久久午夜综合久久蜜桃| 国产xxxxx性猛交| 一区二区av电影网| 久久精品久久久久久久性| 大话2 男鬼变身卡| netflix在线观看网站| 国产一区二区三区综合在线观看| 国产成人啪精品午夜网站| 涩涩av久久男人的天堂| 99热国产这里只有精品6| 亚洲中文字幕日韩| 亚洲国产欧美一区二区综合| 日韩中文字幕欧美一区二区 | 咕卡用的链子| 人成视频在线观看免费观看| 久久久精品区二区三区| 精品国产一区二区久久| 日韩视频在线欧美| 久久影院123| 黄色视频不卡| 2021少妇久久久久久久久久久| 老鸭窝网址在线观看| 日韩一区二区三区影片| 精品熟女少妇八av免费久了| 少妇精品久久久久久久| 久久久精品94久久精品| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 日本a在线网址| 一级黄片播放器| 亚洲天堂av无毛| 十八禁高潮呻吟视频| 欧美黄色淫秽网站| 国产午夜精品一二区理论片| 看免费av毛片| 你懂的网址亚洲精品在线观看| 水蜜桃什么品种好| 美女主播在线视频| 在线观看一区二区三区激情| 中文字幕最新亚洲高清| 久久精品人人爽人人爽视色| 日本欧美国产在线视频| 在线观看免费日韩欧美大片| 乱人伦中国视频| 一边亲一边摸免费视频| 考比视频在线观看| xxxhd国产人妻xxx| 国产伦人伦偷精品视频| 久久国产精品影院| 中文字幕人妻熟女乱码| 天天影视国产精品| 国产日韩一区二区三区精品不卡| 久久女婷五月综合色啪小说| 国产精品久久久久久精品电影小说| 国产精品国产三级专区第一集| 999久久久国产精品视频| 精品久久蜜臀av无| 80岁老熟妇乱子伦牲交| 中文字幕av电影在线播放| 国产有黄有色有爽视频| 国产日韩欧美视频二区| 亚洲欧洲国产日韩| 午夜免费观看性视频| 看免费av毛片| 51午夜福利影视在线观看| 亚洲中文字幕日韩| 操美女的视频在线观看| 亚洲国产看品久久| 国产99久久九九免费精品| 精品国产一区二区三区久久久樱花| 欧美日韩av久久| 成人黄色视频免费在线看| 午夜福利视频在线观看免费| 国产高清国产精品国产三级| 亚洲人成77777在线视频| 欧美精品亚洲一区二区| 最黄视频免费看| 日本91视频免费播放| av天堂久久9| 国产精品一区二区在线观看99| 亚洲国产精品成人久久小说| 99精品久久久久人妻精品| 日本欧美视频一区| 91老司机精品| 少妇裸体淫交视频免费看高清 | 人人妻,人人澡人人爽秒播 | 精品一区二区三卡| 久久青草综合色| 天堂中文最新版在线下载| 丰满饥渴人妻一区二区三| 亚洲av男天堂| 国产伦理片在线播放av一区| 亚洲精品国产av成人精品| 久久天躁狠狠躁夜夜2o2o | 国产精品免费大片| 国产三级黄色录像| 97人妻天天添夜夜摸| 国产极品粉嫩免费观看在线| h视频一区二区三区| av在线播放精品| 男女下面插进去视频免费观看| 黄色 视频免费看| 可以免费在线观看a视频的电影网站| 亚洲av美国av| 美国免费a级毛片| 亚洲五月婷婷丁香| 国产一区有黄有色的免费视频| 黄片播放在线免费| 精品免费久久久久久久清纯 | 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 男人操女人黄网站| 别揉我奶头~嗯~啊~动态视频 | 9热在线视频观看99| a级毛片在线看网站| 一二三四在线观看免费中文在| 老鸭窝网址在线观看| 国产欧美日韩一区二区三 | 性少妇av在线| 国产精品久久久av美女十八| 美女扒开内裤让男人捅视频| a级片在线免费高清观看视频| 国产成人av激情在线播放| 国产在线免费精品| 精品卡一卡二卡四卡免费| 午夜福利免费观看在线| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 亚洲一区中文字幕在线| 亚洲av国产av综合av卡| 超碰97精品在线观看| bbb黄色大片| 亚洲成人免费av在线播放| 大片电影免费在线观看免费| 日韩欧美一区视频在线观看| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区综合在线观看| 精品高清国产在线一区| 成在线人永久免费视频| 高清欧美精品videossex| 91国产中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 黄色a级毛片大全视频| 99国产精品一区二区蜜桃av | 国产成人啪精品午夜网站| 久久女婷五月综合色啪小说| 国产精品一二三区在线看| 大码成人一级视频| 国产精品.久久久| 一边摸一边做爽爽视频免费| 中文字幕色久视频| 美女高潮到喷水免费观看| 又紧又爽又黄一区二区| 亚洲精品乱久久久久久| 九草在线视频观看| 亚洲专区国产一区二区| 在线av久久热| 国产欧美亚洲国产| 亚洲五月色婷婷综合| 亚洲精品乱久久久久久| 黄色一级大片看看| 国产视频一区二区在线看| 狂野欧美激情性xxxx| 国产三级黄色录像| 午夜两性在线视频| 久久久久视频综合| 性高湖久久久久久久久免费观看| 欧美成人午夜精品| 中文精品一卡2卡3卡4更新| 大香蕉久久网| 一级黄色大片毛片| 成年女人毛片免费观看观看9 | 欧美久久黑人一区二区| 国产成人精品无人区| 亚洲伊人色综图| 高潮久久久久久久久久久不卡| 母亲3免费完整高清在线观看| 亚洲精品一区蜜桃| xxxhd国产人妻xxx| 亚洲精品自拍成人| 搡老岳熟女国产| 99久久综合免费| 后天国语完整版免费观看| h视频一区二区三区| 午夜福利影视在线免费观看|