• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SCSMRD: A database for single-cell skeletal muscle regeneration

    2023-03-11 06:46:56FENGXikangXIEChundiLIYongyaoWANGZishuaiBAILijing
    Journal of Integrative Agriculture 2023年3期

    FENG Xi-kang ,XIE Chun-di ,LI Yong-yao ,WANG Zi-shuai# ,BAI Li-jing#

    1 School of Software,Northwestern Polytechnical University,Xi’an 710072,P.R.China

    2 Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193,P.R.China

    3 Shenzhen Branch,Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs,Agricultural Genomics Institute at Shenzhen,Chinese Academy of Agricultural Sciences,Shenzhen 518000,P.R.China

    Abstract Skeletal muscle regeneration is a complex process where various cell types and cytokines are involved. Single-cell RNA-sequencing (scRNA-seq) provides the opportunity to deconvolute heterogeneous tissue into individual cells based on their transcriptomic profiles. Recent scRNA-seq studies on mouse muscle regeneration have provided insights to understand the transcriptional dynamics that underpin muscle regeneration. However,a database to investigate gene expression profiling during skeletal muscle regeneration at the single-cell level is lacking. Here,we collected over 105 000 cells at 7 key regenerative time-points and non-injured muscles and developed a database,the Singlecell Skeletal Muscle Regeneration Database (SCSMRD). SCSMRD allows users to search the dynamic expression profiles of genes of interest across different cell types during the skeletal muscle regeneration process. It also provides a network to show the activity of regulons in different cell types at different time points. Pesudotime analysis showed the state changes trajectory of muscle stem cells (MuSCs) during skeletal muscle regeneration. This database is freely available at https://scsmrd.fengs-lab.com.

    Keywords: scRNA-seq,skeletal muscle regeneration,database,regulon network,pseudotime

    1.Introduction

    Skeletal muscle comprises 40-50% of the human body mass (Huardet al.2002) and constitutes the largest metabolic and endocrine organ of the body. Skeletal muscle fitness and plasticity is an important determinant of human health and disease (Kent-Braunet al.1995).Previous studies have shown that the metabolic adaptive remodeling of skeletal muscle in response to environmental stimuli is an important regulator of the occurrence of metabolic diseases (Brass 1996;Stumpet al.2006;Argileset al.2016). Skeletal muscle dysfunction is closely related to more than 500 human diseases including muscular dystrophy,atrophy,type 2 diabetes,and aging-related sarcopenia (Ganet al.2018). Moreover,a recent study showed that proteasome stress in skeletal muscle can cause a long-term protective response,thereby delaying the aging of the retina and brain (Raiet al.2021).

    In general,the turnover rate of adult skeletal muscle is about 1-2% of myonuclei per week (Schmalbruch and Lewis 2000). In daily life,skeletal muscle is susceptible to various injuries including mechanical trauma,thermal stress,myotoxic agents,ischaemia,neurological damage,and other pathogenic conditions (Beiner and Jokl 2001)which causes the influx of extracellular calcium (Jrvinenet al.2000) and eventually leads to the degradation of muscle proteins and necrosis (St Pierre and Tidball 1994). Then,muscle regeneration mediated by muscle stem cells is switched on. Skeletal muscle regeneration is a complex process involving multiple steps and various cell types (Turner and Badylak 2012). Therefore,a deeper mechanistic understanding of the gene regulatory networks during muscle regeneration might provide targets for regenerative medicine strategies,which can enhance or inducede-novoformation of functional skeletal muscle as a treatment for congenital absence or traumatic loss of tissue.

    Meat production is an important productivity indicator and economic trait for livestock including pig,cattle,and sheep. The basic biological principles for meat production are the growth and development of skeletal muscle tissue.skeletal muscle tissue growth is a complex biological process,including the formation,proliferation,apoptosis,migration,fusion,and differentiation of myoblasts(Chal and Pourquie 2017). Gene expression changes during regeneration are likely to replicate the analogous events during initial embryonic development,suggesting regeneration is an ideal model to study skeletal muscle developmentin vivo(Goldman and Poss 2020). Thus,identifying important genes and specific regulatory networks that regulate myogenesis during skeletal muscle regeneration can provide new theoretical support for analyzing the molecular mechanism of meat production traits in livestock.

    An individual skeletal muscle is a complex structure,composed of large multinucleated mature muscle cells(myofibers),muscle stem cells (MuSCs),fibro-adipogenic progenitors (FAPs),connective cells,nerve cells,immune cells,and the vasculature (Payloret al.2011). Previous studies have emphasized the importance of MuSCs (Relaix and Zammit 2012) and the need of other cell types and intercellular communication networks for successful muscle regeneration (Arnoldet al.2007;Villaltaet al.2011;Yang and Hu 2018). However,these research did not provide a full picture of the events and their dynamics. Recently,scRNA-seq has provided insights about the regeneration program of skeletal muscle and identified dynamic changes in the muscle stem cell,fibroblast,and immune cell populations occurring during muscle regeneration(Dell’Orsoet al.2019;Giordaniet al.2019;De Micheliet al.2020;Oprescuet al.2020). Therefore,given the importance of the multitude of cells and extrinsic factors for skeletal muscle regeneration,a database to visualize the single-cell transcriptional profile and dynamic changes in cell populations that may influence each other to effectively and rapidly regenerate muscle tissue is needed.

    Here,we developed the single-cell skeletal muscle regeneration database (SCSMRD),the first web-based public database for accessing the skeletal muscle regeneration process at the single-cell level. The current version of SCSMRD contains 105 500 cells and 8-time points from no injury to 21 days post-injury. We have performed a series of analyses including cell clustering,cell type annotation,cell cycle identification,cell-typespecific regulons identification,and pseudotime analysis of skeletal muscle cells. These results are freely available for visualization and download at https://scsmrd.fengs-lab.com.

    2.Materials and methods

    The SCSMRD provides visualization of our analyzed results based on gene expression profiling during skeletal muscle regeneration at the single-cell level inside three perspectives,gene expression changes in different cell clusters along with different time points,cell-type-specific regulons,and gene expression changes in muscle cells along with pseudotime trajectory. The workflow of SCSMRD construction is demonstrated as Fig.1-A and the detailed description is presented in the following sections.

    Fig.1 An overview of the SCSMRD construction. A,the 4 major steps for SCSMRD construction: (i) sample collection;(ii) data analysis;(iii) search function development;(iv) visualization &download. B,the UMAP visualization of cells grouped by dataset,cell type,cell date,and cell stage. C,two examples of the skeletal muscle cell-type-specific regulon network (MYOD1 and MYOG).D,the result of pseudotime analysis of skeletal muscle cells in our database.

    2.1.Sample information

    Our data set integrates single cells of skeletal muscle regeneration tissues at 8-time points including no injury(D0),0.5,2,3.5,5,7,10,and 21 days post-injury from previously published data (De Micheliet al.2020;Oprescuet al.2020),providing a total of 105 554 cells.All expression data were obtained from the NCBI Gene Expression Omnibus (GEO) with accession numbers:GSE143437,GSE143435 and GSE138826.

    2.2.Data pre-processing and data analysis

    Data pre-processing analysis including batch effects removal,normalization,PCA,and cell clustering,were mainly performed using the R package LIGER(https://github.com/welch-lab/liger) (Welchet al.2019)by following the standard guidelines. Briefly,several standard preprocessing steps with default parameters were firstly performed to normalize expression data to account for differences in sequencing depth and efficiency between cells,identify variably expressed genes,and scale the data so that each gene has the same variance. Subsequently,integrative non-negative matrix factorization was run on the normalized and scaled datasets with default parameters. Then,the resulting factors were used to jointly cluster cells with a resolution of 0.4. Gene markers for all clusters were identified using the “runWilcoxon” function,and markers which have padj(Benjamini-Hochberg adjustedP-value) less than 0.05 and logFC (log fold change between observations in groupvs.out group) larger than 3 were selected for cell type annotation analysis. Further,we manually assigned cell population identity based on cell-type-specific markers as previous described (Wosczyna and Rando 2018;Giordaniet al.2019). Cell cycle score were calculated as previously described (Fig.1-B). Specifically,we collected the gene sets reflecting 5 phases of the cell cycle (G1/S,S,G2/M,M,and M/G1) used ccording to Hanet al.(2008). We next calculated the correlation between the expression level of each gene and the average expression level of all genes in that phase-specific gene set and excluded genes with a correlation less than 0.3.The mean expression value of the remained gene sets was used as the score for that phase. Then,the phasespecific scores were normalized twice. First,each phase scores were centered and divided by their standard deviation. Second,we normalized the phase score across all the phases within each cell by centering and normalizing. The cells were assigned to a cell phase by their maximal phase scores. Cell-type-specific regulons were identified using IRIS3 (Maet al.2020),a web server for cell-type-specific regulons inference from scRNA-seq data for human and mouse (https://bmbl.bmi.osumc.edu/iris3/) (Fig.1-C). Pseudotime analysis of skeletal muscle cells were performed using Python package Scanpy Version 1.8 (https://scanpy.readthedocs.io/en/stable/tutorials.html#trajectory-inference) (Wolfet al.2018) with default parameters (Fig.1-D). And the linear regression model in webpage of SCSMRD was performed using the “jsregression.LinearRegression” model of JavaScript regression library with the default parameters (https://github.com/chen0040/js-regression). General codes for computational analysis follow the instructions of the respective software and customized modifications are available at https://github.com/xikanfeng2/SCSMRD.

    2.3.Database implementation

    In summary,the SCSMRD website was built combing the Apache HTTP server,Python programming language,HTML,JavaScript,and the MySQL Database. Clean single-cell gene expression profiling data were processed with Python scripts and finally was stored into the MySQL database and as text files. The front-end interface was developed based on the Bootstrap open-source toolkit with the version of 3.4.1 (https://getbootstrap.com/). The serverside application was written in Python 3.8,and the Django Python web framework with the version 3.2.3 (https://www.djangoproject.com) was selected as the model-viewcontroller (MVC) framework for this whole database. The web interactive visualization graphs were implemented using the Plotly Javascript open-source graphing library with the version 1.58.5 (https://plotly.com/javascript/).SCSMRD was published using the Apache2 HTTP server and is accessible at https://scsmrd.fengs-lab.com.

    3.Results

    To facilitate the utilization of SCSMRD,we designed a user-friendly interface to allow users to perform various operations. We provided four main functionalities: (1)Gene expression level search in different cell populations along with different time points;(2) cell-type-specific regulon network search;(3) dynamic gene expression changes along with the continuous myogenic cell-states search;and (4) database resource download.

    3.1.Gene expression level search

    For the “gene expression level search” function,our database allows users to visualize the search result in an interactive Boxplot (Fig.2-A and B),where the data can be grouped by cell type or date. Users can view the gene expression level of a gene of interest in different cell clusters by giving a gene symbol (e.g.,PAX7) in the search input box. Specifically,users can click the“Example” button to view the default gene expression level in SCSMRD. Furthermore,an interactive Boxplot of gene expression level grouped by different cell clusters(e.g.,cell type or cell date) is displayed by clicking the“Search” button. Users can select different grouping rules on the menu in the upper left corner to switch the Boxplot between different clustering rules. Clicking on the cluster name listed in the graph legend (e.g.,“D0” in Fig.2-A or “BT cells” in Fig.2-B) can remove the Boxplot data of this cluster. Moreover,double-clicking on a cluster name allows users to view the detailed gene expression value of this cluster. These interactive functions allow users to compare gene expression levels only for their clusters of interest. Finally,the Boxplot can be downloaded in PNG format for further usage. As demonstrated in Fig.2-A and B,we investigated the gene expression level of the genePAX7as an example for this function. Our results showed thatPAX7is specifically expressed in Musc (muscle stem cells) cells and has the least expression level at 2 days after injury. Given thatPAX7is a marker gene of Musc cells,our result is consistent with previous studies (Turner and Badylak 2012;Baghdadi and Tajbakhsh 2018).

    Fig.2 The web interface of SCSMRD search functions. A and B,the result of “gene expression level search” page under the selection of PAX7 gene and the boxplot was grouped by cell type (A) or cell date (B). C,the result of “cell-type-specific regulon search” page under the selection of KLF4 regulator. D,the result of “gene dynamic expression along with the pseudotime trajectory search” page under the selection of SMOC2 gene.

    3.2.Cell-type-specific regulon search

    For “cell-type-specific regulon search” function,we designed an interactive Sankey diagram to present the cell-type-specific regulon network (Fig.2-C). Users can search regulator factors of interest by inputting the gene symbol in the search input box. As demonstrated in Fig.2-C,the result Sankey diagram is composed of 3 columns that are connected by lines. The middle column of the Sankey diagram is a group of genes controlled by the searched regulator. The left and right columns connected to the middle column are the total expression level of cells grouped by different cell types and different cell time points,respectively. Specifically,users can drag the items in each column to reorder the Sankey graph (e.g.,reordering the column according to the total expression level). Also,the expression level is reflected by the thickness of the connected lines and the detailed expression value can be viewed by moving the cursor on the specific line. In Fig.2-C,we took the regulator,KLF4,as an example for this function.KLF4is a transcription factor involved in regulating diverse cellular processes including cell growth,proliferation,and differentiation in multiple tissues (Ghaleb and Yang 2017). Our results showed thatKLF4regulon is activated in non-injured (D0)and after 5 days post-injury (from D5 to D21) stem cells including FAP and Muscs. Considering that D5 is a key time point for muscle regeneration where various cells are proliferating and differentiating,our result suggests thatKLF4may play important roles in skeletal muscle regeneration.

    3.3.Gene dynamic expression along with the pseudotime trajectory search

    For “gene dynamic expression along with the pseudotime trajectory search” function,we represented the expression level changes of genes along the continuous myogenic cell-states with an interactive Scatter plot including the linear regression line (Fig.2-D). Users can view the gene expression changes in muscle cells along with pseudotime trajectory. As presented in Fig.2-D,we used the gene,SMOC2,as an example to demonstrate this function. Our visualization shows that along the pseudotime trajectory the expression level ofSMOC2increases in the early stage and stabilizes in the end stage.

    3.4.Database resource download

    For the “database resource download” function,SCSMRD provides the download function of all processed data in the database,including: (1) the whole gene-cell expression level matrix which contains 105 554 cells from 8-time points;(2) the cell annotation matrix which contains the detailed information of each cell (e.g.,cell type,cell stage,and cell time point);and (3) the regulon network matrix which contains all the regulator and its regulated genes. These materials provide the possibility for researchers to conduct in-depth studies on single-cell skeletal muscle regeneration.The related data for database construction can be downloaded at https://scsmrd.fengs-lab.com/download/.

    4.Discussion

    One of the most fascinating questions in regenerative biology is why regenerative capacity is restricted to a subset of tissues. Skeletal muscle has a remarkable capacity to regenerate even after repeated traumas,making it a major focus of regeneration studies during evolution (Baghdadi and Tajbakhsh 2018). In addition,skeletal muscle is also an ideal tissue to investigate mechanisms underlying successful regeneration. Given skeletal muscle is a complex tissue structure composed of hundreds of cell populations and sub-populations.Therefore,our database provides a resource to investigate cell-type and gene-expression dynamics of skeletal muscle regeneration at single-cell resolution.

    Recent studies of regenerating tissues have revealed that transcriptional networks of regeneration pathways are regulated in a context-specific manner to control key gene expression programs. A regulon is a group of genes controlled by the same repressor or activator gene (Jankyet al.2014). A clear assessment of regulons and the transcription factors (TFs) that control them during skeletal muscle regeneration is an effective strategy to pinpoint crucial and heterogeneous regulatory mechanisms encoded in diverse cell types,and those responsible for the injuries and degenerative diseases. In this database,we identified cell-type-specific regulons during skeletal muscle regeneration and visualized the activity of these TFs genes networks in different cell types and different time points.

    Skeletal muscle regeneration is mediated by MuSCs.After the injury,MuSCs activate,proliferate,differentiate,and fuse together to repair damaged myofibers (Payloret al.2011). Thus,a clear dynamic gene regulatory program along the continuum of myogenic cellstates is critical to further understand the mechanisms underlying successful regeneration toward improving stem-cell-based therapies. In this study,we selected the MuSCs,myoblasts,and mature myocytes from our data and subsequently performed pseudotime analysis.Pseudotime analysis allows us to order cells from quiescent MuSCs to cycling and committed progenitors to mature muscle cells. Consequently,our database provides insights for the unbiased study of dynamic gene regulatory programs along the continuous myogenic cellstates during muscle regeneration processes.

    Previous study have showed that expression patterns of tissue-specific genes including protein-coding RNA(Brawandet al.2011;Merkinet al.2012) and noncoding RNAs (both miRNA and lncRNA) (Meunieret al.2013;Necsulea and Kaessmann 2014) are highly conserved among mammals. The gene regulatory network constructed based on these gene expression data is also highly conserved among mammals (Guschanskiet al.2017;Chenet al.2019). Therefore,although the dynamic gene expression profiles and skeletal muscle specific network of regulons provided in SCSMRD were constructed based on mice data,it also provides a reference resource for studies focused on skeletal muscle development of livestock.

    5.Conclusion

    Our database provides insights into the cellular and molecular underpinning of skeletal muscle regeneration.We believe that this database will facilitate researchers within the fields of regenerative biology,skeletal muscle development biology,and meat production of livestock to zoom in on their study at the single-cell level.

    Acknowledgements

    This research was supported by the National Natural Science Foundation of China (31972539 and 32102513),the Science,Technology,and Innovation Commission of Shenzhen Municipality,China (JCYJ20180306173644635),the Fundamental Research Funds for the Central Universities,China (G2020KY05109),the Natural Science Basic Research Program of Shaanxi Province,China(2022JQ-644),and the Basic Research Programs of Taicang,China (TC2021JC14).

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Ethical approval

    This study does not contain any studies with animal subjects performed by any authors.

    欧美日本视频| 青春草视频在线免费观看| 国产精品麻豆人妻色哟哟久久| kizo精华| 你懂的网址亚洲精品在线观看| 亚洲精品日韩在线中文字幕| 高清av免费在线| 成人无遮挡网站| 中文字幕制服av| 黄色欧美视频在线观看| 国产女主播在线喷水免费视频网站| 日本色播在线视频| 激情五月婷婷亚洲| 国产片特级美女逼逼视频| 精品人妻一区二区三区麻豆| 亚洲成色77777| 亚洲精品,欧美精品| 一边亲一边摸免费视频| 人妻少妇偷人精品九色| 国产欧美日韩精品一区二区| 久久久亚洲精品成人影院| 黑人高潮一二区| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 亚洲中文av在线| 哪个播放器可以免费观看大片| 国产精品一区二区在线不卡| 亚洲成人一二三区av| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 高清日韩中文字幕在线| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 在线精品无人区一区二区三 | 久久韩国三级中文字幕| 直男gayav资源| 国产欧美亚洲国产| 一区二区av电影网| 大片免费播放器 马上看| 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱| 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 色视频www国产| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 大香蕉97超碰在线| 国产免费又黄又爽又色| 亚洲激情五月婷婷啪啪| 成人影院久久| 成人二区视频| 岛国毛片在线播放| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 中文字幕免费在线视频6| 成人高潮视频无遮挡免费网站| 国产黄色免费在线视频| 在线观看免费日韩欧美大片 | 18禁动态无遮挡网站| 极品教师在线视频| 午夜精品国产一区二区电影| 妹子高潮喷水视频| 免费看日本二区| 国产中年淑女户外野战色| 久久久色成人| 五月天丁香电影| 成人特级av手机在线观看| 精品一区在线观看国产| 欧美极品一区二区三区四区| 在线观看美女被高潮喷水网站| 久久国内精品自在自线图片| 久久ye,这里只有精品| www.色视频.com| 日本黄色片子视频| 麻豆国产97在线/欧美| 在线观看国产h片| 国产伦精品一区二区三区视频9| 中国美白少妇内射xxxbb| 久久久久久人妻| 国产亚洲精品久久久com| 熟女人妻精品中文字幕| 最近手机中文字幕大全| av在线播放精品| 狂野欧美激情性xxxx在线观看| 国产精品三级大全| xxx大片免费视频| 欧美bdsm另类| 亚洲成人中文字幕在线播放| 婷婷色麻豆天堂久久| 亚洲av中文av极速乱| 国产高潮美女av| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 欧美成人精品欧美一级黄| 九草在线视频观看| av在线观看视频网站免费| xxx大片免费视频| 人妻少妇偷人精品九色| 国产 一区 欧美 日韩| 成人高潮视频无遮挡免费网站| 亚洲欧美成人综合另类久久久| 丰满迷人的少妇在线观看| 91久久精品国产一区二区成人| 久久精品国产a三级三级三级| 色5月婷婷丁香| 你懂的网址亚洲精品在线观看| 午夜激情久久久久久久| 99久久精品国产国产毛片| 精品人妻熟女av久视频| 亚洲在久久综合| 精品人妻偷拍中文字幕| 亚洲一级一片aⅴ在线观看| 亚洲精品日本国产第一区| 亚洲精品一区蜜桃| 午夜视频国产福利| 哪个播放器可以免费观看大片| 九色成人免费人妻av| 嫩草影院新地址| 一级黄片播放器| 亚洲av成人精品一区久久| 高清午夜精品一区二区三区| 成人国产麻豆网| 国产高清国产精品国产三级 | 久久久a久久爽久久v久久| 十八禁网站网址无遮挡 | 久久99热这里只有精品18| 国产视频首页在线观看| 久久精品夜色国产| 黄色一级大片看看| 国产精品成人在线| 亚洲国产精品一区三区| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 边亲边吃奶的免费视频| freevideosex欧美| 日日摸夜夜添夜夜爱| 国产乱来视频区| 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久久久按摩| 在线观看三级黄色| 免费黄色在线免费观看| 人人妻人人看人人澡| 人体艺术视频欧美日本| 少妇人妻久久综合中文| 夫妻午夜视频| 一级av片app| 日韩欧美一区视频在线观看 | 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 国产高清不卡午夜福利| 最黄视频免费看| 国模一区二区三区四区视频| 97在线人人人人妻| 国产爱豆传媒在线观看| 多毛熟女@视频| 国产精品久久久久久久久免| 国产一区二区三区综合在线观看 | 久久99热这里只频精品6学生| 老司机影院成人| 免费看不卡的av| 边亲边吃奶的免费视频| 欧美精品人与动牲交sv欧美| 欧美最新免费一区二区三区| 天堂俺去俺来也www色官网| 国产精品嫩草影院av在线观看| 久久久久网色| 天天躁日日操中文字幕| 欧美成人a在线观看| 大片免费播放器 马上看| 日韩一区二区三区影片| 欧美高清性xxxxhd video| 国产伦理片在线播放av一区| 亚洲中文av在线| 亚洲av成人精品一二三区| 搡女人真爽免费视频火全软件| 下体分泌物呈黄色| 国产亚洲最大av| 狂野欧美白嫩少妇大欣赏| 国产深夜福利视频在线观看| 男女无遮挡免费网站观看| 99国产精品免费福利视频| 久久精品国产鲁丝片午夜精品| 热re99久久精品国产66热6| 亚洲人成网站高清观看| 国产日韩欧美在线精品| 亚洲人成网站高清观看| 成人一区二区视频在线观看| 亚洲精品一二三| 国产伦在线观看视频一区| 夫妻性生交免费视频一级片| 1000部很黄的大片| 少妇被粗大猛烈的视频| 国产精品三级大全| 国产视频首页在线观看| 一级二级三级毛片免费看| 一本久久精品| 国产乱来视频区| 99久久精品国产国产毛片| 午夜日本视频在线| www.色视频.com| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄a免费视频| 内射极品少妇av片p| 久久热精品热| av又黄又爽大尺度在线免费看| 亚洲国产精品成人久久小说| 国产乱人偷精品视频| 亚洲在久久综合| 天天躁夜夜躁狠狠久久av| 又粗又硬又长又爽又黄的视频| 又粗又硬又长又爽又黄的视频| 91精品伊人久久大香线蕉| av女优亚洲男人天堂| 久久久欧美国产精品| 国产精品久久久久久久电影| 成人毛片60女人毛片免费| 精品人妻偷拍中文字幕| 欧美日韩一区二区视频在线观看视频在线| 国产成人一区二区在线| 国产av国产精品国产| 九草在线视频观看| 久久精品国产亚洲av涩爱| 黄片小视频在线播放| av天堂在线播放| 欧美日韩亚洲高清精品| 无遮挡黄片免费观看| 欧美在线黄色| 久热这里只有精品99| 成人国产一区最新在线观看 | 日韩制服丝袜自拍偷拍| 午夜免费成人在线视频| 免费少妇av软件| 精品人妻在线不人妻| 亚洲中文av在线| 又大又爽又粗| 久久ye,这里只有精品| 涩涩av久久男人的天堂| 天天躁夜夜躁狠狠久久av| 女警被强在线播放| 王馨瑶露胸无遮挡在线观看| 亚洲成av片中文字幕在线观看| 观看av在线不卡| 久久久久精品国产欧美久久久 | 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| videos熟女内射| 亚洲五月婷婷丁香| 久久国产亚洲av麻豆专区| 悠悠久久av| 永久免费av网站大全| 黑人猛操日本美女一级片| 侵犯人妻中文字幕一二三四区| 国产成人一区二区三区免费视频网站 | 欧美日本中文国产一区发布| 国产麻豆69| 丝袜脚勾引网站| 国产91精品成人一区二区三区 | 在线观看免费视频网站a站| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频 | 在线观看国产h片| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 久久影院123| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| av在线播放精品| 国产欧美日韩一区二区三 | 国产一区二区三区综合在线观看| 国产亚洲欧美精品永久| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 国产男人的电影天堂91| 99久久人妻综合| 国产熟女欧美一区二区| 一级毛片女人18水好多 | av又黄又爽大尺度在线免费看| 曰老女人黄片| 欧美日韩综合久久久久久| 亚洲成国产人片在线观看| 飞空精品影院首页| 大话2 男鬼变身卡| 国产成人精品久久二区二区免费| 男女无遮挡免费网站观看| 亚洲av男天堂| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 国产亚洲欧美精品永久| 天天躁狠狠躁夜夜躁狠狠躁| 纵有疾风起免费观看全集完整版| 黄片播放在线免费| 中文乱码字字幕精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 丝袜人妻中文字幕| 久久 成人 亚洲| tube8黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 日本欧美国产在线视频| 国产一区二区三区综合在线观看| 日韩av免费高清视频| 午夜精品国产一区二区电影| cao死你这个sao货| av又黄又爽大尺度在线免费看| 人人妻,人人澡人人爽秒播 | 日本五十路高清| 大话2 男鬼变身卡| 女性被躁到高潮视频| 中文字幕人妻丝袜一区二区| 在线观看免费午夜福利视频| av国产精品久久久久影院| 免费在线观看完整版高清| 午夜福利一区二区在线看| 免费高清在线观看日韩| 欧美激情高清一区二区三区| 美女主播在线视频| 国产精品三级大全| 美女福利国产在线| 18禁观看日本| 精品一品国产午夜福利视频| 久久av网站| 高清黄色对白视频在线免费看| 亚洲色图 男人天堂 中文字幕| 成人三级做爰电影| 亚洲精品av麻豆狂野| 亚洲一区中文字幕在线| 十八禁高潮呻吟视频| 80岁老熟妇乱子伦牲交| 一个人免费看片子| 色视频在线一区二区三区| 2018国产大陆天天弄谢| 欧美另类一区| 看免费av毛片| 国产黄色视频一区二区在线观看| 老熟女久久久| 天天添夜夜摸| 欧美日韩视频精品一区| www.熟女人妻精品国产| 我要看黄色一级片免费的| 精品人妻1区二区| 国产91精品成人一区二区三区 | 欧美精品一区二区大全| e午夜精品久久久久久久| 久久人人爽av亚洲精品天堂| 亚洲国产精品国产精品| 久久久久精品人妻al黑| 精品国产乱码久久久久久男人| 性高湖久久久久久久久免费观看| 欧美日韩成人在线一区二区| 国产人伦9x9x在线观看| 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 国产欧美日韩一区二区三 | 久久久国产一区二区| 国产精品99久久99久久久不卡| 97在线人人人人妻| 午夜福利在线免费观看网站| 波多野结衣一区麻豆| av一本久久久久| 我要看黄色一级片免费的| 国产野战对白在线观看| 99国产精品免费福利视频| 一区在线观看完整版| 超碰97精品在线观看| 丝袜美腿诱惑在线| 欧美另类一区| 亚洲专区中文字幕在线| 国产黄频视频在线观看| 啦啦啦啦在线视频资源| 天天操日日干夜夜撸| 丰满少妇做爰视频| 久久精品国产亚洲av涩爱| 91麻豆av在线| 欧美精品高潮呻吟av久久| 如日韩欧美国产精品一区二区三区| 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 咕卡用的链子| 日韩,欧美,国产一区二区三区| 日本一区二区免费在线视频| 国产成人欧美| 大香蕉久久成人网| 水蜜桃什么品种好| 免费看十八禁软件| 一本综合久久免费| 香蕉丝袜av| 亚洲精品av麻豆狂野| 亚洲中文av在线| 一级毛片电影观看| 成年动漫av网址| 日本a在线网址| 天堂8中文在线网| 成年动漫av网址| 欧美日韩综合久久久久久| 热re99久久国产66热| 欧美变态另类bdsm刘玥| 男女国产视频网站| tube8黄色片| 成人三级做爰电影| 女人高潮潮喷娇喘18禁视频| 一级,二级,三级黄色视频| 一级毛片我不卡| 热99久久久久精品小说推荐| 人人妻人人添人人爽欧美一区卜| 男女无遮挡免费网站观看| 中文精品一卡2卡3卡4更新| 欧美+亚洲+日韩+国产| 交换朋友夫妻互换小说| 亚洲欧美精品综合一区二区三区| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 国产欧美日韩一区二区三 | 免费在线观看完整版高清| 9色porny在线观看| 两个人免费观看高清视频| 欧美国产精品一级二级三级| 人人妻,人人澡人人爽秒播 | 真人做人爱边吃奶动态| 国产一卡二卡三卡精品| 久久人人爽av亚洲精品天堂| 国产不卡av网站在线观看| 男女边摸边吃奶| 麻豆乱淫一区二区| 亚洲av欧美aⅴ国产| 国产精品一区二区精品视频观看| 欧美日韩亚洲综合一区二区三区_| 日韩免费高清中文字幕av| 国产欧美日韩精品亚洲av| av网站在线播放免费| 亚洲国产看品久久| 首页视频小说图片口味搜索 | 久久精品久久久久久噜噜老黄| 久久久久久久国产电影| 男女边摸边吃奶| 亚洲av综合色区一区| 久久免费观看电影| 国产在视频线精品| 亚洲欧美色中文字幕在线| 国产精品 国内视频| 欧美中文综合在线视频| 91成人精品电影| 久久精品人人爽人人爽视色| 日本wwww免费看| 久久久久网色| 尾随美女入室| 亚洲精品久久久久久婷婷小说| 看免费av毛片| 免费在线观看影片大全网站 | 国产高清不卡午夜福利| 精品国产一区二区久久| 天天添夜夜摸| 亚洲五月婷婷丁香| 欧美久久黑人一区二区| 日韩 亚洲 欧美在线| 国产av一区二区精品久久| 夫妻性生交免费视频一级片| 久久99精品国语久久久| 亚洲国产精品成人久久小说| 亚洲第一青青草原| 两性夫妻黄色片| 亚洲国产欧美网| avwww免费| 亚洲熟女精品中文字幕| 亚洲国产精品国产精品| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 欧美人与性动交α欧美软件| 宅男免费午夜| av福利片在线| 2021少妇久久久久久久久久久| av有码第一页| 婷婷丁香在线五月| 又紧又爽又黄一区二区| 久久精品aⅴ一区二区三区四区| 一级毛片 在线播放| 老司机亚洲免费影院| 午夜福利乱码中文字幕| 久久九九热精品免费| 国产精品免费视频内射| 国产精品九九99| 一级片'在线观看视频| 国产人伦9x9x在线观看| 女人被躁到高潮嗷嗷叫费观| 国产三级黄色录像| 少妇的丰满在线观看| 少妇 在线观看| 91麻豆精品激情在线观看国产 | 69精品国产乱码久久久| 在线 av 中文字幕| 18禁国产床啪视频网站| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| av不卡在线播放| 亚洲第一青青草原| 国产片内射在线| 欧美+亚洲+日韩+国产| 日韩一本色道免费dvd| 两个人看的免费小视频| 精品亚洲成a人片在线观看| 国产精品偷伦视频观看了| 色视频在线一区二区三区| 最近中文字幕2019免费版| 亚洲成人手机| 男女下面插进去视频免费观看| 成年人午夜在线观看视频| av有码第一页| 亚洲av片天天在线观看| 国产欧美日韩一区二区三 | 国产伦理片在线播放av一区| 丝袜美足系列| 欧美激情极品国产一区二区三区| 91九色精品人成在线观看| 久久精品国产亚洲av涩爱| 一本大道久久a久久精品| 午夜福利在线免费观看网站| 少妇 在线观看| 麻豆av在线久日| 纯流量卡能插随身wifi吗| 亚洲熟女精品中文字幕| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 一本一本久久a久久精品综合妖精| 欧美精品av麻豆av| 色94色欧美一区二区| 亚洲成人手机| 视频在线观看一区二区三区| 成年av动漫网址| 久久精品久久久久久噜噜老黄| 国产精品香港三级国产av潘金莲 | 一区福利在线观看| 亚洲国产欧美在线一区| 高清视频免费观看一区二区| 国产精品人妻久久久影院| 亚洲国产毛片av蜜桃av| 亚洲av电影在线观看一区二区三区| 考比视频在线观看| 91精品伊人久久大香线蕉| 亚洲成av片中文字幕在线观看| 一级毛片我不卡| 99国产精品免费福利视频| 一本综合久久免费| 久久九九热精品免费| 国产视频一区二区在线看| 午夜老司机福利片| 999精品在线视频| 亚洲熟女精品中文字幕| 亚洲国产看品久久| 夫妻午夜视频| 老司机影院毛片| 又紧又爽又黄一区二区| 青草久久国产| 国产又爽黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 青春草视频在线免费观看| 看免费av毛片| 亚洲av电影在线进入| 国产精品免费视频内射| 永久免费av网站大全| 天天躁夜夜躁狠狠躁躁| 国产精品三级大全| 另类亚洲欧美激情| 好男人视频免费观看在线| 国产成人一区二区在线| 热99国产精品久久久久久7| 在线观看免费日韩欧美大片| 晚上一个人看的免费电影| www.精华液| 午夜福利视频在线观看免费| 亚洲精品久久午夜乱码| 亚洲国产精品一区二区三区在线| 欧美精品啪啪一区二区三区 | 亚洲一区二区三区欧美精品| 国产在线一区二区三区精| 久久精品久久久久久噜噜老黄| 国产精品久久久人人做人人爽| 日日摸夜夜添夜夜爱| 精品国产一区二区三区久久久樱花| 下体分泌物呈黄色| 亚洲九九香蕉| 国产片特级美女逼逼视频| 久久亚洲精品不卡| 脱女人内裤的视频| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 精品福利永久在线观看| 亚洲欧美精品综合一区二区三区| 波野结衣二区三区在线| 免费一级毛片在线播放高清视频 | 国产精品秋霞免费鲁丝片| a 毛片基地| 国产伦理片在线播放av一区| 日本av手机在线免费观看| 国产日韩欧美在线精品| 99热国产这里只有精品6| 亚洲少妇的诱惑av| 久久精品久久久久久噜噜老黄| 亚洲精品国产区一区二| 女警被强在线播放| 免费看av在线观看网站| 免费女性裸体啪啪无遮挡网站| 老司机亚洲免费影院| 国产免费现黄频在线看| 成人影院久久| 亚洲国产精品999| 最新在线观看一区二区三区 | 国产老妇伦熟女老妇高清| 国产精品国产av在线观看| 久久久久视频综合| 日韩电影二区| 操美女的视频在线观看| 老司机靠b影院| 精品一区二区三区四区五区乱码 | 亚洲精品一二三| 国产片内射在线| 亚洲欧美精品自产自拍|