• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Note on Bell-Based Bernoulli and Euler Polynomials of Complex Variable

    2023-03-12 08:59:46AlamKhanObeidatMuhiuddinDiabZaidiAltalebandBachioua

    N.Alam,W.A.Khan,S.Obeidat,G.Muhiuddin,N.S.Diab,H.N.Zaidi,A.Altaleb and L.Bachioua

    1Department of Basic Sciences,Deanship of Preparatory Year,University of Ha’il,Ha’il,2440,Saudi Arabia

    2Department of Mathematics and Natural Sciences,Prince Mohammad Bin Fahd University,Al Khobar,31952,Saudi Arabia

    3Department of Mathematics,Faculty of Science,University of Tabuk,Tabuk,71491,Saudi Arabia

    ABSTRACT In this article, we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given.

    KEYWORDS Bernoulli polynomials;euler polynomials;bell polynomials;stirling numbers

    1 Introduction

    Special polynomials and numbers possess much importance in multifarious areas of sciences such as physics,mathematics,applied sciences,engineering and other related research fields covering differential equations,number theory,functional analysis,quantum mechanics,mathematical analysis,mathematical physics and so on (see [1–22]) and see also each of the references cited therein.For example, Bernoulli polynomials and numbers are closely related to the Riemann zeta function,which possesses a connection with the distribution of prime numbers.Some of the most significant polynomials in the theory of special polynomials are the Bell,Euler,Bernoulli,Hermite,and Genocchi polynomials.Recently,the aforesaid polynomials and their diverse generalizations have been densely considered and investigated by many physicists and mathematicians (see [1–18,22]) and see also the references cited therein (see [6–9,14–17]).The class of Appell polynomial sequence is one of the significant classes of polynomials sequence [1].In applied mathematics, theoretical physics,approximation theory,and several other mathematics branches.The set of Appell polynomial sequence is closed under the operation of umbral composition of polynomial sequences.The Appell polynomial sequence can be given by the following generating function:

    The power seriesA(z)given by

    whereAi{i=1,2,3,···}are real coffiecients.It is easy to see that for anyA(z),the derivative ofA(z)satisfies

    The Bell-based Bernoulli and Bell-based Bernoulli polynomials of the first kind are the special cases of Appell polynomials(see[2,18]).

    The generalized Bernoulli and Euler polynomials of orderαare defined by(see[2–5])

    and

    respectively.

    At the pointξ= 0,=(0)andare the Bernoulli and Euler numbers of orderα.

    Forj≥0,Stirling numbers of the first kind are defined by

    where(ξ)0=1,and(ξ)j=ξ(ξ-1)···(ξ-j+1),(ξ≥1).From(4),we see that

    The Stirling numbers of the second kind are defined by

    By(5),we note that

    The generating function of Bell polynomialsBelj(ξ)are defined by(see[7])

    In the special caseξ= 1,Belj=Belj(1),(j≥0)are the Bell numbers.From (1.7) and (1.8),we have

    Recently, Duran et al.[2] introduced the generalized Bell-based Bernoulli polynomials are defined by

    At the pointξ=η=1,Bel=Bel(1;1)are the generalized Bell-based Bernoulli numbers.

    Kim et al.[13]and Jamei et al.[4,5]introduced the Bernoulli and Euler polynomials of complex variable are defined by

    and

    respectively.

    Also they have prove that(see[4,5,8,9,19,20,21])

    and

    where

    and

    Motivated by the importance and potential applications in certain problems in number theory,combinatorics, classical and numerical analysis and physics, several families of Bernoulli and Euler polynomials and special polynomials have been recently studied by many authors, see [8,9,19–21].Recently, Kim et al.[13,16] have introduced the degenerate Bernoulli and degenerate Euler polynomials of a complex variable.By separating the real and imaginary parts, they introduced the parametric kinds of these degenerate polynomials.The manuscript of this paper is arranged as follows.In Section 2, we introduce parametric kinds of Bell-based Bernoulli polynomials and prove several identities of Bell-based Bernoulli polynomials by using different analytical means and applying generating functions.In Section 3,we establish parametric kinds of Bell-based Euler polynomials and investigate some identities of these polynomials.

    2 Bell-Based Bernoulli Polynomials of Complex Variable

    In this section,we consider the Bell-based Bernoulli polynomials of complex variable and deduce some identities of these polynomials.First,we present the following definition as

    On the other hand,we suppose that

    Thus,by(19)and(20),we have

    and

    From(21)and(22),we get

    and

    respectively.

    Note thatBel(ξ,0;0)=(ξ),0,0;0)=0,(j≥0).

    From(23)–(26),we have

    Remark 2.1.Forξ=ζ=0 in(25)and(26),we get

    and

    respectively.

    It is clear that

    Remark 2.2.Lettingζ=0 in(25)and(26),we obtain

    and

    respectively.

    Remark 2.3.On settingξ=0 in(25)and(26),we acquire

    and

    respectively.

    Now,we start some basic properties of these polynomials.

    Theorem 2.1.Letj≥0.Then

    and

    Proof.By(33)and(34),we can derive the following equations:

    and

    Therefore,by(37)and(38),we get(35).Similarly,we can easily obtain(36).

    Theorem 2.2.Letj≥0.Then

    and

    Proof.By using(21)and(22),we obtain(39)and(40).So we omit the proof.

    Theorem 2.3.Letj≥0.Then

    and

    Proof.Consider

    Now

    which proves(41).The proof of(42)is similar.

    Theorem 2.4.For everyj∈Z+,we have

    Proof.Using(25)and(26),we obtain(43)–(46).Here,we omit the proof of the theorem.

    Theorem 2.5.Letj≥0.Then

    and

    Proof.By changingξwithξ+sin(25),we have

    which complete the proof(47).The result(48)can be similarly proved.

    Theorem 2.6.Letj≥1.Then

    and

    Proof.Eq.(25)yields

    proving(49).Other(50),(51)and(52)can be similarly derived.

    Theorem 2.7.Letj≥1.Then

    and

    Proof.By(25),we have

    The complete proof of(53).The proof of(54)is similar.

    Theorem 2.8.Forj≥0.Then

    and

    Proof.By(25),we have

    On the other hand,we have

    In view of(58)and(59),we get(56).Similarly,we can easily obtain(57).

    Theorem 2.9.Letj≥0.Then

    and

    Proof.In definition 2.1,we have

    On the other hand,we have

    Therefore,by(62)and(63),we obtain(60).Similarly,we can easily obtain(61).

    Theorem 2.10.Letj≥0.Then

    and

    Proof.Using(7)and(25),we find

    In view of(25)and(66),we get(64).Similarly,we can easily obtain(65).

    3 Bell-Based Euler Polynomials of Complex Variable

    In this section, we define Bell-based Euler polynomials of complex variable and derive some explicit expressions of these polynomials.Now we start with the following definition as

    By using(67)and(20),we have

    and

    From(68)and(69),we get

    and

    Definition 3.1.Letj≥0.We define two parametric kinds of cosine Bell-based Euler polynomialsBel(ξ,η;ζ)and sine Bell-based Euler polynomialsBel(ξ,η;ζ), for non negative integerjare defined by

    and

    respectively.

    From(70)–(73),we have

    Note that

    Remark 3.1.Forξ=0 in(72)and(73),we get

    and

    respectively.

    Remark 3.2.Lettingζ=0 in(72)and(73),we obtain

    and

    respectively.

    Remark 3.3.On takingξ=ζ=0 in(72)and(73),we acquire

    and

    respectively.

    Theorem 3.1.Letj≥0.Then

    and

    Proof.From(78)and(79),we can derive the following equations:

    and

    Therefore,by(82)and(83),we get(80).Similarly,we can easily obtain(81).

    Theorem 3.2.Letj≥0.Then

    and

    Proof.By using(68)and(69),we can easily get(84)and(85).So we omit the proof.

    Theorem 3.3.Letj≥0.Then

    and

    Proof.Consider the identity,we have

    Now

    which proves(86).The proof of(87)is similar.

    Theorem 3.4.Letj≥0.Then

    Proof.Using(72)and(73),we obtain(88)–(90).Here,we omit the proof of the theorem.

    Theorem 3.5.Letj≥0.Then

    and

    Proof.By changingξwithξ+sin(72),we have

    which proves(91).The result(92)can be similarly proved.

    Theorem 3.6.Letj≥1.Then

    and

    Proof.Eq.(72)yields

    proving(93).Other(94)–(96)can be similarly derived.

    Theorem 3.7.Letj≥0.Then

    and

    Proof.By definition(72),we have

    The complete proof of the result(97).The proof of(98)is similar.

    Theorem 3.8.Letj≥0.Then

    Proof.Using definition 3.1,we have

    On the other hand,we have

    In view of(102)and(103),we get(100).Similarly,we can easily obtain(101).

    Theorem 3.9.Letj≥0.Then

    and

    Proof.Using(7)and(72),we find

    In view of(72)and(106),we get(104).Similarly,we can easily obtain(105).

    4 Computational Values and Graphical Representations of Bell-Based Bernoulli Polynomials of Complex Variable

    In this section, certain zeros of the Bell-based Bernoulli polynomials of complex variable,η;ζ)and,η;ζ)and beautifully graphical representations are shown.

    The first few of them are

    Table 1 shows some numerical values of Bell-based Bernoulli polynomials of a complex variable.

    Table 1:Numerical values of Bell-based Bernoulli polynomials of a complex variable Bel(ξ,η;ζ)and Bel(ξ,η;ζ)

    Table 1:Numerical values of Bell-based Bernoulli polynomials of a complex variable Bel(ξ,η;ζ)and Bel(ξ,η;ζ)

    j BelB(α,c)j (5,6;2) BelB(α,s)j (5,6;2)0 1.0 0 1 6.0 6.0 2 1.83333 72.0 3-397.0 465.0 4-5123.9 840.0 5-38622.3 -21381.0 6-158258 -341508 7 505053 318760×101 8 1.81135×107 -2.1281×107 9 2.29789×108 -8.71221×108 10 2.19881×109 2.12412×108

    Fig.1 shows the plot for the Bell-based Bernoulli polynomialBel(ξ,η;ζ)with(ξ,η;ζ)=(5,6;2).Fig.2 shows the plot for 3D Bell-based Bernoulli polynomialsBel(ξ,η;ζ).

    Figure 1:Bell-based Bernoulli polynomials Bel(ξ,η;ζ)

    Figure 2:3D Bell-based Bernoulli polynomials Bel(ξ,η;ζ)

    5 Computational Values and Graphical Representations of Bell-Based Euler Polynomials of Complex Variable

    In this section, certain zeros of the Bell-based Bernoulli polynomials of complex variableBel(ξ,η;ζ)andBel(ξ,η;ζ)and beautifully graphical representations are shown.

    The first few of them are

    Table 2 shows some numerical values of Numerical values of Bell-based Euler polynomials of complex variable.

    Table 2:Numerical values of Bell-based Euler polynomials of a complex variable (ξ,η;ζ)and(ξ,η;ζ)

    Table 2:Numerical values of Bell-based Euler polynomials of a complex variable (ξ,η;ζ)and(ξ,η;ζ)

    j BelE(α,c)j (5,6;2) BelE(α,s)j (5,6;2)0 1.0 0 1 6.0 6.0 2 1.5 72.0 3-403.0 459.0 4-5127.0 696.0 5-37282.0 -22914.0 6-132625 -345096 7 767443 -302880×101 8 1.93872×107 -1.80647×107 9 2.21045×108 -5.04831×107 10 1.91065×109 4.90648×108

    Fig.3 shows the plot for the Bell-based Euler polynomial,η;ζ)with(ξ,η;ζ)=(5,6;2).

    Figure 3:Bell-based Euler polynomials (ξ,η;ζ)

    6 Conclusions

    In the present article,we have considered the parametric kinds of Bell-based Bernoulli and Euler polynomials by making use of the exponential as well as trigonometric functions.We have also derived some analytical properties of our newly introduced parametric polynomials by using the series manipulation technique.Furthermore,it is noticed that,if we consider any Appell polynomials of a complex variable(as discussed in the present article),then we can easily define its parametric kinds by separating the complex variable into real and imaginary parts.Consequently,the results of this article may potentially be used in mathematics,mathematical physics and engineering.

    Acknowledgement:The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.

    Funding Statement:This research was funded by Research Deanship at the University of Ha’il,Saudi Arabia,through Project No.RG-21 144.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品免费一区二区三区在线 | 国产成人欧美在线观看 | 日本黄色视频三级网站网址 | 精品免费久久久久久久清纯 | 国产亚洲精品一区二区www | 大型av网站在线播放| 99久久国产精品久久久| 丝袜美足系列| 三上悠亚av全集在线观看| av视频免费观看在线观看| 日韩欧美免费精品| 精品欧美一区二区三区在线| 高清欧美精品videossex| 精品人妻1区二区| 女性生殖器流出的白浆| 久久这里只有精品19| 国产精品一区二区免费欧美| 国产精品久久久久久精品古装| 国产精品久久久人人做人人爽| 国产成人精品无人区| 欧美黄色淫秽网站| 色综合婷婷激情| 国产亚洲一区二区精品| 80岁老熟妇乱子伦牲交| 最新的欧美精品一区二区| 午夜久久久在线观看| 色婷婷久久久亚洲欧美| 两个人免费观看高清视频| 精品福利永久在线观看| 国产高清国产精品国产三级| 妹子高潮喷水视频| 国产在线视频一区二区| 女警被强在线播放| 一区二区三区乱码不卡18| 韩国精品一区二区三区| 久久中文字幕人妻熟女| 色婷婷av一区二区三区视频| 日韩中文字幕视频在线看片| 久久久国产一区二区| 日韩一卡2卡3卡4卡2021年| 黄色视频不卡| 国产男女超爽视频在线观看| cao死你这个sao货| 成年人黄色毛片网站| 男人操女人黄网站| 精品熟女少妇八av免费久了| 亚洲伊人久久精品综合| 国产区一区二久久| 久久久久国产一级毛片高清牌| 女人精品久久久久毛片| 首页视频小说图片口味搜索| www.精华液| 国产片内射在线| 国产精品一区二区在线不卡| 免费久久久久久久精品成人欧美视频| 久久热在线av| 精品国产国语对白av| 日本黄色视频三级网站网址 | 嫁个100分男人电影在线观看| 黑人猛操日本美女一级片| 成年版毛片免费区| 日韩欧美三级三区| 日本一区二区免费在线视频| 又黄又粗又硬又大视频| avwww免费| 日韩成人在线观看一区二区三区| 欧美日韩亚洲综合一区二区三区_| aaaaa片日本免费| 丰满少妇做爰视频| 天天影视国产精品| 十八禁人妻一区二区| 最新美女视频免费是黄的| 黄网站色视频无遮挡免费观看| av视频免费观看在线观看| 午夜福利在线观看吧| 国产片内射在线| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 国产色视频综合| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 久久久欧美国产精品| 久久久久国内视频| 久久人妻av系列| 动漫黄色视频在线观看| 亚洲精品国产精品久久久不卡| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 免费少妇av软件| 久久久久久久精品吃奶| 淫妇啪啪啪对白视频| 美女视频免费永久观看网站| 免费高清在线观看日韩| 亚洲欧洲日产国产| 悠悠久久av| 成人免费观看视频高清| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影 | 免费一级毛片在线播放高清视频 | 色尼玛亚洲综合影院| 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 免费观看a级毛片全部| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 丝袜美腿诱惑在线| 亚洲精品国产色婷婷电影| 久久久精品区二区三区| 久久中文字幕人妻熟女| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 亚洲精品国产精品久久久不卡| 久久久久国内视频| 在线观看免费午夜福利视频| 久久精品亚洲av国产电影网| 午夜成年电影在线免费观看| a级毛片黄视频| 国产野战对白在线观看| 欧美日韩亚洲综合一区二区三区_| 视频在线观看一区二区三区| 一进一出抽搐动态| 人妻久久中文字幕网| 首页视频小说图片口味搜索| 一级毛片电影观看| 亚洲精品国产色婷婷电影| 香蕉久久夜色| 在线十欧美十亚洲十日本专区| 欧美日韩精品网址| 中文亚洲av片在线观看爽 | 国产高清视频在线播放一区| 天天影视国产精品| 亚洲久久久国产精品| 欧美日韩亚洲综合一区二区三区_| av福利片在线| 老熟妇乱子伦视频在线观看| 十八禁网站网址无遮挡| 91麻豆av在线| 中文亚洲av片在线观看爽 | 精品国产一区二区久久| 午夜激情av网站| a级片在线免费高清观看视频| 波多野结衣一区麻豆| 亚洲成人手机| 国产av一区二区精品久久| 成人黄色视频免费在线看| 精品高清国产在线一区| 在线永久观看黄色视频| 精品久久久久久电影网| 少妇 在线观看| 日本黄色日本黄色录像| 婷婷丁香在线五月| 免费在线观看影片大全网站| 69av精品久久久久久 | 欧美激情极品国产一区二区三区| 一本—道久久a久久精品蜜桃钙片| 成年版毛片免费区| 国产精品一区二区在线观看99| 久久久久视频综合| 久久久精品区二区三区| 国产免费福利视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 无遮挡黄片免费观看| 国产黄色免费在线视频| 高清欧美精品videossex| 国产欧美日韩一区二区三| 69精品国产乱码久久久| 下体分泌物呈黄色| 久久久国产精品麻豆| 一级片'在线观看视频| 精品少妇一区二区三区视频日本电影| 19禁男女啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 国产成+人综合+亚洲专区| 日韩欧美一区视频在线观看| 老司机午夜十八禁免费视频| 亚洲三区欧美一区| 成人亚洲精品一区在线观看| 欧美另类亚洲清纯唯美| 欧美 日韩 精品 国产| 中文字幕另类日韩欧美亚洲嫩草| 久久国产精品人妻蜜桃| 亚洲精品在线观看二区| 久久精品亚洲av国产电影网| 成年人午夜在线观看视频| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 超碰97精品在线观看| 成在线人永久免费视频| 黑人欧美特级aaaaaa片| 精品国产一区二区三区四区第35| 热99re8久久精品国产| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 成人国产av品久久久| 交换朋友夫妻互换小说| 精品卡一卡二卡四卡免费| h视频一区二区三区| 亚洲熟女精品中文字幕| 老熟妇乱子伦视频在线观看| 午夜福利在线免费观看网站| 法律面前人人平等表现在哪些方面| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品中文字幕在线视频| av超薄肉色丝袜交足视频| 精品国内亚洲2022精品成人 | 欧美老熟妇乱子伦牲交| 一级片'在线观看视频| 麻豆乱淫一区二区| 久久久久久久精品吃奶| 精品久久久精品久久久| 午夜福利,免费看| 99久久精品国产亚洲精品| 国产精品久久久久久精品电影小说| 十八禁网站免费在线| 国产单亲对白刺激| 日韩欧美国产一区二区入口| 青草久久国产| 中文字幕精品免费在线观看视频| 19禁男女啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 精品人妻1区二区| 汤姆久久久久久久影院中文字幕| 大片免费播放器 马上看| av在线播放免费不卡| 久9热在线精品视频| 欧美国产精品va在线观看不卡| 91精品三级在线观看| 色综合欧美亚洲国产小说| 精品国产亚洲在线| 黄频高清免费视频| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| 午夜激情久久久久久久| 韩国精品一区二区三区| 中文欧美无线码| 欧美国产精品va在线观看不卡| 黄片小视频在线播放| 黄色片一级片一级黄色片| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 午夜成年电影在线免费观看| 亚洲第一av免费看| av片东京热男人的天堂| 老熟妇仑乱视频hdxx| av超薄肉色丝袜交足视频| 亚洲欧美一区二区三区久久| 五月开心婷婷网| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| tocl精华| 麻豆成人av在线观看| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 精品一品国产午夜福利视频| 无人区码免费观看不卡 | bbb黄色大片| 亚洲三区欧美一区| 一边摸一边抽搐一进一小说 | 搡老岳熟女国产| 日韩有码中文字幕| 免费在线观看影片大全网站| 亚洲一区二区三区欧美精品| 曰老女人黄片| 天堂中文最新版在线下载| 久久青草综合色| 国产精品久久久人人做人人爽| 日本vs欧美在线观看视频| 成人特级黄色片久久久久久久 | 丁香六月欧美| 99精品欧美一区二区三区四区| 国产单亲对白刺激| 99国产极品粉嫩在线观看| 嫁个100分男人电影在线观看| 国产精品久久久久成人av| 99国产精品免费福利视频| 18禁裸乳无遮挡动漫免费视频| 动漫黄色视频在线观看| 欧美日韩成人在线一区二区| 国产精品98久久久久久宅男小说| 纵有疾风起免费观看全集完整版| 国产亚洲精品一区二区www | 亚洲免费av在线视频| 悠悠久久av| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 久久久水蜜桃国产精品网| 国产精品免费大片| 免费看a级黄色片| 中文欧美无线码| 手机成人av网站| 久久中文字幕人妻熟女| 热re99久久国产66热| 国产精品免费一区二区三区在线 | 精品第一国产精品| 久久亚洲精品不卡| 2018国产大陆天天弄谢| 啦啦啦免费观看视频1| 99久久国产精品久久久| 午夜视频精品福利| 男人操女人黄网站| 丝袜在线中文字幕| 两性夫妻黄色片| 九色亚洲精品在线播放| 夜夜爽天天搞| 亚洲午夜精品一区,二区,三区| 俄罗斯特黄特色一大片| 香蕉久久夜色| 91av网站免费观看| 国产亚洲精品一区二区www | 久久久久国产一级毛片高清牌| av线在线观看网站| 三级毛片av免费| 亚洲精品中文字幕在线视频| 欧美日韩视频精品一区| 国产一区二区三区视频了| 国产精品 国内视频| 欧美国产精品va在线观看不卡| 国产av精品麻豆| 成人精品一区二区免费| 国产成人精品在线电影| 丝袜美足系列| 成在线人永久免费视频| 美国免费a级毛片| 女人久久www免费人成看片| 黄色怎么调成土黄色| 亚洲精品一二三| 色尼玛亚洲综合影院| 国产不卡一卡二| 日韩大片免费观看网站| 精品亚洲成国产av| 成年女人毛片免费观看观看9 | 欧美变态另类bdsm刘玥| 国产高清videossex| 日韩 欧美 亚洲 中文字幕| 亚洲成国产人片在线观看| 国产深夜福利视频在线观看| 日本vs欧美在线观看视频| 自线自在国产av| 美女主播在线视频| 好男人电影高清在线观看| 久久香蕉激情| 18禁观看日本| 菩萨蛮人人尽说江南好唐韦庄| 老汉色∧v一级毛片| 两性夫妻黄色片| 亚洲中文字幕日韩| 亚洲色图 男人天堂 中文字幕| 亚洲三区欧美一区| 制服诱惑二区| 少妇粗大呻吟视频| 别揉我奶头~嗯~啊~动态视频| 蜜桃国产av成人99| 青草久久国产| 成人av一区二区三区在线看| 视频区图区小说| 久久久久久人人人人人| 日本一区二区免费在线视频| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 午夜免费成人在线视频| 国产一区二区在线观看av| 黑人巨大精品欧美一区二区蜜桃| 老司机午夜十八禁免费视频| tube8黄色片| 可以免费在线观看a视频的电影网站| 无遮挡黄片免费观看| 成人国语在线视频| 97在线人人人人妻| 日韩中文字幕视频在线看片| 国产精品香港三级国产av潘金莲| 黑人猛操日本美女一级片| av视频免费观看在线观看| www.熟女人妻精品国产| 亚洲av美国av| 成人精品一区二区免费| 亚洲九九香蕉| 国产精品国产高清国产av | 高清在线国产一区| 亚洲av美国av| 窝窝影院91人妻| 在线天堂中文资源库| 一级毛片女人18水好多| 国产三级黄色录像| 丁香六月欧美| 国产av精品麻豆| 一本综合久久免费| cao死你这个sao货| 午夜两性在线视频| 69精品国产乱码久久久| 亚洲伊人色综图| 最新在线观看一区二区三区| 国产日韩欧美亚洲二区| 777米奇影视久久| 国产淫语在线视频| 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 精品国内亚洲2022精品成人 | 天天操日日干夜夜撸| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 丝袜在线中文字幕| 老司机午夜十八禁免费视频| 久久国产精品男人的天堂亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 国产免费av片在线观看野外av| 国产高清国产精品国产三级| 99在线人妻在线中文字幕 | av天堂在线播放| 首页视频小说图片口味搜索| 国产高清激情床上av| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 窝窝影院91人妻| 国产男女超爽视频在线观看| 五月天丁香电影| 精品福利永久在线观看| 久久久精品区二区三区| 三级毛片av免费| 色在线成人网| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 大片免费播放器 马上看| 国产有黄有色有爽视频| 97人妻天天添夜夜摸| 欧美日韩成人在线一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲成国产人片在线观看| 国产淫语在线视频| 久久久久久久久免费视频了| 国产三级黄色录像| 老司机深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 天堂俺去俺来也www色官网| 一区在线观看完整版| 嫩草影视91久久| 国产单亲对白刺激| 久久天堂一区二区三区四区| 日日爽夜夜爽网站| 性色av乱码一区二区三区2| 老熟妇乱子伦视频在线观看| 欧美乱妇无乱码| 伊人久久大香线蕉亚洲五| 国产97色在线日韩免费| av视频免费观看在线观看| 国产成人av激情在线播放| 亚洲av日韩精品久久久久久密| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 久热爱精品视频在线9| tocl精华| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| www.999成人在线观看| 丝袜美足系列| 国产精品久久久久久人妻精品电影 | 午夜福利乱码中文字幕| 啦啦啦视频在线资源免费观看| 捣出白浆h1v1| 又黄又粗又硬又大视频| 丝袜人妻中文字幕| 自线自在国产av| 欧美一级毛片孕妇| 欧美黄色片欧美黄色片| 久久精品国产综合久久久| 高清黄色对白视频在线免费看| 午夜两性在线视频| 国产一区二区在线观看av| 国产不卡一卡二| 人人澡人人妻人| 久久精品人人爽人人爽视色| 一边摸一边抽搐一进一出视频| 黄片大片在线免费观看| 成人国产一区最新在线观看| av网站在线播放免费| 国产91精品成人一区二区三区 | 高清黄色对白视频在线免费看| 亚洲熟女毛片儿| 无人区码免费观看不卡 | 我的亚洲天堂| 叶爱在线成人免费视频播放| 变态另类成人亚洲欧美熟女 | 啦啦啦免费观看视频1| 国产精品一区二区在线不卡| 露出奶头的视频| 手机成人av网站| 亚洲熟女精品中文字幕| 国产一区有黄有色的免费视频| 黄色丝袜av网址大全| 国产精品九九99| 免费日韩欧美在线观看| 中文欧美无线码| 免费看a级黄色片| 一级毛片电影观看| 国产免费现黄频在线看| 亚洲午夜精品一区,二区,三区| 成年人黄色毛片网站| 免费看a级黄色片| 高清在线国产一区| 露出奶头的视频| 国产精品99久久99久久久不卡| 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 青青草视频在线视频观看| 极品教师在线免费播放| 国产视频一区二区在线看| 精品国产一区二区久久| av视频免费观看在线观看| 久久国产亚洲av麻豆专区| 99国产精品一区二区蜜桃av | av有码第一页| 亚洲一区中文字幕在线| 午夜精品久久久久久毛片777| 欧美精品高潮呻吟av久久| av天堂久久9| 日韩视频一区二区在线观看| 激情在线观看视频在线高清 | 男男h啪啪无遮挡| 欧美精品一区二区大全| 在线亚洲精品国产二区图片欧美| 欧美另类亚洲清纯唯美| 美女高潮到喷水免费观看| 欧美激情久久久久久爽电影 | 日本欧美视频一区| 看免费av毛片| 亚洲欧美一区二区三区黑人| 另类精品久久| 国产成人欧美在线观看 | 别揉我奶头~嗯~啊~动态视频| 巨乳人妻的诱惑在线观看| 精品国产乱子伦一区二区三区| 免费观看av网站的网址| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品人妻al黑| 色老头精品视频在线观看| 欧美日韩一级在线毛片| h视频一区二区三区| 99国产精品99久久久久| 1024视频免费在线观看| 国产男靠女视频免费网站| 最新美女视频免费是黄的| 国内毛片毛片毛片毛片毛片| 精品国产亚洲在线| 91麻豆av在线| 国产一区二区激情短视频| 国产精品久久久久久精品电影小说| 欧美日韩福利视频一区二区| 久久久精品免费免费高清| 男男h啪啪无遮挡| 免费看十八禁软件| 91成人精品电影| 黄片播放在线免费| 亚洲国产精品一区二区三区在线| 久久久久久人人人人人| 多毛熟女@视频| 国产一区二区三区在线臀色熟女 | 国产精品国产高清国产av | 久久精品国产综合久久久| a在线观看视频网站| 无遮挡黄片免费观看| 精品国产乱子伦一区二区三区| 久久99一区二区三区| 欧美 日韩 精品 国产| 欧美中文综合在线视频| 免费高清在线观看日韩| 在线观看www视频免费| 91麻豆av在线| 女人久久www免费人成看片| 侵犯人妻中文字幕一二三四区| 日本vs欧美在线观看视频| 午夜福利,免费看| www日本在线高清视频| 欧美日韩一级在线毛片| 国产免费av片在线观看野外av| 在线观看舔阴道视频| 免费人妻精品一区二区三区视频| 日韩成人在线观看一区二区三区| 免费在线观看日本一区| 日韩人妻精品一区2区三区| 十八禁高潮呻吟视频| 国产在线精品亚洲第一网站| 国产成人精品久久二区二区91| 自线自在国产av| 如日韩欧美国产精品一区二区三区| 午夜福利视频在线观看免费| 啦啦啦中文免费视频观看日本| 精品国产乱码久久久久久男人| 999精品在线视频| 亚洲欧洲日产国产| 久久中文字幕一级| 丝袜在线中文字幕| 一级毛片电影观看| 国产伦人伦偷精品视频| 久久久久久人人人人人| 女人精品久久久久毛片| 国产在线视频一区二区| 国产精品免费视频内射| 亚洲成国产人片在线观看| 国产在线免费精品| 成年版毛片免费区| 国产成人免费观看mmmm| 99在线人妻在线中文字幕 | 欧美老熟妇乱子伦牲交| 午夜91福利影院| 亚洲av国产av综合av卡| 伊人久久大香线蕉亚洲五| 91麻豆av在线| 国产欧美日韩精品亚洲av| 一夜夜www| 午夜激情av网站| 欧美黑人精品巨大| 窝窝影院91人妻| 久久久久久久精品吃奶|