• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Short Video Recommendation Algorithm Incorporating Temporal Contextual Information and User Context

    2023-03-12 09:00:02WeihuaLiuHaoyangWanandBoyuanYan

    Weihua Liu,Haoyang Wanand Boyuan Yan

    1Network Security and Information Management Center,Jining University,Jining,272000,China

    2School of Computer Science,Qufu Normal University,Rizhao,276800,China

    ABSTRACT With the popularity of 5G and the rapid development of mobile terminals, an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.Hence, designing an efficient short video recommendation method has become important for major network platforms to attract users and satisfy their requirements.Nevertheless, the explosive growth of data leads to the low efficiency of the algorithm, which fails to distill users’points of interest on one hand effectively.On the other hand,integrating user preferences and the content of items urgently intensify the requirements for platform recommendation.In this paper,we propose a collaborative filtering algorithm,integrating time context information and user context,which pours attention into expanding and discovering user interest.In the first place,we introduce the temporal context information into the typical collaborative filtering algorithm, and leverage the popularity penalty function to weight the similarity between recommended short videos and the historical short videos.There remains one more point.We also introduce the user situation into the traditional collaborative filtering recommendation algorithm,considering the context information of users in the generation recommendation stage,and weight the recommended short-form videos of candidates.At last,a diverse approach is used to generate a Top-K recommendation list for users.And through a case study,we illustrate the accuracy and diversity of the proposed method.

    KEYWORDS Recommendation algorithm;user contexts;short video;temporal contextual information

    1 Introduction

    With the popularity of smartphones and the advent of the era of unlimited traffic,short videos with fragmented content are more accessible to win the favor of the public than the traditional way of browsing pictures and texts.Consequently, short videos quickly occupy every aspect of people’s life.Taking TikTok as an example,it has quickly taken over every aspect of people’s lives because it integrated music,content,and ideas within a relatively short video length,which quickly meets users’needs.Based on the “2020 China Network Audiovisual Development Research Report”, the scale of Chinese network audiovisual users has exceeded 900 million, short video users have reached 820 million and they spend an average of nearly 2 h a day watching short videos.The usage rate of short video software increases year by year,becoming the most widely used video media by Internet users.We can see the growth frequency in Fig.1[1].

    Figure 1:User size and usage rate growth frequency

    In short video software,users who share and enjoy the moment of life customarily play the roles of viewer and producer simultaneously.However,the ensuing information overload makes it arduous to exert a tremendous fascination on users without an efficient recommendation algorithm.Hence,the recommendation system came into being.In contrast, much of the research in recommendation systems is based on collaborative filtering and content-based recommendation [2,3].The idea of recommendation based on collaborative filtering is to find some similarity in the group’s behavior.Consequently,the system makes decisions and recommendations for users in this way.

    The above algorithms are divided into two categories:User-based collaborative filtering and itembased collaborative filtering.Unfortunately, the strategy also has some downsides: (1) The sparse interaction data and imprecise similarity method lead to limited recommendation effect.In addition,when faced with frequently updated data [4–7], the prediction efficiency of collaborative filtering is relatively low.(2)Content-based similarity measurement relies on a host of annotation data and does not necessarily reflect the similarity perceived by users,which greatly reduces the personalized effect of video recommendation.

    This paper proposes a collaborative filtering algorithm which integrates time context information and user context.Similarly,it combines the specific context of user life and meets the requirements of personalized recommendation.Thus, the high-quality videos which receive little attention can enter the public view and achieve personalized and diversified recommendations.

    Therefore,we propose an idea that is a collaborative filtering algorithm integrating time context information and user context.It has the characteristics of focusing on exploring and expanding of users’interests so that niche but high-quality videos can enter the public view and complete diversified personalized recommendations.

    2 Related Work

    2.1 Content-Based Recommendations

    Content-based recommendations mainly use the meta information of items to make recommendations.After obtaining item tags through content analysis, we recommend items similar to those items that users have enjoyed in the past through their hobby records[8,9].The implementation flow of the algorithm is shown in Fig.2.The main operation process of this recommendation algorithm is divided into three parts:Firstly,all the items are extracted and recorded.Secondly,the interest model is constructed based on the analysis of user behavior data.Finally,the new items are sorted after the similarity calculation, and the items with higher similarity are recommended for the users.Whereas there remain critical limitations in content-based recommendation algorithm,and it mainly utilizes the information of items to make recommendations.Here is an example:In the video field,this algorithm only recommends videos with similar content for users(the content-based recommendation algorithm is invariably used in the“Guess Your Favorite”section on the home page of IQIYI.).

    Figure 2:The main process of content-based recommendation

    The idea of content-based recommendation is shown in Fig.3 below.However, for short video recommendation, it is formidable to extract interest tags from content-based recommendations.Consequently,the emergence of collaborative filtering can not only meet the“point”recommendation to users,but also meet the situation that the range of user interests is still unchanged.

    2.2 Collaborative Filtering Recommendation

    The interactive information of users and the items for recommendation are usually used by the collaborative filtering algorithms[10–13].It seems to be a recommendation algorithm under collective wisdom, which is widely used in the field of recommendation systems.Generally, collaborative filtering-based recommendations can be mainly divided into three categories:User-based collaborative filtering, item-based collaborative filtering, and model-based collaborative filter [14].User-based collaborative filtering algorithm is mainly based on the idea that “the target user will like the items that similar users like.”Accordingly,three steps are given in algorithm:(1)We leverage the similarity between users to find out the items similar to the target user’s preference items.(2)Target users’score is predicated on the corresponding items.(3)Items with the highest prediction score are recommended to target users.So,the principle is shown in Fig.4.

    Figure 3:Content-based recommendation

    Figure 4:User-based collaborative filtering

    Item-based collaborative filtering algorithm needs to calculate the similarity between similar items,and then recommend Top-N items with high similarity ranking to users.The implementation principle is shown in Fig.5.In order to avoid the influence of sparse data on the accuracy of recommendation algorithm, a model-based collaborative filtering recommendation algorithm is proposed in [15].This algorithm mainly distills neural network, cluster analysis, hidden semantic model, and matrix decomposition[16]to predict the score and recommendation of blank data.

    Figure 5:Item-based collaborative filtering

    Whereas, dynamic changes in user preferences and practical problems of cold start [17–23] are arduous to figure out,resulting in certain deficiencies in the existing methods.Therefore,the recommendation system can not provide users with accurate personalized services (Cold start condition is a new form of problem [24–26], which is reflected between users and projects.).To update the recommended videos in real-time and solve the cold start problem,we adopt a collaborative filtering recommendation algorithm that incorporates temporal contextual information and user contexts.

    2.3 User Situation

    The concept of temporal contextual information has been incorporated into collaborative filtering recommendation algorithms, which made it capture more individuals’attention [27–30].Moreover,users may expect various recommendation results in divergent contexts[31–34].In recommendation,take the user’s living habits as an example.Before going to bed,most users may prefer to watch a short video as sleep assistance.Similarly,we infer that users prefer to browse videos reflecting national pride during the national day.Therefore,incorporating the conception of user context into algorithm makes it reap huge fruits,so as to realize the diversity of recommendations.

    2.4 Hybrid Recommendation

    Various conditions often constrain users’decision-making process[35–40].Similarly,in the field of recommendation systems, none of the recommendation algorithms can be perfectly compatible with all scenarios.Hence,according to the report of studying,targeted recommendations are made in diverse scenarios.For example,item-based collaborative filtering recommendations are more suitable for situations where the number of items is extensive, and users’preferences are similar and stable over time.At the same time, user-based collaborative filtering recommendations are more socially interactive and explanatory, which are suitable for tracking hot spots and over-filtering trends.The conventional method is organically combined with different recommendation algorithms to improve the accuracy of recommendations and users’satisfaction, so as to overcome the shortcomings of algorithms.

    Much of the research shows that the hybrid recommendation algorithm mainly includes a singlechip hybrid recommendation algorithm, parallel hybrid recommendation algorithm, and pipeline hybrid recommendation algorithm.

    The monolithic hybrid paradigm is an end-to-end solution.That is, multiple recommendation algorithms are integrated into the same algorithm system,meanwhile,the integrated recommendation algorithm provides recommendation services uniformly.And the specific implementation logic is shown in Fig.6.

    Figure 6:Monolithic hybrid paradigm implementation logic

    The parallel hybrid paradigm uses multiple recommendation systems for all project data.Moreover,results generated by each recommendation system are aggregated by weighted average and other methods to generate the user’s recommendation list.The specific implementation logic is shown in following Fig.7.

    Figure 7:Parallel hybrid paradigm implementation logic

    The pipeline hybrid paradigm is essentially shared in large e-commerce and social media.The YouTube platform invariably uses this hybrid scheme as an example.After promptly generating user preferences and item scores, the algorithm sorts the Top-K videos according to a more accurate recommendation method to generate a user recommendation list.The specific implementation logic is shown in Fig.8.In the short video recommendation software, we can get better recommendation results in each context and improve user perception by mixing different recommendation algorithms.

    Figure 8:Pipeline hybrid paradigm implementation logic

    3 Collaborative Filtering Contextual Information and User Context

    3.1 Recommended Algorithm for Integrating Temporal Context Information(TI-CF Algorithm)

    Collaborative filtering algorithm needs to calculate the similarity of items based on user’s behavior offline.Then, according to the user’s historical behavior, the calculated similarity is leveraged to recommend items for users.In TikTok, as an example, this algorithm leads to the recommendation of short video topics reflecting on head bloggers.It makes users easily “held hostage”by the trend.Such self-satisfied“happiness”that users are indulged in is quintessentially acknowledged as information cocoons.Recommendation algorithms,incorporated with temporal contextual information,are reflected in two separate temporal effects:

    Variability:The recent video topics users like are more efficient than the topics with distant historical records.Consequently,different weights can describe different behaviors in recommendation.

    Time interval:Video topics with a short time interval preferred by users are more important than the ones with a high time interval.

    When calculating the similarity using the contextual information,the value of cosine similarity is calculated in Eq.(1):

    Because the long-tail effect affects the recommended results,to prevent user from following the heat blindly, we give weight to the punishing parameters to reduce the influence of popular head products in Eq.(2):

    Considering the variability,users’preferences in the near period should have higher weight than their preferences in the distant period[17].Consequently,we introduce a time decay function in Eq.(3):

    Tis a time decay function,and the calculation formula is shown in Eq.(4):

    Tis the time decay parameter which uses different values to indicate the adjustment inspired by user preferences.Its value is directly proportional to the change speed of user preferences and has a more robust real-time performance.

    3.2 Recommended Algorithm for Integrating the User Context(UF-CF Algorithm)

    Incorporating temporal contextual information in recommendation algorithm improves diversity and accuracy.To achieve effects of personalized and diversified further,we expect to exactly predict user preferences, fit user satisfaction, and use optimization algorithms to expand recommendation styles.So users can expand their horizons of the world and jump out of the virtual environment provided via short videos.We propose a recommendation algorithm that incorporates the user context.The item score matrix is established through historical data statistics,and each item is given different scores under different situations.This matrix is shown in Table 1.

    Table 1: User context matrix

    Here,i1,i2,...,imrepresent the short videos in software,V1,V2,...,Vmrepresent the considered user context, such as time, place, etc.V11,V12,...,V1prepresent the classification of different user contexts, such as V represents a holiday, thenv11,v12,...v1mcan represent Dragon Boat Festival,Tanabata,national.

    We get the recommendation candidate set generated for each user.And then,we use item-context matrix to calculate the rating of each item with the user’s current context in the candidate set.It can be described in Eq.(5).

    ri,Vis the score of the itemiin contextV,Vis the set of external contexts which the target user is currently in.ri,vis the score of item i in each specific context inV.The candidate set is rearranged based on the value ofri,v,and the topNitems with the highest ratings are selected to form the final recommendation list.

    3.3 Generates a Recommendation List

    The final recommendation list is generated in three steps:First,the recommendation list uses the recommendation algorithm incorporating temporal context information(TI-CF)to predict the scores.Second,the recommendation algorithm combined with user Context(UF-CF)is used to predict the score and generate the recommendation listK2.At last, the predicted scores ofK1andK2are given different weights to generate a new Top-N recommendation list for the user.To prevent the situation of information cocooning, randomness is added to the algorithm by using the two-eight principle,i.e.,furthermore,the algorithm recommends 80%of the videos,and the system randomly assigns the remaining 20%.We introduced the specific flow of this recommendation algorithm in Fig.9.

    Figure 9:Specific algorithm flow

    To describe this algorithm exhaustively,the symbols mentioned in this paper and their meanings are shown in Table 2.

    Table 2: Symbols and their meanings

    The pseudo-code of this algorithm can be described by Algorithm 1.

    Algorithm 1:Short Video Recommendation Algorithm Incorporating Temporal Contextual Information and User Context Input:User-item table Item-context rating matrix K:the number of recommended items Output:a final recommendation list 1: for each i ∈[1, M]do 2: for each j ∈[1, N]do 3: for each k ∈[j, N]do 4: if j !=k 5: Then C[j][k]=C[k][j]=1 6: else C[j][k]=0 7: end if 8: end for 9: end for 10: update the co-occurrence matrix Ci for user i 11: C =C+Ci 12: end for 13: for Vj in■V -Vj■14: calculate S according to Eq.(2)15: update S according to Eqs.(3),(4)16: end for 17: Generate TOP-K video recommendation list Ki in ascending order of S 18: for Vj in■V -Vj■19: update ω according to Eq.(5)20: calculate S*ω 21: end for(Continued)

    Algorithm 1:(Continued)22: Generate TOP-K video recommendation list L2 in ascending order of S*ω 23: update L=intersect(K1, K2)24: K * 0.2 videos were randomly selected from the video library to generate the final recommendation list L

    4 Case Study

    To further illustrate the proposed algorithm in this paper,the operational steps of the algorithm are explained in this section with a case study.

    Step 1:Construct the co-occurrence matrix

    As shown in Table 3, the User-item table records the information of each user’s favorite videos.The essential thing is to construct the short video similarity matrixWwhen using the recommendation algorithm.Therefore, it integrates temporal context information to itemize video recommendations for different users.In this paper, we use cosine similarity to solve the similarity degree between two videos.And the co-occurrence matrix of all users is constructed before constructing the short video similarity matrixW.

    Table 3: User-item table

    The co-occurrence matrix can be constructed for each user based on the above data.In practice,the number of users’preferences will vary from person to person.In this case,we extend the co-occurrence matrix of each user toN*N,where N is the number of the connection sets of all users’preferred videos.AndN= 5 holds in this example.Taking userU1as an example, Table 4 shows the co-occurrence matrix of userU1.We construct the co-occurrence matrix of each user and then sum it to obtain the co-occurrence matrix of all items.The co-occurrence matrix of all videos is shown in Table 5.

    Table 4: The co-occurrence matrix of user U1

    Table 5: Co-occurrence matrix

    Step 2:Similarity calculation

    Once obtain co-occurrence matrix,the video similarity matrix can be calculated.Hence,we take the calculated similarity of video a and video b as an example.It is known through the co-occurrence matrix N(a)= 2, that means two users like item a and item b at the same time.According to the User-Item table,we can count N(a)= 2 and N(b)= 3.And according to the improved Eq.(2),the similarity of item a and item b can be calculated in Eq.(6).

    Similarly, the video similarity matrixWcan be obtained after finding the similarity of any two videos.The specific values of the video similarity matrix are shown in Table 6.To ensure the accuracy of the recommendation,we normalize the video similarity matrix.The final video similarity matrixWis shown in Table 7.

    Table 6: Video similarity matrix

    Table 7: Video similarity matrix

    Step 3:Generate recommended list K1

    After finding the video similarity matrixW, we can make video recommendations for users accordingly.Here,we take the recommendation forU3as an example:UserU3preference in the list of videos is{c,d},and the video similarity matrix shows that the videos similar to videodare{a,b,c}.The videos similar to videocare{b,d,e}.Hence,the upcoming list of recommended videos for userU3is{a,b,e}.Considering the variability of user preferences,the time decay function is introduced in this step according to Eqs.(3)and(4).Then we assume that the interval time(unit/day)for userU3to watch different videos in Table 8.

    Table 8: Interval time

    The result of solving using the improved similarity Eq.(3)is:

    We calculate the similarity between all the videos in the recommended sequence and the videos liked byU3.Then the recommended list can be sorted according to the value of similarityP(U3,i).Therefore,the recommended list forU3is{a,b,e}and the results are shown in Table 9.

    Table 9: Video similarity matrix

    Step 4:Constructing an item-context scoring matrix

    In order to consider the timeliness and diversity of the recommendation,we adopt the recommendation algorithm which incorporates the user content.Making the recommendations forU3:Through historical data statistics forU3,we assign different ratings to each item in different contexts.We use the number of times thatU3watches different videos in different contexts as the basis for rating.Then we get the item-context rating matrix as shown in Table 10.

    Table 10: Item-context rating matrix

    Step 5:Generate recommendation list K2

    Adding the scoring attributes for items in different contexts, we calculate the weights for users’historical data and candidate lists dynamically.In this way, we can recommend different videos for users in different contexts and improve the temporal diversity in recommendations.This section only considers the influence of time and location factors on the recommendation results.Taking advantage of the item-context scoring matrix, the scoring and normalized result for different videos in the list can be obtained according to Eq.(6).And the rating list is shown in Table 11.We can select the first two videos with the highest score in the list,and recommend them to user.The recommendation list for userU3is{e,c}.

    Table 11: Rating list of short videos

    Step 6:Generate final recommended list

    By mixing the recommendations of the two algorithms,we can see that the final recommendation result is {a,b,e,c}.In order to increase the randomness of the algorithm and expand the overall diversity of the recommended videos, we randomly introduce videos that are not in the candidate recommendation list.Therefore, assuming a situation where we need to recommend five videos for userU3.Then we can randomly recommend 20%videos for the user,i.e.,The final recommendation result maybe{a,b,e,c,a′}.

    Step 7:Comparison experiment

    We add comparison into the case study,for example,by modifying temporal context information or user context information to reflect the role of the algorithm in this respect.

    Modifying the interval time of userU3can reflect the different recommendation results of the same user.The interval time(unit/day)of userU3watching different videos is shown in Table 12.Moreover,the ranking results of the value of the value of similarityP(U3, i)are shown in Table 13.

    Table 12: Interval time

    Table 13: Video similarity matrix

    Judging from the above operation,the recommended result for userU3after modifying the time context information is{a,e,b}.

    Similarly,by modifying item context rating matrix of userU3,the influence of different context information on recommendation results can be illustrated.The modified item-context rating matrix isshown in Table 14.Rating list of short videos for userU3is shown in Table 15.

    Table 14: Item-context rating matrix

    Table 15: Rating list of short videos

    Judging from the above operation, the recommended result for userU3after modifying item context information is{d,b}.

    Consequently,we can get the final recommendation result forU3is{a,e,b,d,b′}.

    Through a comparison experiment,we comprehend that diverse recommendation results can be obtained for the same user according to the distinct temporal context information and user context information.At last,it embodies the personalized diversity of the proposed algorithm from the above mentioned.

    5 Conclusion and Further Discussions

    To address the current situation of information cocoons in short video recommendations, we propose a collaborative filtering algorithm that integrates temporal context information and user context.Initially, by an algorithm that integrates temporal context information, we optimize the similarity of items and recommend varied items which are similar to users’preference.Additionally,the user context(such as time,location,mood,etc.)is used to obtain the recommendation list.In the end,the results of the two recommendation lists are mixed in different proportions to generate the final recommendation list.We validate the feasibility of our work through a case study from the real world.Nevertheless, the effectiveness of this method has not been specifically measured.Therefore, in the future,we will verify the accuracy and diversity of our proposed method through more comparative experiments.

    There still exist several limitations in our research work.First, the paramount problem that restricts the development of short video platforms is storage, in the case of drastic growth for users and videos.Therefore,we will introduce cost-efficient edge computing technologies with energy-saving[41–44] into video recommendations to overcome existing difficulties.Second, exploiting the rich story expressed in a short video will maximize the understanding of user’s preference to improve the accuracy of recommendations.So more useful content understanding technologies are necessary to be introduced into our recommendation scenario to pursue higher recommendation performances.Third,privacy concern often exists in user-related decision systems[45–49].And how to secure sensitive user information during recommendations is another research direction in our future study.At last,network structure[50–53]and routine selection[54–57]are two main components that form a typical social network and influence the performance of short video recommendation network.Therefore,we will continue to refine our work by introducing more social network elements in the future;this way,cold start issues in short video recommendations would be alleviated.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    观看美女的网站| 婷婷色麻豆天堂久久| 成人免费观看视频高清| 亚洲av二区三区四区| 中文字幕久久专区| 亚洲四区av| 午夜激情久久久久久久| 最新中文字幕久久久久| 只有这里有精品99| 久久久国产欧美日韩av| 我要看黄色一级片免费的| xxx大片免费视频| 国产熟女午夜一区二区三区 | 男女高潮啪啪啪动态图| 欧美日韩在线观看h| 欧美激情 高清一区二区三区| 亚洲av成人精品一区久久| 黑人巨大精品欧美一区二区蜜桃 | 桃花免费在线播放| 母亲3免费完整高清在线观看 | 不卡视频在线观看欧美| 伊人久久国产一区二区| av女优亚洲男人天堂| 成人18禁高潮啪啪吃奶动态图 | 肉色欧美久久久久久久蜜桃| 两个人免费观看高清视频| 婷婷成人精品国产| 性色avwww在线观看| 美女xxoo啪啪120秒动态图| 成人手机av| 只有这里有精品99| 我的老师免费观看完整版| 国产女主播在线喷水免费视频网站| av播播在线观看一区| 国产国语露脸激情在线看| 国产高清不卡午夜福利| 精品久久久噜噜| 亚洲不卡免费看| av在线app专区| 久热这里只有精品99| 一区二区日韩欧美中文字幕 | 91精品伊人久久大香线蕉| 街头女战士在线观看网站| 你懂的网址亚洲精品在线观看| 大香蕉久久网| 蜜桃在线观看..| 久久狼人影院| 一区二区日韩欧美中文字幕 | 日韩 亚洲 欧美在线| 亚洲情色 制服丝袜| 欧美日韩视频精品一区| 蜜臀久久99精品久久宅男| 欧美激情 高清一区二区三区| 亚洲无线观看免费| 亚洲国产日韩一区二区| 精品人妻熟女毛片av久久网站| 美女脱内裤让男人舔精品视频| 三级国产精品欧美在线观看| 在线观看人妻少妇| av视频免费观看在线观看| 80岁老熟妇乱子伦牲交| 亚洲av免费高清在线观看| 精品国产国语对白av| 最近最新中文字幕免费大全7| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久av| 精品人妻偷拍中文字幕| 日韩成人伦理影院| 亚洲美女搞黄在线观看| 秋霞在线观看毛片| 卡戴珊不雅视频在线播放| 亚洲欧洲精品一区二区精品久久久 | 一本色道久久久久久精品综合| 22中文网久久字幕| 日韩人妻高清精品专区| 免费人妻精品一区二区三区视频| 午夜视频国产福利| 亚洲国产欧美日韩在线播放| 国产黄色视频一区二区在线观看| 我要看黄色一级片免费的| 飞空精品影院首页| 午夜影院在线不卡| 另类亚洲欧美激情| 亚洲第一区二区三区不卡| 久久久午夜欧美精品| 亚洲中文av在线| 免费黄频网站在线观看国产| 18禁动态无遮挡网站| 一边摸一边做爽爽视频免费| 999精品在线视频| 日本黄色片子视频| 十八禁高潮呻吟视频| 青春草视频在线免费观看| 成人午夜精彩视频在线观看| 欧美激情国产日韩精品一区| 免费黄频网站在线观看国产| 少妇 在线观看| 热99国产精品久久久久久7| 人人妻人人添人人爽欧美一区卜| 精品久久久精品久久久| 日韩欧美精品免费久久| 午夜福利视频精品| 美女xxoo啪啪120秒动态图| 亚洲精品日本国产第一区| 国产乱人偷精品视频| 少妇高潮的动态图| 美女大奶头黄色视频| 伊人久久精品亚洲午夜| 亚洲欧美色中文字幕在线| 久久久久国产精品人妻一区二区| 国产日韩欧美视频二区| 97在线人人人人妻| 国产av一区二区精品久久| 久久鲁丝午夜福利片| 三级国产精品欧美在线观看| 中文欧美无线码| 极品人妻少妇av视频| 我的老师免费观看完整版| 国产女主播在线喷水免费视频网站| 亚洲欧洲国产日韩| 久久人人爽人人爽人人片va| 中文字幕av电影在线播放| 美女福利国产在线| 水蜜桃什么品种好| 水蜜桃什么品种好| 亚洲婷婷狠狠爱综合网| 亚洲av福利一区| 久久人人爽人人爽人人片va| 搡老乐熟女国产| 亚洲国产最新在线播放| 免费观看的影片在线观看| 日本黄色片子视频| 亚洲成人手机| 少妇的逼好多水| 一本色道久久久久久精品综合| 女人精品久久久久毛片| 亚洲综合色惰| 国产国语露脸激情在线看| 国产精品一国产av| 边亲边吃奶的免费视频| 日韩一区二区视频免费看| 在线观看免费视频网站a站| 国产精品一区二区三区四区免费观看| 国产毛片在线视频| 国内精品宾馆在线| 91精品伊人久久大香线蕉| 亚洲精品久久午夜乱码| av又黄又爽大尺度在线免费看| 国产精品秋霞免费鲁丝片| 亚洲av成人精品一二三区| 99热国产这里只有精品6| 亚洲av成人精品一二三区| 男人操女人黄网站| 久久久亚洲精品成人影院| 亚洲国产av新网站| 人人妻人人添人人爽欧美一区卜| 久久 成人 亚洲| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久av| 精品久久国产蜜桃| 91精品国产国语对白视频| 黄色视频在线播放观看不卡| 丝瓜视频免费看黄片| 国产成人午夜福利电影在线观看| 免费少妇av软件| 在线观看人妻少妇| 少妇精品久久久久久久| 男女无遮挡免费网站观看| av视频免费观看在线观看| 性高湖久久久久久久久免费观看| a级毛片在线看网站| 日本wwww免费看| 一级毛片电影观看| 久久久久精品性色| 日韩精品免费视频一区二区三区 | 日韩中文字幕视频在线看片| 亚洲国产精品专区欧美| 桃花免费在线播放| 夫妻午夜视频| av不卡在线播放| 日日啪夜夜爽| 精品酒店卫生间| 精品久久久久久久久亚洲| 激情五月婷婷亚洲| 一本一本综合久久| 久久精品国产a三级三级三级| 欧美成人精品欧美一级黄| 国产色爽女视频免费观看| 欧美激情极品国产一区二区三区 | 亚洲精品久久久久久婷婷小说| 97在线视频观看| 亚洲国产精品成人久久小说| 欧美成人午夜免费资源| 五月开心婷婷网| 成人黄色视频免费在线看| 免费观看a级毛片全部| 免费人妻精品一区二区三区视频| av免费观看日本| 亚洲国产av新网站| 黑人高潮一二区| 日本猛色少妇xxxxx猛交久久| 自拍欧美九色日韩亚洲蝌蚪91| 一本—道久久a久久精品蜜桃钙片| 成人亚洲精品一区在线观看| 欧美 日韩 精品 国产| 黑人巨大精品欧美一区二区蜜桃 | 日韩 亚洲 欧美在线| 性色av一级| 国产爽快片一区二区三区| 伊人久久国产一区二区| 伊人久久国产一区二区| 91成人精品电影| 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 美女国产视频在线观看| 黄色毛片三级朝国网站| 香蕉精品网在线| 18+在线观看网站| 少妇精品久久久久久久| 高清毛片免费看| 亚洲国产成人一精品久久久| 中国美白少妇内射xxxbb| 亚洲av欧美aⅴ国产| 精品一区二区免费观看| 啦啦啦视频在线资源免费观看| 国产精品久久久久久久久免| 亚洲人成网站在线观看播放| 少妇高潮的动态图| 精品人妻熟女毛片av久久网站| 女性生殖器流出的白浆| 日本免费在线观看一区| 精品久久久久久久久亚洲| 国产国拍精品亚洲av在线观看| 老司机影院成人| 国产乱人偷精品视频| 国产成人精品在线电影| 久久久午夜欧美精品| 丰满乱子伦码专区| 亚洲五月色婷婷综合| 精品人妻熟女av久视频| 精品人妻熟女av久视频| 亚洲av不卡在线观看| 免费少妇av软件| 久久精品国产亚洲av涩爱| 国产av一区二区精品久久| 精品人妻熟女毛片av久久网站| 在线天堂最新版资源| 最新的欧美精品一区二区| 亚洲精品乱久久久久久| 亚洲成人手机| 人妻少妇偷人精品九色| 亚洲成人一二三区av| 少妇精品久久久久久久| 热99久久久久精品小说推荐| 欧美三级亚洲精品| 国产有黄有色有爽视频| 日韩精品有码人妻一区| 一边亲一边摸免费视频| 水蜜桃什么品种好| 人妻 亚洲 视频| 国产极品天堂在线| 一级毛片电影观看| 91久久精品国产一区二区成人| 99久国产av精品国产电影| 欧美丝袜亚洲另类| 亚洲av成人精品一区久久| 永久网站在线| 亚洲av福利一区| 老司机影院成人| 99久久精品一区二区三区| 国产精品国产三级专区第一集| xxxhd国产人妻xxx| 大香蕉97超碰在线| 熟妇人妻不卡中文字幕| 国产在线视频一区二区| 哪个播放器可以免费观看大片| av在线播放精品| 国产精品久久久久久精品古装| 91精品三级在线观看| 日韩人妻高清精品专区| 日韩大片免费观看网站| 久久久久人妻精品一区果冻| 亚洲欧美中文字幕日韩二区| 欧美精品高潮呻吟av久久| 国产成人精品久久久久久| 精品久久蜜臀av无| 日本欧美国产在线视频| 特大巨黑吊av在线直播| 亚洲第一av免费看| 黄色配什么色好看| 伊人亚洲综合成人网| 中国三级夫妇交换| 嫩草影院入口| 18禁动态无遮挡网站| 免费看不卡的av| 成人毛片a级毛片在线播放| 欧美人与性动交α欧美精品济南到 | 亚洲av中文av极速乱| 免费久久久久久久精品成人欧美视频 | 黑人巨大精品欧美一区二区蜜桃 | 日韩一区二区视频免费看| 色网站视频免费| 日本午夜av视频| 夫妻午夜视频| 国内精品宾馆在线| 亚洲精品乱码久久久v下载方式| 久久亚洲国产成人精品v| 人妻夜夜爽99麻豆av| 国产精品秋霞免费鲁丝片| 色视频在线一区二区三区| 丝袜脚勾引网站| 新久久久久国产一级毛片| 免费看光身美女| 搡女人真爽免费视频火全软件| 七月丁香在线播放| 日日爽夜夜爽网站| 国产乱来视频区| 亚洲精品一二三| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 我要看黄色一级片免费的| 国产一级毛片在线| 国产免费现黄频在线看| xxx大片免费视频| 国产精品一区www在线观看| 天堂俺去俺来也www色官网| 精品一品国产午夜福利视频| 成人亚洲精品一区在线观看| 91午夜精品亚洲一区二区三区| 激情五月婷婷亚洲| 女的被弄到高潮叫床怎么办| 老司机影院毛片| 国产片内射在线| 精品99又大又爽又粗少妇毛片| 两个人的视频大全免费| 制服人妻中文乱码| 十八禁高潮呻吟视频| 日韩av在线免费看完整版不卡| xxxhd国产人妻xxx| 欧美97在线视频| 91久久精品电影网| 啦啦啦在线观看免费高清www| 国产亚洲精品久久久com| 亚洲国产毛片av蜜桃av| 色网站视频免费| 亚洲美女黄色视频免费看| 一级毛片电影观看| 嘟嘟电影网在线观看| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 在线观看www视频免费| 精品国产露脸久久av麻豆| 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲高清精品| 人体艺术视频欧美日本| 中文字幕最新亚洲高清| 三级国产精品片| 久久精品国产亚洲av涩爱| 一区在线观看完整版| 久久综合国产亚洲精品| 国产av国产精品国产| 免费黄频网站在线观看国产| av播播在线观看一区| 亚洲国产精品成人久久小说| 看十八女毛片水多多多| 欧美少妇被猛烈插入视频| 亚洲av不卡在线观看| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 99久久精品一区二区三区| 精品久久久久久电影网| 在线免费观看不下载黄p国产| 伊人久久国产一区二区| 欧美激情国产日韩精品一区| 这个男人来自地球电影免费观看 | 制服人妻中文乱码| 香蕉精品网在线| 男女免费视频国产| 色视频在线一区二区三区| 丝袜喷水一区| 亚洲精品,欧美精品| videossex国产| 一级爰片在线观看| 两个人的视频大全免费| 亚洲欧洲日产国产| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 18在线观看网站| 国产日韩一区二区三区精品不卡 | 黄色欧美视频在线观看| 三级国产精品欧美在线观看| 国产精品免费大片| 狂野欧美白嫩少妇大欣赏| 久久久精品免费免费高清| 亚洲精品亚洲一区二区| 国产日韩一区二区三区精品不卡 | 久久久精品免费免费高清| 亚洲精品自拍成人| 国精品久久久久久国模美| 久久久国产欧美日韩av| 男女边摸边吃奶| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 久久99蜜桃精品久久| av在线播放精品| 99热这里只有精品一区| 五月开心婷婷网| 国产极品天堂在线| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频| 亚洲精品国产色婷婷电影| 亚洲图色成人| 狠狠婷婷综合久久久久久88av| 国国产精品蜜臀av免费| 亚洲美女搞黄在线观看| 欧美精品人与动牲交sv欧美| 免费大片18禁| 亚洲精品国产av蜜桃| 欧美xxⅹ黑人| 伦理电影免费视频| 内地一区二区视频在线| 亚洲一区二区三区欧美精品| 免费大片18禁| 丁香六月天网| 中文欧美无线码| 老司机影院成人| 国产在线免费精品| 黑人猛操日本美女一级片| 日本91视频免费播放| 制服诱惑二区| 国产精品熟女久久久久浪| 国产又色又爽无遮挡免| 亚洲天堂av无毛| 丰满少妇做爰视频| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 啦啦啦视频在线资源免费观看| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 一二三四中文在线观看免费高清| av在线app专区| 在线观看免费日韩欧美大片 | 色94色欧美一区二区| 中国国产av一级| 丝袜喷水一区| 一区二区av电影网| 少妇熟女欧美另类| 亚洲精华国产精华液的使用体验| 99热国产这里只有精品6| 女性被躁到高潮视频| 99国产精品免费福利视频| 高清av免费在线| 久久久久国产精品人妻一区二区| 性高湖久久久久久久久免费观看| 视频中文字幕在线观看| 80岁老熟妇乱子伦牲交| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 大香蕉久久成人网| 亚洲综合精品二区| 久久久久久久久久成人| av免费在线看不卡| 少妇熟女欧美另类| 欧美精品人与动牲交sv欧美| 精品久久久精品久久久| 看十八女毛片水多多多| 亚洲av电影在线观看一区二区三区| 久久婷婷青草| 国产精品人妻久久久影院| 熟妇人妻不卡中文字幕| 国产一区二区在线观看日韩| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 高清欧美精品videossex| 欧美+日韩+精品| 精品久久蜜臀av无| 久久久久久久大尺度免费视频| 男的添女的下面高潮视频| 亚洲,一卡二卡三卡| 一区二区日韩欧美中文字幕 | 亚洲欧美成人精品一区二区| 十分钟在线观看高清视频www| 韩国高清视频一区二区三区| 欧美日韩综合久久久久久| 黑人欧美特级aaaaaa片| 伊人久久国产一区二区| 国产精品国产三级专区第一集| 丝袜脚勾引网站| 满18在线观看网站| 美女内射精品一级片tv| 熟女av电影| 亚洲国产av影院在线观看| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看| 黄片播放在线免费| 国产免费又黄又爽又色| 观看av在线不卡| 黄色视频在线播放观看不卡| 日韩熟女老妇一区二区性免费视频| 多毛熟女@视频| av黄色大香蕉| 亚洲美女黄色视频免费看| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 黑人猛操日本美女一级片| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 一级黄片播放器| 91午夜精品亚洲一区二区三区| 黑人欧美特级aaaaaa片| 国产成人精品一,二区| 精品久久久久久久久亚洲| 亚洲精品日本国产第一区| 久久久国产精品麻豆| 国产亚洲最大av| 久久久久久久亚洲中文字幕| 少妇被粗大猛烈的视频| 99热6这里只有精品| 制服丝袜香蕉在线| 久久 成人 亚洲| 亚洲国产精品999| 免费久久久久久久精品成人欧美视频 | 高清午夜精品一区二区三区| 丝袜美足系列| 十八禁网站网址无遮挡| 国产精品秋霞免费鲁丝片| 国产爽快片一区二区三区| 日韩伦理黄色片| 在线亚洲精品国产二区图片欧美 | 韩国高清视频一区二区三区| 久久人妻熟女aⅴ| 丝袜美足系列| 亚洲精品美女久久av网站| 久久久久人妻精品一区果冻| 秋霞伦理黄片| 一边亲一边摸免费视频| 亚洲三级黄色毛片| 自拍欧美九色日韩亚洲蝌蚪91| 日本欧美视频一区| 少妇人妻久久综合中文| 高清毛片免费看| 久久久久视频综合| 青春草视频在线免费观看| 一边亲一边摸免费视频| 少妇的逼水好多| 国产综合精华液| 国产在线视频一区二区| 天堂8中文在线网| 日韩在线高清观看一区二区三区| 精品久久国产蜜桃| 大又大粗又爽又黄少妇毛片口| 国产一区亚洲一区在线观看| 免费黄频网站在线观看国产| 日日撸夜夜添| 97在线人人人人妻| 亚洲伊人久久精品综合| 纯流量卡能插随身wifi吗| 一区在线观看完整版| 纯流量卡能插随身wifi吗| www.色视频.com| 日本欧美视频一区| 97在线视频观看| 伦精品一区二区三区| 久久精品久久精品一区二区三区| 欧美激情极品国产一区二区三区 | 国产av国产精品国产| 看十八女毛片水多多多| 久久国产亚洲av麻豆专区| 国产在线免费精品| 亚洲欧美日韩卡通动漫| 国产伦理片在线播放av一区| av天堂久久9| 97在线人人人人妻| 五月伊人婷婷丁香| 999精品在线视频| 在线观看免费日韩欧美大片 | 天天躁夜夜躁狠狠久久av| 一边摸一边做爽爽视频免费| 婷婷色综合大香蕉| 99久久人妻综合| 97超视频在线观看视频| 男女无遮挡免费网站观看| a级毛片免费高清观看在线播放| 国产精品不卡视频一区二区| 美女xxoo啪啪120秒动态图| 久久久久久久久久成人| 国产成人av激情在线播放 | 美女大奶头黄色视频| 少妇 在线观看| 亚洲色图 男人天堂 中文字幕 | 丰满少妇做爰视频| 午夜福利在线观看免费完整高清在| 男人爽女人下面视频在线观看| 亚洲av中文av极速乱| 另类精品久久| 免费观看a级毛片全部| 中文字幕制服av| 亚洲色图 男人天堂 中文字幕 | 亚洲欧洲精品一区二区精品久久久 | 十分钟在线观看高清视频www| 新久久久久国产一级毛片| 久久热精品热| 亚洲欧美中文字幕日韩二区| 美女大奶头黄色视频| 在线免费观看不下载黄p国产| 亚洲av国产av综合av卡| 麻豆乱淫一区二区| 成人手机av| 飞空精品影院首页| 日韩不卡一区二区三区视频在线| 老熟女久久久| 十分钟在线观看高清视频www| 在线观看人妻少妇| 在线观看三级黄色| av专区在线播放|