• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unique Solution of Integral Equations via Intuitionistic Extended Fuzzy b-Metric-Like Spaces

    2023-03-12 08:59:26NaeemSaleemKhalilJavedFahimUddinUmarIshtiaqKhalilAhmedThabetAbdeljawadandManarAlqudah

    Naeem Saleem,Khalil Javed,Fahim Uddin,Umar Ishtiaq,Khalil Ahmed,Thabet Abdeljawadand Manar A.Alqudah

    1Department of Mathematics,University of Management and Technology,Lahore,54770,Pakistan

    2Department of Math&Stats,International Islamic University Islamabad,Islamabad,44000,Pakistan

    3Abdus Salam School of Mathematical Sciences,Government College University,Lahore,54600,Pakistan

    4Office of Research,Innovation and Commercialization,University of Management and Technology,Lahore,54770,Pakistan

    5Department of Mathematics and Sciences,Prince Sultan University,Riyadh,11586,Saudi Arabia

    6Department of Medical Research,China Medical University,Taichung,40402,Taiwan

    7Department of Mathematical Sciences,Faculty of Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    ABSTRACT In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications.

    KEYWORDS Fixed point;extended fuzzy b-metric like space;intuitionistic extended fuzzy b-metric-like space;integral equation

    1 Introduction

    After being given the notion of fuzzy sets (FSs) by Zadeh [1], many researchers provided many generalizations.Schweizer et al.[2]introduced the notion of continuous t-norms.In this continuation,Kramosil et al.[3]introduced the approach of fuzzy metric spaces,while George et al.[4]introduced the concept of fuzzy metric spaces.Garbiec[5]gave the fuzzy interpretation of the Banach contraction principle in fuzzy metric spaces.Dey et al.[6]established an extension of Banach fixed point theorem in fuzzy metric space.Nadaban[7]introduced the notion of fuzzy b-metric spaces.Gregory et al.[8]proved various fixed point theorems in fuzzy metric spaces.Bashir et al.[9]established several fixed point results of a generalized reversed F-contraction mapping and its application.

    Recently,Harandi[10]initiated the concept of metric-like spaces,which generalized the notion of metric spaces in a nice way.Alghamdi et al.[11]used the concept of metric-like spaces and introduced the notion of b-metric-like spaces.In this sequel,Shukla et al.[12]generalized the concept of metriclike spaces and introduced fuzzy metric-like spaces and Javed et al.[13]introduced the concept of fuzzy b-metric-like spaces and prove some fixed point results.

    Mehmood et al.[14] presented the notion of fuzzy extended b-metric spaces (FEBMSs) by replacing the coefficientb≥1 with a functionα: D×D →[1,∞).The approach of intuitionistic fuzzy metric spaces was tossed by Park et al.[15–18], Saleem et al.[19–28] proved several fixed theorems on intuitionistic fuzzy metric space.Sintunavarat et al.[29]established various fixed theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces.Saadati et al.[30]did amazing work in the sense of intuitionistic fuzzy topological spaces.Later,Konwar[31]presented the concept of an intuitionistic fuzzy b metric space (IFBMS).Mahmood et al.[32] did power aggregation operators and similarity measures based on improved intuitionistic hesitant fuzzy sets and their applications to multiple attribute decision making.

    In this manuscript, we aim to introduce the concept of intuitionistic extended fuzzy b-metriclike space (IEFBMLS).In which, we generalize the concept of IFBMS by replacing the coefficientb≥1 with a functionα: D×D →[1,∞)in both triangular inequalities and we replace condition(III) of IFBMS,Mb(?,δ,T)= 1 ??=δbyMb(?,δ,T)= 1 implies?=δand similarly, we replace ‘’?by implies’’in condition (VIII) of IFBMS.So, presented results in this manuuscript are more generalized in the existing literature.Also,we provide some fixed point(FP)results,non-trivial examples,an application to integral equations and application dynamic market equilibrium.

    Main objectives of this manuscript are:

    (a) To introduce the notion of intuitionistic extended fuzzy b-metric-like space.

    (b) To enhance the literature of intuitionistic fuzzy fixed point theory.

    (c) To plot some graphical structure of obtained result.

    (d) To prove the existence and uniqueness of established results via integral equations.

    (e) To provide an application dynamic market equilibrium.

    2 Preliminaries

    The following definitions are helpful in the sequel.

    Definition 2.1[15] A binary operation ?: [0, 1] × [0, 1] →[0, 1] is called a continuous triangle norm(briefly CTN)if:

    1.ν*ω=ω*ν, ?ν,ω∈[0, 1];

    2.*is continuous;

    3.ν*1=ν, ?ν∈[0, 1];

    4.(ν*ω)*κ=ν*(ω*κ), ?ν,ω,κ∈[0, 1];

    5.Ifν≤κandω≤d,withν,ω,κ,d∈[0, 1],thenν*ω≤κ*d.

    Definition 2.2[15]A binary operation °:[0,1] ×[0,1]→[0,1]is called a continuous triangle conorm(briefly CTCN)if it meets the below assertions:

    1.ν°ω=ω°ν, ?ν,ω∈[0, 1];

    2.°is continuous;

    3.ν°0=0,(?) ν∈[0, 1];

    4.(ν°ω)°κ=ν°(ω°κ), ?ν,ω,κ∈[0, 1];

    5.Ifν≤κandω≤d,withν,ω,κ,d∈[0, 1],thenν°ω≤κ°d.

    Definition 2.3[10] A mappingP: D × D → [1,∞), where D?, fulfilling the below circumstances:

    a.P(?,δ)=0 implies?=δ;

    b.P(?,δ)=P(δ,?);

    c.P(?,δ)≤P(?,β)+P(β,δ);

    for all?,δ,β∈D.ThenPis called a metric-like and(D,P)is named metric-like space.

    Definition 2.4[12]Take D?.Let*be a CTN andQbbe a FS on D×D×(0,∞).A three tuple(D,Qb,*)is called fuzzy metric like space,if it verifies the following for all?,δ,β∈D andT,S >0:(F1)Qb(?,δ,T)>0;

    (F2)Qb(?,δ,T)=1 implies?=δ;

    (F3)Qb(?,δ,T)=Qb(δ,?,T);

    (F4)Qb(?,β,(T+S))≥Qb(?,δ,T)*Qb(δ,β,S);

    (F5)Qb(?,δ, ·):(0,∞)→[0, 1]is continuous.

    Definition 2.5[14]A 4-tuple(D,Δα,*,α)is called an FEBMS if D is a non-empty set,α:D×D →[1,∞),*is a CTN andΔαis a FS on D×D×(0,∞),so that for all?,δ,β∈D andT,S >0:

    Δ1)Δα(?,δ,0)=0;

    Δ2)Δα(?,δ,T)=1 ??=δ;

    Δ3)Δα(?,δ,T)=Δα(δ,?,T);

    Δ4)Δα(?,β,α(?,β)(T+S))≥Δα(?,δ,T)*Δα(δ,β,S);

    Δ5)Δα(?,δ, ·):(0,∞)→[0,1]is continuous.

    Definition 2.6[31] Take D?.Let * be a CTN, ° be a CTCN,b≥1 andMb,Nbbe FSs on D×D×(0,∞).If(D,Mb,Nb,*, °)verifies the following for all?,δ∈D andS,T >0:

    (I)Mb(?,δ,T)+Nb(?,δ,T)≤1;

    (II)Mb(?,δ,T)>0;

    (III)Mb(?,δ,T)=1 ??=δ;

    (IV)Mb(?,δ,T)=Mb(δ,?,T);

    (V)Mb(?,β,b(T+S))≥Mb(?,δ,T)*Mb(δ,β,S);

    (VI)Mb(?,δ, ·)is a non-decreasing(ND)function of R+andMb(?,δ,T)=1;

    (VII)Nb(?,δ,T)>0;

    (VIII)Nb(?,δ,T)=0 ??=δ;

    (IX)Nb(?,δ,T)=Nb(δ,?,T);

    (X)Nb(?,β,b(T+S))≤Nb(?,δ,T)°Nb(δ,β,S);

    (XI)Nb(?,δ, ·)is a non-increasing(NI)function of R+andNb(?,δ,T)=0,then(D,Mb,Nb,*, °)is an IFBMS.

    3 Main Result

    In this section,we introduce the notion of an IEFBMLS and prove some related FP results.

    Definition 3.1Let D?,*be a CTN,°be a CTCN,φ: D×D →[1,∞)be a mapping andMφ,Nφbe FSs on D×D×(0,∞).If(D,Mφ,Nφ,*, °)is such that for?,δ∈D andS,T >0:

    (i)Mφ(?,δ,T)+Nφ(?,δ,T)≤1;

    (ii)Mφ(?,δ,T)>0;

    (iii)Mφ(?,δ,T)=1 implies?=δ;

    (iv)Mφ(?,δ,T)=Mφ(δ,?,T);

    (v)Mφ(?,β,φ(?,β)(T+S))≥Mφ(?,δ,T)*Mφ(δ,β,S);

    (vi)Mφ(?,δ, ·)is a ND function of R+and=1;

    (vii)Nφ(?,δ,T)>0;

    (viii)Nφ(?,δ,T)=0 implies?=δ;

    (ix)Nφ(?,δ,T)=Nφ(δ,?,T);

    (x)Nφ(?,β,φ(?,β)(T+S))≤Nφ(?,δ,T)°Nφ(δ,β,S);

    (xi)Nφ(?,δ, ·)is a NI function of R+and=0,then(D,Mφ,Nφ,*, °)is an IEFBMLS.

    Remark 3.2In the above definition,the self distance in condition(iii)may not be equal to 1 and in condition(viii)the self distance may not be equal to 0.In triangular inequalities,we useφ:D×D →[1,∞).So,this is cleared that IEFBMLS may not be an IFBMS but converse is true.

    Example 3.3Let D=(0,∞), defineMφ,Nφ:D×D×(0,∞)→[0,1]by

    for all?,δ∈D andT >0.Define the CTN by:ν*ω=ν·ωand CTCN′′°′′byν°ω= max{ν,ω}and define′′φ′′by

    Example 3.4Let D=(0,∞)andα:D×D →[1,∞)be a function given byφ(?,δ)=?+δ+1.DefineMφ,Nφ:D×D×(0,∞)→[0,1]as

    and

    Remark 3.5Above example also satisfied for CTNa*b=min{a,b}and CTCNa°b=max{a,b}.

    Example 3.6Let D=(0,∞)andφ:D×D →[1,∞)be a function given byφ(?,δ)=?+δ+1.DefineMφ,Nφ:D×D×(0,∞)→[0,1]as

    and

    Proposition 3.7Let D =(0,∞)andφ: D × D →[1,∞)be a function given byφ(?,δ)=2(?+δ+1)DefineN,Mas

    Remark 3.8The above proposition also satisfied for CTNa*b= min{a,b}and CTCNa°b=max{a,b}.

    Proposition 3.9Let D = [0,1] andφ: D × D →[1,∞)be a function given byφ(?,δ)=2(?+δ+1).DefineMφ,Nφas

    Example 3.10Let D=(0,∞), defineMφ,Nφ:D×D×(0,∞)→[0,1]by

    for all?,δ∈D andT >0,define CTN*byν*ω=ν·ωand CTCN°byν°ω= max{ν,ω}and defineφby

    Remark 3.11In the above all examples self distance may not be equal to 1 and 0.In particular,assume an example 3.9,take?=δ,then

    Remark 3.12In the above Examples 3.3, 3.4, 3.6, 3.7, 3.10 and Proposition 3.9, it is easy to see that self-distance is not equal to 1 as in condition (iii) and the self-distance is not equal to 0 as in condition (viii) in Definition 3.1.So, the Examples 3.3, 3.4, 3.6, 3.7, 3.10 and Proposition 3.9 are becomes IEFBMLSs but not becomes IFBMSs.

    Definition 3.13Letbe an IEFBMLS.Then

    Now,we consider intuitionistic extended fuzzy like contractions.

    Theorem 3.14Letbe a G-complete IEFBMLS(with the functionφ: D×D →[1,∞))and suppose that

    for all?,δ∈D andT >0.Let f :D →D be a mapping satisfying

    for all?,δ∈D andT >0 with 0<k <1.Further,suppose that for an arbitrary?0∈D andn,q∈N,we have

    where?n=f n?0=f νn-1.Thenfhas a unique FP.

    Proof:Let?0be a random element in D and consider?n=f n?0=f νn-1,n∈N.By using(2)for allT >0,we have

    and

    We obtain

    for anyq∈N,and using(v)and(x),we deduce

    and

    That is,{?n}is a GCS.Since(D,Mφ,Nφ,*,°)is a G-complete IEFBMLS,there ? in D so that

    Now,using(v), (x) and(1),we obtain

    and

    This implies that f ? =?.To prove the uniqueness,suppose that fc=c for some c ∈D,then

    and

    By using(iii) and (viii), we get ? =c.

    Example 3.15Let D=[0,1]and define Mφ,Nφ:D×D×(0,∞)→[0,1]as

    and

    with CTN*such thata*b=a·band CTCN°such thata°b=max{a,b}.Defineφ:D×D →[1,∞)as

    Then clearly(D,Mφ,Nφ,*, °)is a complete IEFBMLS.Now,define f :D×D →D as

    Letk∈then we have the following:

    and

    Observe that all the conditions of Theorem 3.14 are satisfied and 0 is a unique fixed point, i.e.,f (0)=0.

    Now,we use the Example 3.15 to show the graphical view of contraction mapping and a unique fixed point.Below,in Fig.1,we show the graphical view of Mφ(f?,fδ,kT)=Mφ(?,δ,T).Table 1 shows the values of Mφ(f?,fδ,kT)and Table 2 shows the values of Mφ(?,δ,T).In Fig.2,we show the graphical view of Nφ(f?,fδ,kT)=Nφ(?,δ,T).Table 3 shows the values of Nφ(f?,fδ,kT)and Table 4 shows the values of Nφ(?,δ,T).In Fig.3,we show the view of unique fixed point.

    Figure 1:Variation of L.H.S.=Mφ(f ?,f δ,kT)with R.H.S.= Mφ(?,δ,T)of an Example 3.15 for T =1 and

    Table 1:The matrix of values of L.H.S.=Mφ(f ?,f δ,kT),in which first row represents the values of δ and first column represents the values of ?

    Table 2:The matrix of values of R.H.S.= Mφ(?,δ,T),in which first row represents the values of δ and first column represents the values of ?

    Table 2 (continued)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.3 0.7692 0.7692 0.7692 0.7692 0.7142 0.6666 0.6250 0.5882 0.5555 0.5263 0.5000 0.4 0.7142 0.7142 0.7142 0.7142 0.7142 0.6666 0.6250 0.5882 0.5555 0.5263 0.5000 0.5 0.6666 0.6666 0.6666 0.6666 0.6666 0.6666 0.6250 0.5882 0.5555 0.5263 0.5000 0.6 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250 0.5882 0.5555 0.5263 0.5000 0.7 0.5882 0.5882 0.5882 0.5882 0.5882 0.5882 0.5882 0.5882 0.5555 0.5263 0.5000 0.8 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5263 0.5000 0.9 0.5263 0.5263 0.5263 0.5263 0.5263 0.5263 0.5263 0.5263 0.5263 0.5263 0.5000 1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

    Figure 2: Variation of L.H.S.= Nφ(f ?,f δ,kT) with R.H.S.= Nφ(?,δ,T) of an Example 3.15 for T =1 and k

    Table 3:The matrix of values of R.H.S.= Nφ(?,δ,T),in which first row represents the values of δ and first column represents the values of ?

    ?

    Table 4:The matrix of values of L.H.S.=Nφ(f ?,f δ,kT),in which first row represents the values of δ and first column represents the values of ?

    Figure 3:Graph of f ? =?,we can see that both lines intersect each other at 0.This shows that 0 is a unique fixed point

    Definition 3.16Letbe an IEFBMLS.A map f : D →D is an intuitionistic extended fuzzy b-like contraction mapping if there exists 0<k <1 such that

    and

    for all?,δ∈D andT >0.

    Now,we prove the following theorem related to above contraction mapping.

    Theorem 3.17Letbe a G-complete IEFBMLS withφ: D × D →[1,∞).Suppose that

    for all?,δ∈D andT >0.Let f : D →D be an intuitionistic extended fuzzy b-like contraction mapping.Further,suppose that for an arbitrary?0∈D, andn,q∈N,we have?n=f n?0=f νn-1.Thenfhas a unique FP.

    Proof:Let?0be in D.Take?n=f n?0=f νn-1,n∈N.By using(4)and(5)for allT >0,n >q,we have

    Continuing in this way,we get

    We obtain

    and

    for allq∈N,Using(v)and(x),we deduce

    and

    Using(3),(v)and(x),we deduce

    and

    Consequently,for alln,q∈N,we obtainwhere 0<k <1.Therefore,from(vi),(xi), (1)and forn→∞,

    and

    i.e.,{?n}is a GCS.SinceD,Mφ,Nφ,*,°is a G-complete IEFBMLS,there exists

    Now,we investigate that?is a FP off.Using(v),(x)and (1),we obtain

    That is,

    It implies that

    and

    This yields thatf ?=?, a FP.Now, we show the uniqueness.Supposefc=cfor somec∈D,then

    which is a contradiction.Also,

    Again, it is a contradiction.Therefore, we must haveMφ(?,c,T)= 1 andNφ(?,c,T)= 0,hence?=c.

    Example 3.18Let D=[0,1].Defineφby

    Also take

    withν*ω=ν.ωandν°ω=max{ν,ω}.Thenis a G-complete IEFBMLS.Define f :D →D by

    Then we have four cases:

    In all 1-4 cases,

    are satisfied fork∈and also

    Observe that all circumstances of Theorems 3.14 and 3.17 are fulfilled,and 0 is a unique FP off.

    Example 3.19Let D=[0,1] andφ:D×D →[1,∞)be a function given byφ(?,δ)=?+δ+1.DefineMφ,Nφ:D×D×(0,∞)→[0,1]as

    for allk∈D.Thenis an G-complete IEFBMLS with CTNa*b=aband CTCNa°b=max{a,b}.Define f :D →D by

    Then,

    and

    Nφ(f ?,f δ,T)≤kNφ(?,δ,T)

    Observe that all circumstances of Theorems 3.14 and 3.17 are fulfilled,and 0 is a unique FP off.

    4 Application to Fuzzy Fredholm Integral Equations

    Let D =C([e,g], R)be the set of all continuous real valued functions defined on the interval[e,g].

    Now,we let the fuzzy integral equation

    whereβ >0,f (j)is a fuzzy function ofj∈[e,g]andF∈D.DefineMφandNφby

    and

    for all?,δ∈D andT >0, with the CTN and CTCN defined byν*ω=ν.ωandν°ω=maxν,ω.Defineφ:D×D →[1,∞)by

    Assume that

    max{F(l,j)?(l),F(l,j)δ(l)}≤max{?(l),δ(l)} for?,δ∈D,k∈(0, 1)and ?l,j∈[e,g].Also consider≤k <1.then fuzzy integral equation in Eq.(9)has a unique solution.

    Proof:Define f :D →D by

    Scrutinize that survival of an FP of the operatorfis come to the survival of solution of the fuzzy integral equation.

    Now for all?,δ∈D,we obtain

    Therefore,all the conditions of Theorem 3.11 are fulfilled.Hence operatorfhas a unique FP.This implies that fuzzy integral Eq.(9)has a unique solution.

    Corollary 3.1Letbe a G-complete IFBMS.Define f :D →D be

    Suppose the below conditions meet:

    Then integral Eq.(9)has a solution.

    We can prove easily by follow the above proof.

    5 Application to Dynamic Market Equilibrium

    In real business cycle models, economy is always in its long run equilibrium but in Keynesian business cycle theory the economy could be above or below the long-term potential,full employment GDP.While the real business cycle model seeks to overcome the distinction between the long run growth model and the real business cycle.Now we show how our established result can be used to find the unique solution to an integral equation in dynamic market equilibrium economics.

    Let us denote the supplyQβand demandQd,in many markets,current prices and pricing trends(whether prices are rising or dropping and whether they are rising or falling at an increasing or decreasing rate) have an impact.The economist, therefore, wants to know what the current price isP(T),by using the first derivative,and the second derivative.Assume that,

    σ1,σ2,υ1,υ2,α1andα2are constants.If pricing clears the market at each point in time,comment on the dynamic stability of the market.In equilibrium,Qβ=Qd.So,

    since

    Lettingω=ω1-ω2,α=α1-α2,υ=υ1-υ2andσ=σ1-σ2in above,we have

    Dividing through byω,P (T)is governed by the following initial value problem:

    whereξ(T,r)is Green′s function given by

    We will show the existence of a solution to the integral equation

    Let D=C ([0,T])set of real continuous functions defined on [0,T] forT >0,we define

    and

    for all?,ω ∈D with the CTN′*′such thata*b=a·band CTCN°such thata°b= max{a,b}.Defineφ:D×D →[1, ∞).As

    Q(ω,d)=1+ω+d.

    Theorem 4.1Consider Eq.(11)and suppose that

    Then,the integral Eq.(11)has a unique solution.

    Proof:For?,ω∈D,by using of assumptions(i)to(iii),we have

    and

    ThusMφ(f ?,f ω,kT)≥Mφ(?,ω,T)andNφ(f ?,f ω,kT)≤Nφ(?,ω,T)for all?,ω∈D,and all conditions of Theorem 3.14 are satisfied.Therefore,Eq.(11)has a unique fixed point.

    6 Conclusion

    Herein,we introduced the notion of intuitionistic extended fuzzy b-metric-like spaces and some new types of fixed point theorems in this new setting.Moreover, we provided non-trivial examples and plotted some graphs to demonstrate the viability of the proposed methods.We provided an application of the obtained results in a dynamic equilibrium market.We have supplemented this work with applications demonstrating how the built method outperforms those found in the literature.Since our structure is more general than the class of fuzzy b-metric like space and intuitionistic fuzzy b-metric space, our results and notions expand and generalize several previously published results.This work can easily extend to the structure of neutrosophic extended b-metric-like spaces,controlled intuitionistic fuzzy b-metric-like spaces,and many other structures.

    Acknowledgement:The authors are grateful to their universities for their support.

    Author’s Contributions:All authors contributed equally in writing this article.All authors read and approved the final manuscript.

    Availability of Data and Materials:Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

    Funding Statement:Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R14),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| 日韩欧美一区二区三区在线观看 | 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 亚洲伊人久久精品综合| 国产成人啪精品午夜网站| 一级毛片电影观看| 国产高清国产精品国产三级| 精品第一国产精品| 精品国产乱子伦一区二区三区 | 亚洲成av片中文字幕在线观看| 岛国毛片在线播放| 国产男女超爽视频在线观看| 免费女性裸体啪啪无遮挡网站| 人成视频在线观看免费观看| 欧美精品一区二区大全| 亚洲精品日韩在线中文字幕| 91国产中文字幕| 国产极品粉嫩免费观看在线| 久久久久久亚洲精品国产蜜桃av| 大码成人一级视频| 高清在线国产一区| 真人做人爱边吃奶动态| 国产亚洲午夜精品一区二区久久| 美女扒开内裤让男人捅视频| 一本—道久久a久久精品蜜桃钙片| 亚洲国产欧美在线一区| 久久久精品94久久精品| 看免费av毛片| 一本久久精品| 99国产精品一区二区三区| 一边摸一边抽搐一进一出视频| 欧美 亚洲 国产 日韩一| 免费日韩欧美在线观看| 国产免费一区二区三区四区乱码| 色播在线永久视频| 女性被躁到高潮视频| 日韩 亚洲 欧美在线| 久久久久久免费高清国产稀缺| 999精品在线视频| 十八禁高潮呻吟视频| 久久精品熟女亚洲av麻豆精品| 免费在线观看完整版高清| 国产亚洲欧美在线一区二区| 一本色道久久久久久精品综合| 欧美日韩视频精品一区| 中文字幕人妻熟女乱码| av又黄又爽大尺度在线免费看| 欧美少妇被猛烈插入视频| 久久人人爽av亚洲精品天堂| 亚洲av片天天在线观看| 亚洲午夜精品一区,二区,三区| 天堂俺去俺来也www色官网| 久久人人97超碰香蕉20202| 国产真人三级小视频在线观看| 亚洲av美国av| 亚洲av日韩精品久久久久久密| 国产免费福利视频在线观看| 汤姆久久久久久久影院中文字幕| 久久精品成人免费网站| 丝袜人妻中文字幕| 日本撒尿小便嘘嘘汇集6| 国产男女内射视频| 啦啦啦中文免费视频观看日本| 超碰成人久久| 久久久精品区二区三区| 亚洲成人免费av在线播放| 久久久欧美国产精品| 午夜福利免费观看在线| 国产精品久久久久久人妻精品电影 | av视频免费观看在线观看| 国产精品一区二区在线观看99| 久久免费观看电影| 一区二区av电影网| 多毛熟女@视频| 国精品久久久久久国模美| 亚洲精品一卡2卡三卡4卡5卡 | 精品少妇黑人巨大在线播放| 日韩欧美免费精品| 国产黄频视频在线观看| 国产成人免费观看mmmm| 久久人人爽av亚洲精品天堂| 又黄又粗又硬又大视频| 性色av一级| 丁香六月天网| 欧美激情 高清一区二区三区| 午夜福利免费观看在线| a在线观看视频网站| 最新在线观看一区二区三区| 久久久久久久久免费视频了| 亚洲国产精品成人久久小说| 老司机靠b影院| 国产无遮挡羞羞视频在线观看| 国产视频一区二区在线看| 91字幕亚洲| 久久毛片免费看一区二区三区| 人人妻人人澡人人爽人人夜夜| 中亚洲国语对白在线视频| 色婷婷av一区二区三区视频| 国产高清国产精品国产三级| 国产成+人综合+亚洲专区| 热re99久久精品国产66热6| 国产一区有黄有色的免费视频| 中文字幕人妻丝袜一区二区| 久久中文字幕一级| 制服诱惑二区| 国产精品欧美亚洲77777| 精品少妇内射三级| 韩国高清视频一区二区三区| 免费少妇av软件| 国产在线免费精品| 18在线观看网站| 一本—道久久a久久精品蜜桃钙片| 啦啦啦中文免费视频观看日本| 777久久人妻少妇嫩草av网站| 国产深夜福利视频在线观看| 蜜桃在线观看..| 中文字幕人妻丝袜制服| 午夜精品久久久久久毛片777| 首页视频小说图片口味搜索| 久久青草综合色| 亚洲精品一卡2卡三卡4卡5卡 | 国产伦人伦偷精品视频| 精品国产一区二区久久| 黑人猛操日本美女一级片| 午夜福利影视在线免费观看| 国产亚洲一区二区精品| 欧美+亚洲+日韩+国产| 日本欧美视频一区| av欧美777| 亚洲精品美女久久av网站| 中文字幕人妻丝袜制服| 久久人人爽av亚洲精品天堂| 国产日韩欧美亚洲二区| 日韩大码丰满熟妇| 亚洲av片天天在线观看| 欧美黑人精品巨大| 国产极品粉嫩免费观看在线| 国产精品99久久99久久久不卡| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| 亚洲欧美激情在线| 国产精品二区激情视频| 亚洲第一欧美日韩一区二区三区 | 欧美亚洲日本最大视频资源| 欧美日韩中文字幕国产精品一区二区三区 | 大片免费播放器 马上看| 无遮挡黄片免费观看| 伊人亚洲综合成人网| 国产一区二区 视频在线| 亚洲全国av大片| 成年美女黄网站色视频大全免费| 午夜免费鲁丝| av在线app专区| 天天操日日干夜夜撸| 国产高清国产精品国产三级| 香蕉丝袜av| av福利片在线| 午夜激情av网站| 国产日韩欧美在线精品| 久久精品成人免费网站| 日韩免费高清中文字幕av| 久热这里只有精品99| 久9热在线精品视频| 国产免费一区二区三区四区乱码| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| av免费在线观看网站| 亚洲精品一二三| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 两个人免费观看高清视频| tocl精华| 一边摸一边抽搐一进一出视频| 欧美激情 高清一区二区三区| 中文欧美无线码| 91精品伊人久久大香线蕉| 午夜影院在线不卡| 最近最新中文字幕大全免费视频| 国产av国产精品国产| 人人妻,人人澡人人爽秒播| 国产成人精品久久二区二区91| 国产片内射在线| 老熟妇仑乱视频hdxx| 狠狠婷婷综合久久久久久88av| 欧美中文综合在线视频| 好男人电影高清在线观看| 亚洲av日韩在线播放| 精品第一国产精品| 啦啦啦免费观看视频1| 成人手机av| 男男h啪啪无遮挡| 亚洲国产看品久久| bbb黄色大片| 下体分泌物呈黄色| 国产三级黄色录像| 一级毛片电影观看| 亚洲欧美色中文字幕在线| 亚洲人成电影观看| 成年人午夜在线观看视频| 精品人妻熟女毛片av久久网站| 首页视频小说图片口味搜索| 黄色 视频免费看| 亚洲精品中文字幕一二三四区 | 黄网站色视频无遮挡免费观看| 午夜福利免费观看在线| 天堂8中文在线网| 精品亚洲成a人片在线观看| 1024视频免费在线观看| 啦啦啦中文免费视频观看日本| 亚洲欧洲精品一区二区精品久久久| 亚洲免费av在线视频| 丝袜美足系列| 狠狠精品人妻久久久久久综合| 亚洲男人天堂网一区| 国产一区二区三区av在线| 9色porny在线观看| 亚洲一区中文字幕在线| videos熟女内射| 90打野战视频偷拍视频| 18禁黄网站禁片午夜丰满| 亚洲精品av麻豆狂野| 中文字幕制服av| 19禁男女啪啪无遮挡网站| 国产色视频综合| 久久热在线av| 999久久久精品免费观看国产| 99精品欧美一区二区三区四区| 中亚洲国语对白在线视频| 一级毛片电影观看| 国产亚洲av高清不卡| 搡老岳熟女国产| 日本a在线网址| 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| av欧美777| 久久精品成人免费网站| 天堂8中文在线网| 久久久久久久大尺度免费视频| 黄色视频不卡| bbb黄色大片| 亚洲av成人一区二区三| 三上悠亚av全集在线观看| www.999成人在线观看| 欧美精品一区二区免费开放| 黄色怎么调成土黄色| 飞空精品影院首页| 色94色欧美一区二区| 99香蕉大伊视频| 少妇猛男粗大的猛烈进出视频| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频| 亚洲国产精品成人久久小说| 99久久人妻综合| 天堂中文最新版在线下载| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡| 国产一卡二卡三卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 青青草视频在线视频观看| 久久久久久久国产电影| 久久女婷五月综合色啪小说| 国产麻豆69| 一区二区三区乱码不卡18| 午夜免费成人在线视频| 黑丝袜美女国产一区| 视频区图区小说| 日日夜夜操网爽| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 亚洲五月婷婷丁香| 一级毛片精品| 亚洲伊人色综图| 国产免费现黄频在线看| 国产国语露脸激情在线看| 亚洲中文日韩欧美视频| 十八禁高潮呻吟视频| 亚洲七黄色美女视频| 欧美国产精品一级二级三级| 麻豆乱淫一区二区| 亚洲人成电影观看| 日韩中文字幕视频在线看片| 国产在视频线精品| av在线老鸭窝| 免费看十八禁软件| 久久热在线av| 嫩草影视91久久| 在线看a的网站| 欧美精品av麻豆av| 亚洲专区中文字幕在线| 日韩欧美免费精品| 国产高清videossex| 国产精品麻豆人妻色哟哟久久| 高清视频免费观看一区二区| av有码第一页| 可以免费在线观看a视频的电影网站| 老司机亚洲免费影院| 国产精品久久久人人做人人爽| 中文欧美无线码| 亚洲精品久久午夜乱码| 午夜免费成人在线视频| 人成视频在线观看免费观看| 国产一区二区 视频在线| 亚洲精品国产av蜜桃| 肉色欧美久久久久久久蜜桃| 国产亚洲午夜精品一区二区久久| 久久久久久免费高清国产稀缺| 久久久国产精品麻豆| 日韩中文字幕视频在线看片| 一级a爱视频在线免费观看| 男女床上黄色一级片免费看| 久久香蕉激情| 一区二区三区乱码不卡18| av欧美777| 国产av又大| 亚洲欧美一区二区三区久久| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 99国产精品99久久久久| 午夜影院在线不卡| 免费人妻精品一区二区三区视频| 真人做人爱边吃奶动态| 国产xxxxx性猛交| 亚洲精品久久久久久婷婷小说| 黄色毛片三级朝国网站| 十八禁高潮呻吟视频| 亚洲国产欧美一区二区综合| 高潮久久久久久久久久久不卡| 精品人妻一区二区三区麻豆| 中亚洲国语对白在线视频| 一区二区三区四区激情视频| 男女午夜视频在线观看| 伊人亚洲综合成人网| 精品国内亚洲2022精品成人 | 超色免费av| 精品高清国产在线一区| 日韩电影二区| 波多野结衣一区麻豆| 一本综合久久免费| 他把我摸到了高潮在线观看 | 2018国产大陆天天弄谢| 热re99久久精品国产66热6| 国产成人精品在线电影| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 国产福利在线免费观看视频| 日本av手机在线免费观看| 91成人精品电影| 久久天躁狠狠躁夜夜2o2o| 99国产精品99久久久久| 久久精品aⅴ一区二区三区四区| 别揉我奶头~嗯~啊~动态视频 | 51午夜福利影视在线观看| 久久午夜综合久久蜜桃| 精品人妻1区二区| 免费看十八禁软件| 99九九在线精品视频| 亚洲av美国av| 夜夜夜夜夜久久久久| 亚洲三区欧美一区| 国产av精品麻豆| 制服人妻中文乱码| 日本五十路高清| 免费高清在线观看视频在线观看| 黑人操中国人逼视频| 久久天堂一区二区三区四区| 99久久精品国产亚洲精品| 妹子高潮喷水视频| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 性色av一级| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩高清在线视频 | 国产一卡二卡三卡精品| av片东京热男人的天堂| 亚洲欧美激情在线| 免费观看av网站的网址| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| h视频一区二区三区| 午夜精品久久久久久毛片777| 亚洲av片天天在线观看| 精品国产一区二区三区四区第35| 一区二区三区精品91| 91精品国产国语对白视频| 国产亚洲精品第一综合不卡| 超色免费av| 曰老女人黄片| 又大又爽又粗| 蜜桃国产av成人99| 日韩有码中文字幕| 91成人精品电影| 爱豆传媒免费全集在线观看| 亚洲国产看品久久| 成人影院久久| 亚洲精品美女久久av网站| 正在播放国产对白刺激| 丁香六月天网| 一区二区三区精品91| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美另类亚洲清纯唯美| 久久久欧美国产精品| 丰满迷人的少妇在线观看| 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 亚洲人成77777在线视频| av电影中文网址| 狠狠婷婷综合久久久久久88av| 色婷婷久久久亚洲欧美| 亚洲激情五月婷婷啪啪| 精品国产超薄肉色丝袜足j| 欧美精品一区二区免费开放| 天天躁夜夜躁狠狠躁躁| 亚洲欧美成人综合另类久久久| 亚洲熟女毛片儿| 高清黄色对白视频在线免费看| 国产成人av激情在线播放| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 欧美日韩av久久| 亚洲中文av在线| 久久国产精品人妻蜜桃| 日韩视频在线欧美| av福利片在线| 精品少妇一区二区三区视频日本电影| 精品国产一区二区三区久久久樱花| 人人澡人人妻人| 在线观看免费视频网站a站| 桃花免费在线播放| 亚洲精品国产区一区二| 欧美精品一区二区大全| 国产亚洲精品一区二区www | 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| 久久天堂一区二区三区四区| 亚洲综合色网址| 97在线人人人人妻| 一本大道久久a久久精品| 在线永久观看黄色视频| 18禁裸乳无遮挡动漫免费视频| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 岛国在线观看网站| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| 亚洲第一青青草原| 男女国产视频网站| 男人添女人高潮全过程视频| 操美女的视频在线观看| 在线亚洲精品国产二区图片欧美| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人久久小说| 黄色视频,在线免费观看| 黑人欧美特级aaaaaa片| 国产精品麻豆人妻色哟哟久久| 日本一区二区免费在线视频| 建设人人有责人人尽责人人享有的| 高清黄色对白视频在线免费看| 搡老熟女国产l中国老女人| 国产亚洲欧美在线一区二区| 久久人人爽av亚洲精品天堂| avwww免费| 2018国产大陆天天弄谢| 午夜福利视频在线观看免费| 热99re8久久精品国产| 美女视频免费永久观看网站| 国产成人影院久久av| 777久久人妻少妇嫩草av网站| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 精品久久久久久久毛片微露脸 | 国产欧美日韩一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 一边摸一边做爽爽视频免费| 纵有疾风起免费观看全集完整版| 一本大道久久a久久精品| 天天添夜夜摸| 99久久综合免费| 国产成人精品在线电影| 久久 成人 亚洲| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 久久中文看片网| 男女高潮啪啪啪动态图| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区 | 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 国精品久久久久久国模美| 99国产精品免费福利视频| 久久综合国产亚洲精品| 亚洲第一青青草原| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 亚洲精品乱久久久久久| 亚洲成人免费av在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲av成人不卡在线观看播放网 | 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 亚洲欧美激情在线| 大香蕉久久成人网| 久久久久久免费高清国产稀缺| 国产色视频综合| 国产精品久久久久久精品古装| 成年人黄色毛片网站| 国产无遮挡羞羞视频在线观看| 两性夫妻黄色片| 在线 av 中文字幕| 亚洲七黄色美女视频| 99国产精品一区二区三区| 国产伦人伦偷精品视频| 免费在线观看视频国产中文字幕亚洲 | 日本一区二区免费在线视频| 午夜精品国产一区二区电影| 国产成人av教育| 精品人妻1区二区| 国产区一区二久久| 日本五十路高清| e午夜精品久久久久久久| 十八禁高潮呻吟视频| 国产区一区二久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 亚洲国产欧美在线一区| 亚洲国产看品久久| 多毛熟女@视频| 宅男免费午夜| 色视频在线一区二区三区| 在线精品无人区一区二区三| av国产精品久久久久影院| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| 久久女婷五月综合色啪小说| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| 欧美精品啪啪一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 久久久精品免费免费高清| 欧美少妇被猛烈插入视频| av视频免费观看在线观看| 中国国产av一级| 99国产精品免费福利视频| 中文字幕av电影在线播放| 国产欧美日韩精品亚洲av| 啦啦啦在线免费观看视频4| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一青青草原| 亚洲精品久久午夜乱码| av有码第一页| 欧美乱码精品一区二区三区| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 亚洲精品自拍成人| 午夜两性在线视频| 麻豆国产av国片精品| 好男人电影高清在线观看| e午夜精品久久久久久久| 免费少妇av软件| 免费av中文字幕在线| 亚洲第一青青草原| 一级毛片精品| 叶爱在线成人免费视频播放| 老司机亚洲免费影院| 久久天躁狠狠躁夜夜2o2o| 精品国产超薄肉色丝袜足j| 最黄视频免费看| 亚洲伊人色综图| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一二三| 啦啦啦在线免费观看视频4| 叶爱在线成人免费视频播放| 成年人午夜在线观看视频| 汤姆久久久久久久影院中文字幕| 丝袜在线中文字幕| 热99re8久久精品国产| 欧美在线黄色| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 美国免费a级毛片| 纵有疾风起免费观看全集完整版| 国产视频一区二区在线看| 久久久国产成人免费| av在线app专区| www.精华液| 日本精品一区二区三区蜜桃| 少妇猛男粗大的猛烈进出视频| 日韩欧美免费精品| 久久久久国产精品人妻一区二区| 制服诱惑二区| 十八禁高潮呻吟视频| svipshipincom国产片| 精品少妇黑人巨大在线播放| 9191精品国产免费久久| 欧美在线一区亚洲| 国产亚洲一区二区精品| 热99re8久久精品国产| 午夜影院在线不卡| 中文字幕最新亚洲高清| 岛国毛片在线播放| av不卡在线播放| a在线观看视频网站| 成年av动漫网址| 日韩大片免费观看网站| 国产免费av片在线观看野外av| av国产精品久久久久影院| 精品国产乱码久久久久久男人| 亚洲精品一卡2卡三卡4卡5卡 | 精品高清国产在线一区|