• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice

    2023-03-11 06:46:32CAOPenghuiWANGDiGAOSuLlUXiQlAOZhongyingXlEYulinDONGMinghuiDUTanxiaoZHANGXianZHANGRuiJlJianhui
    Journal of Integrative Agriculture 2023年3期

    CAO Peng-hui ,WANG Di ,GAO Su ,LlU Xi ,QlAO Zhong-ying ,XlE Yu-lin,DONG Ming-hui,DU Tan-xiaoZHANG XianZHANG RuiJl Jian-hui

    1 Institute of Agricultural Sciences in Taihu Area of Jiangsu,Suzhou 215155,P.R.China

    2 Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu,Huai’an 223001,P.R.China

    3 School of Life Sciences,Huaiyin Normal University,Huai’an 223300,P.R.China

    4 Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake,Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection,Huaiyin Normal University,Huai’an 223300,P.R.China

    Abstract Plant chlorophyll biosynthesis and chloroplast development are two complex processes that are regulated by exogenous and endogenous factors. In this study,we identified OsDXR,a gene encoding a reductoisomerase that positively regulates chlorophyll biosynthesis and chloroplast development in rice. OsDXR knock-out lines displayed the albino phenotype and could not complete the whole life cycle process. OsDXR was highly expressed in rice leaves,and subcellular localization indicated that OsDXR is a chloroplast protein. Many genes involved in chlorophyll biosynthesis and chloroplast development were differentially expressed in the OsDXR knock-out lines compared to the wild type.Moreover,we found that the RNA editing efficiencies of ndhA-1019 and rpl2-1 were significantly reduced in the OsDXR knock-out lines. Furthermore,OsDXR interacted with the RNA editing factor OsMORF1 in a yeast two-hybrid screen and bimolecular fluorescence complementation assay. Finally,disruption of the plastidial 2-C-methyl-derythritol-4-phosphate pathway resulted in defects in chloroplast development and the RNA editing of chloroplast genes.

    Keywords: rice,OsDXR,Chloroplast development,RNA editing,OsMORF1

    1.lntroduction

    Isoprenoids are essential for plant growth and development,and tens of thousands of these compounds have been isolated from archaea,bacteria and eukaryotes (Rodríguez-Concepción 2014;Tarkowská and Strnad 2018). Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are two basic fivecarbon molecules required for isoprenoid biosynthesis.In higher plants,two isoprenoid synthetic pathways are located in plastids and the cytoplasm,namely the cytoplasmic methyl valerate (MVA) pathway and the 2-C-methyl-derythritol-4-phosphate (MEP) pathway,respectively (Rohdichet al.2001). Chlorophylls,gibberellins,and abscisic acids are synthesizedviathe MEP pathway (Okadaet al.2002). Previous studies have shown that DOXP reductoisomerase (DXR) can catalyze the conversion of 1-deoxy-D-xylulose-5-phosphate (DOXP) into MEP (Carretero-Pauletet al.2002). In peppermint,overexpression ofDXRincreases the biosynthesis of essential oils (Mahmoudet al.2001),while inArabidopsis,the T-DNA insertion mutant ofDXRwas albino and dwarf,it could not complete seedling establishment (Xinget al.2010),the number of trichomes was reduced,and stomatal closure was affected (Xinget al.2010). However,the function of DXR has not been reported in crop plants,including rice.

    Posttranscriptional processing,including RNA editing,RNA splicing,RNA cleavage,and RNA stability,plays an important role in regulating plant chloroplast development and chlorophyll biosynthesis (Barkan and Goldschmidt-Clermont 2000). RNA editing converts cytidine nucleotides (C) to uridine (U) in the transcripts of plastidial and mitochondrial genes,and is affected by temperature,fungal infection,and stresses (Karcher and Bock 2002;García-Andradeet al.2013;Rodrigueset al.2017). Many studies have shown that pentatricopeptide repeat (PPR) proteins,multiple organellar RNA editing factors (MORFs),and thioredoxin z play important roles in plant RNA editing (Takenakaet al.2012;Huanget al.2020;Wanget al.2021).OsPGL1encodes a dual-localized PPR protein that affects chloroplast and mitochondrial RNA editing (Xiaoet al.2018).WP2encodes a thioredoxin z protein that affects the efficiency of RNA editing in many plastidial-encoded genes (Wanget al.2021). Recently,the MEP pathway geneOsHMBPP/OsHDRhas been shown to influence plastidic RNA editing and interact with OsMORF8 (Liuet al.2020),suggesting that the MEP pathway might affect plastidic RNA editing.

    There is only one DXR in rice,OsDXR. In this study,OsDXR was identified and shown to be involved in regulating rice chlorophyll biosynthesis and chloroplast development. To elucidate the mechanism,we demonstrated that OsDXR interacts with the RNA editing factor,OsMORF1,resulting in reduced RNA editing of two chloroplast genes.

    2.Materials and methods

    2.1.Plant materials

    Nipponbare,ajaponicavariety of rice (O.sativa),was used as the wild-type (WT) plant. We developed twoOsDXRknock-out lines through the CRISPR/Cas9 system (Luet al.2017). The mutation target(5′-TTCCTCGACTCCAACAG-3′) was constructed in a 1305-CRISPR plasmid vector using theAarI enzyme,and introduced into Nipponbare byA.tumefaciens-mediated transformation. Fragments containing the target were PCR amplified (5′-GAGTCTCAGATTCCCATCTCGTC-3′and 5′-CTGCGGATTATCTTGAAACAGG-3′) and the sequence was verified. All plant seedlings were grown in a growth chamber with a photoperiod of 14 h light and 10 h dark at 30/25°C,respectively.

    2.2.Chlorophyll content analysis

    Chlorophylls were extracted from 10-day-old WT andOsDXRknock-out leaves as described previously (Porraet al.1989) with some modifications. Briefly,~0.2 g of leaves harvested from WT andOsDXRknock-out plants were placed in 15-mL centrifugal tubes in 5 mL of extraction buffer (95% ethanol),and stored in the dark for 48 h. All pigmented solutions were combined and centrifuged for 2 min. The light absorbance of three biological replicates was measured at 663 and 647 nm.

    2.3.Transmission electron microscopy (TEM)

    Leaf samples of 10-day-old WT andOsDXRknock-out seedlings were collected and fixed in 4% glutaraldehyde,and then vacuum-treated for 1 h. The samples were dehydrated through a series of alcohol solutions,and imaged by TEM (Hitachi,Tokyo,Japan) as described previously (Liuet al.2020).

    2.4.Sequence analysis

    Protein sequences homologous to OsDXR were searched using the BLAST Ssearch Program (www.ncbi.nlm.nih.gov/BLAST/),and aligned using the DNAMAN Software.

    2.5.Subcellular localization

    To determine the subcellular localization of OsDXR,the full-length ORF ofOsDXRwas amplified with the primers 5′-CGGAGCTAGCTCTAGAATGGCGCTCAAGGTCGTC TC-3′ and 5′-TGCTCACCATGGATCCACAGGTACAGGG CTGA-3′ and introduced into pAN580-GFP at theXbaI andBamHI sites. Transformation was performed as described previously (Liuet al.2020). The GFP fluorescence of rice protoplasts was observed by confocal laser scanning microscopy (LSM700;Zeiss),and chlorophyll autofluorescence was used as a control.

    2.6.RT-PCR and qPCR analysis

    Total RNA was extracted from roots,stems,leaves,and panicles of WT plants with an RNA Prep Pure Plant Kit (Tiangen,Beijing,China). First-strand cDNA was reverse transcribed with an RT primer mix. Real-time PCR was performed using a SYBR Premix Ex TaqTMKit (TaKaRa,Japan) on a CFX96 Touch Real-Time PCR Detection System with three biological replicates.The primers used to analyze the expression level ofOsDXRwere 5′-AAACGAGGGACAGAAGAGCA-3′and 5′-GAACCGGTTGAGCCAACAAT-3′. The primers for chlorophyll biosynthesis (Zenget al.2020),chloroplast development-related genes (Wanget al.2017),and the MEP pathway genes (Liuet al.2020)were obtained as reported previously. The riceUBQgene was used as an internal control. The primers used forUBQwere 5′-GCTCCGTGGCGGTATCAT-3′ and 5′-CGGCAGTTGACAGCCCTAG-3′.

    2.7.RNA editing assay

    To analyze RNA editing,total RNA from 10-day-old WT andOsDXRknock-out plants were isolated and treated with DNaseI (CWBIO,Jiangsu,China). The RNAs were reverse transcribed with random primers. cDNA fragments containing RNA editing sites were amplified by RT-PCR. Primers were used to detect the RNA editing sites of chloroplast genes as described previously (Wanget al.2017). The RT-PCR products were sequenced directly,and C to T changes were compared using the BioXM 2.6 Software.

    2.8.Yeast two-hybrid (Y2H) screen and bimolecular fluorescence complementation (BlFC) assay

    The full-length cDNAs ofOsDXR(5′-CATGGAGGCCGAA TTCATGGCGCTCAAGGTCGTCTC-3′ and 5′-GCAGGTC GACGGATCCCTAGACAGGTACAGGGCTGA-3′) and seven MORF genes were amplified and cloned into theEcoRI andBamHI sites of pGBKT7 and pGADT7 vectors with a ClonExpress II One Step Cloning Kit (Nanjing Vazyme Biotech Co.,Ltd.,China),respectively. Different combinations of plasmids were introduced into the yeast strain,AH109,following the manufacturer’s protocol(Clontech,PT1172-1). The primers for the pGADT7 vector were obtained as reported previously (Liuet al.2021). For the BiFC assay,OsDXR(5′-CATTTACGAACG ATAGTTAATTAAATGGCGCTCAAGGTCGTCTC-3′ and 5′-CACTGCCACCTCCTCCACTAGTGACAGGTACAGG GCTGA-3′) andLOC_Os11g11020were cloned into pVYNE and pVYCE,respectively. VYL interacts with OsClpP4 in rice chloroplasts (Donget al.2013). YNOsDXR/YC-VYL and YN-OsClpP4/YC-OsMORF1 were used as the negative controls. Recombinant green fluorescence signals fromNicotianabenthamianawere examined as described previously (Waadtet al.2008).

    2.9.Statistical analysis

    In this study,all experiments were performed with three biological replicates. The results are presented as mean±SD in the figures,while*and**indicate significant differences atP<0.05 andP<0.01,respectively.

    3.Results

    3.1.Characterization of the OsDXR protein in rice

    TheOsDXRgene consists of a 5 989-bp open-reading frame,comprising 12 exons and 11 introns. The OsDXR protein has 473 amino acids and a calculated molecular weight of 51 kD. The first 49 amino acids were predicted to be a chloroplast transit peptide by ChloroP (http://www.cbs.dtu.dk/services/ChloroP/). Multiple amino acid sequence alignments by DNAMAN Software indicated that OsDXR has similarities among many species (Fig.1),includingArabidopsisAt5g62790,with 80.1% sequence homology (Xinget al.2010). The results indicate that the OsDXR protein is highly conserved in plants.

    Fig.1 Comparison of the amino acid sequences of five DXR homologs. The following sequences were compared: Oryza sativa LOC_ Os01g01710 (OsDXR),Setaria italica XP_004967950.1,Zea mays XP_008655547.1,Arabidopsis thaliana NP_201085.1,and Sorghum bicolor XP_021311303.1. The amino acids in dark blue are conserved.

    3.2.Characterization of OsDXR knock-out mutants

    To investigate the functions ofOsDXRin rice development,we developed twoOsDXRknock-out lines,dxr-1anddxr-2,by CRISPR/Cas9-targeted mutagenesis. Two and four bases were deleted indxr-1anddxr-2,respectively,leading to a frameshift mutation and premature termination (Fig.2-A;Appendix A).Subsequent analysis was performed usingdxr-2since it is the shortest mutant protein. In addition,we detected the potential off-target sites and did not find any mutations in any of the potential off-target sites (Appendix B). Bothdxr-1anddxr-2displayed an albino phenotype and ultimately died (Fig.2-B).OsDXRexpression was remarkably reduced in bothdxr-1anddxr-2(Fig.2-C). Consistent with the albino leaves,the contents of chlorophyllaandbin the mutants were significantly reduced compared with the WT (Appendix C).

    Fig.2 Disruption of the OsDXR gene results in chlorophyll biosynthesis defects in rice. A,sketch map of the target gene,OsDXR,and the mutations of the knockout lines. The 19-bp gene-specific target site and protospacer adjacent motif (PAM)are underlined and shaded red,respectively. Red lines represent the missing bases. B,the phenotypes of dxr-1 and dxr-2 at the seedling stage (bar=5 cm). C,the expression levels of OsDXR in the dxr mutants. Bars mean SD (n=3). ** indicates significant differences at P<0.01.

    In order to determine whether the structure of chloroplasts was affected in thedxr-2mutant,we used TEM to observe the structures of chloroplasts in the WT anddxr-2seedlings. Chloroplast morphology of the WT seedlings was normal,and the thylakoid lamellae showed an orderly arrangement (Fig.3-A and B). However,the chloroplasts in thedxr-2mutant were abnormal,and completely lacking thylakoid lamellae(Fig.3-C and D). These results suggest thatOsDXRis essential for chloroplast development in rice.

    Fig.3 Chloroplast ultrastructure of wild-type (WT) (A and B) and dxr (C and D) leaves. A and C,bars=2 μm;B and D,bars=500 nm.

    3.3.Expression pattern and subcellular localization of OsDXR

    To examine the expression pattern ofOsDXR,we first analyzed the expression ofOsDXRin the rice expression database (http://bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi). As shown in Appendix D,OsDXRis expressed in various organs,including leaves,panicles,and seeds.To verify this result,we extracted RNA from the panicles,stems,leaves,and roots,and used quantitative RT-PCR to analyze the expression ofOsDXRin each tissue.OsDXRwas highly expressed in leaves and stems (Fig.4-A).To determine the subcellular localization of the OsDXR protein,we generated a transient expression system in rice protoplasts. Strong green fluorescence signals from OsDXR were co-localized with the chloroplast (Fig.4-B),indicating thatOsDXRis constitutively expressed in various tissues and that the OsDXR protein localizes to chloroplasts,providing additional evidence for its role in chloroplast development.

    Fig.4 Expression analysis and subcellular localization of OsDXR. A,expression levels of OsDXR in various rice organs. Bars mean SD (n=3). B,localization of the OsDXR-GFP protein in rice protoplasts. Bar=10 μm.

    3.4.Expression levels of chlorophyll biosynthesis and plastid development-related genes were altered in the dxr mutant

    Genes expressed in plastids by the nucleus and plastid coordinate together to produce normal chloroplasts and synthesize chlorophyll. To examine whether the loss of function ofOsDXRaffects the expression of chlorophyll biosynthesis and chloroplast developmentrelated genes,we performed qRT-PCR to analyze the expression levels of these genes in WT anddxrplants.The qRT-PCR analysis indicated that the expression levels of genes related to chlorophyll biosynthesis and chloroplast development were significantly altered in thedxrmutant. For instance,the expression levels of several chlorophyll biosynthetic genes,includingHEMA,DVR,CHLMandPORA,were significantly reduced indxrcompared to WT (Fig.5). Additionally,the expression levels of several plastid development-related genes,includingrbcL,NDHB,andV1,were significantly reduced indxrcompared to WT. However,the expression of some chlorophyll biosynthesis genes,such asCRDandCHLG,and the plastid development-related gene,psaA,increased relative to the WT (Fig.5).

    Fig.5 Expression levels of chlorophyll biosynthesis and plastid development-related genes in wild type (WT) and dxr-2 leaves.Total RNA was extracted from the leaves of WT and dxr-2 mutant plants. Values are presented as the mean±SD of three biological replicates. * and ** indicate significant differences at P<0.05 and P<0.01,respectively.

    To investigate whether the expression levels of the MEP pathway genes were affected by theOsDXRmutation,we used qRT-PCR to measure the expression levels of the other genes of the MEP pathway. Compared with the wild type,the expression levels ofCMK,DXS,HDS,CMS,andMCSwere significantly down-regulated(Appendix E).

    3.5.RNA editing of rpl2-1 and ndhA-1019 were impaired in the dxr mutants

    Previous studies have shown that RNA editing and other posttranscriptional modifications are involved in the regulation of plant chlorophyll synthesis and chloroplast development (Tanget al.2017;Cuiet al.2019). To determine whether RNA editing is altered in theOsDXRmutants,we examined the editing efficiency of 18 editing sites in the rice chloroplast genome in WT,dxr-1,anddxr-2seedlings. The editing efficiencies ofrpl2-1 andndhA-1019 were greatly reduced (Fig.6). Chloroplastrpl2andndhAencode ribosomal protein subunit L2 and NADPH dehydrogenase,respectively.rpl2participates in the peptidyl-transferase reaction in theEscherichiacoliribosome,andndhAinfluences NADH dehydrogenase(NDH) activity (Nierhaus 1982;Linet al.2017). The other 16 editing sites displayed normal editing in the WT anddxrmutants (Appendix F).

    Fig.6 RNA editing analyses of rpl2-1 and ndhA-1019 in wild type (WT),dxr-1,and dxr-2. Nucleotides shown in red letters indicate the editing sites.

    3.6.OsDXR interacted with the multiple organellar RNA editing factor OsMORF1

    To explore the function of OsDXR,we performed a Y2H screen to identify OsDXR-interacting proteins.We constructed a yeast cDNA library from Nipponbare seedlings and screened the yeast using OsDXR as a target. We obtained 58 colonies that grew well on media lacking Leu/Trp/His/Ade,and found that five of those colonies corresponded to rice LOC_Os11g11020.Additionally,we found an orthologous gene ofLOC_Os11g11020inArabidopsisnamed multiple organellar RNA editing factor 1 (MORF1). Hence,we referred to the rice LOC_Os11g11020 as OsMORF1. Since there are seven MORF genes in the rice genome,we used the Y2H assay to assess the interactions between OsDXR and the other six rice MORF proteins,and only observed an interaction between OsDXR and OsMORF1 in the Y2H assay (Fig.7-A). Moreover,using the BiFC assay withN.benthamiana,a green fluorescence signal was only observed in the protein group of OsDXR/OsMORF1,compared with the YN-OsDXR/YC-VYL and YN-OsClpP4/YC-OsMORF1 combinations (Fig.7-B). Therefore,the Y2H and BiFC assays revealed that OsDXR specifically interacts with OsMORF1.

    Fig.7 Interaction identification of OsDXR with OsMORF1. A,yeast two-hybrid assay of the interaction between OsDXR and OsMORF1.DDO and QDO indicate SD-Leu/-Trp dropout plates and SD-Leu/-Trp/-His/-Ade dropout plates,respectively. QDO contains 40 μg mL-1 X-α-Gal. B,BiFC assays of the interaction between OsDXR and OsMORF1 in Nicotiana benthamiana leaves. Bar=10 μm.

    4.Discussion

    OsDXRgenes have been isolated from many plants,includingArabidopsis,peppermint,and mint,through T-DNA insertion mutants,homologous cloning,and transgene overexpression (Lange and Croteau 1999;Mahmoud and Croteau 2001;Xinget al.2010). So far,only three genes involved in the MEP pathway,IspE,IspFandOsHMBPP,have been cloned,but noOsDXRgene has yet been identified in rice (Chenet al.2018;Huanget al.2018;Liuet al.2020). In rice,numerous genes responsible for an albino phenotype have been isolated,such asOsCAF1,YSA,OsPPR16,andRA1(Suet al.2012;Zhanget al.2019;Zhenget al.2019;Huanget al.2020).In this study,we constructed twoOsDXRknock-out mutants which exhibited the albino phenotype and had abnormal chloroplasts. In the two mutants,deletions of two and four bases in theOsDXRgene resulted in a frameshift mutation and premature termination.

    InArabidopsis,the T-DNA insertionDXRmutant(Xinget al.2010) displays an albino phenotype,grows purple cotyledons,and exhibits impaired chloroplast development. Mutations in several genes of the MEP pathway,includingDXS,IspD,IspE,IspF,IspGandIspH,also show the albino phenotype (Hsieh and Goodman 2005,2006;Hsiehet al.2008;García-Alcázaret al.2017). These studies indicated that cytoplasmic isoprenoids from the MVA pathway could not effectively compensate for the lack of plastid isoprenoids inArabidopsis. In rice,theIspEmutant,gry340,showed a green-revertible phenotype,while theIspFmutant,505ys,exhibited a yellow-green phenotype during the whole growth period (Chenet al.2018;Huanget al.2018). RiceIspEandIspFmutants could set seeds at maturity,whereas theArabidopsisIspEandIspFmutants died at the seedling stage. The riceIspHmutant,las1,had an albino phenotype,which was consistent with the phenotype of theArabidopsisIspHmutant (Hsieh and Goodman 2005;Liuet al.2020). In rice,theDXRmutants died at the seedling stage and could not complete the whole life cycle,which was different from theArabidopsisDXRmutants. These results suggest a divergence in the functions of the MEP pathway genes in the dicotyledonArabidopsis thalianaand the monocot rice. In addition,we found that there are 112 SNPs and 9 InDel variants in the genome ofOsDXRwith the software RiceVarMap V2.0. Based on the SNP variants ofOsDXR,15 subhaplotypes ofOsDXRwere found (Appendix G),suggesting that the genetic diversity ofOsDXRis rich.

    TheIspH/LAS1mutation affects plastdic RNA editing,and IspH/LAS1 interacts with the MORF family protein Os09g33480 (Liuet al.2020). In this study,we found that the RNA editing efficiencies ofrpl2-1 andndhA-1019 in thedxrmutants were significantly reduced compared with the WT. In addition,OsDXR interacted with OsMORF1invivo,suggesting that OsDXR may be a component of an RNA editing complex. These results indicate that proteins in the MEP pathway might regulate rice chlorophyll biosynthesis and chloroplast developmentviatheir interactions with the MORF family of proteins,which will be the focus of our future research.

    5.Conclusion

    We characterized two rice OsDXR mutants and confirmed thatOsDXRpositively regulates chloroplast development in rice. The results suggest thatOsDXRmay be involved in regulating the expression of chlorophyll biosynthesis and plastid development-related genes,and that it interacts with the RNA editing factor OsMORF1.

    AcknowledgementsThis study was supported by the Program for Subsidized Project of Suzhou Academy of Agricultural Sciences,China (20028),the Science and Technology Foundation of Suzhou (SNG2020048),the Huaishang Talents,China,the National Natural Science Foundation of China(32070345),the Huai’an Academy of Agricultural Sciences Initiation and Development of Scientific Research Fund for High-level Introduced Talents,China (0062019016B),the Six Talents Summit Project of Jiangsu Province,China(NY-129),and the Natural Science Foundation of Jiangsu Province,China (BK20190239 and BK20180107).

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Appendicesassociated with this paper are available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    久久久久久久久中文| 中文在线观看免费www的网站| 久久久久久久久久久免费av| 特大巨黑吊av在线直播| 久久久久久久午夜电影| 黄片无遮挡物在线观看| 欧美日韩国产亚洲二区| 少妇熟女欧美另类| 91在线精品国自产拍蜜月| 日韩欧美三级三区| 午夜福利网站1000一区二区三区| 波多野结衣巨乳人妻| 亚洲人成网站在线播| 1000部很黄的大片| 国产大屁股一区二区在线视频| 好男人在线观看高清免费视频| 国产视频首页在线观看| 亚洲欧美成人综合另类久久久 | 亚洲精品成人久久久久久| 日韩在线高清观看一区二区三区| 51国产日韩欧美| 有码 亚洲区| 色噜噜av男人的天堂激情| 精品久久久噜噜| 久99久视频精品免费| 偷拍熟女少妇极品色| 2022亚洲国产成人精品| 直男gayav资源| 美女xxoo啪啪120秒动态图| 国产伦在线观看视频一区| 成人鲁丝片一二三区免费| 我的女老师完整版在线观看| 色5月婷婷丁香| 男女那种视频在线观看| 国产精品一二三区在线看| 激情 狠狠 欧美| 日本一二三区视频观看| 亚洲在线自拍视频| 欧美三级亚洲精品| 国产中年淑女户外野战色| 日韩,欧美,国产一区二区三区 | 久久久久久久久久久免费av| 国内精品一区二区在线观看| 国产极品精品免费视频能看的| 国产午夜精品久久久久久一区二区三区| 亚洲欧美精品专区久久| 国产真实伦视频高清在线观看| 日韩精品有码人妻一区| 美女黄网站色视频| 亚洲自偷自拍三级| АⅤ资源中文在线天堂| 亚洲国产欧美人成| 免费电影在线观看免费观看| 国语自产精品视频在线第100页| 国产精品久久久久久精品电影小说 | 亚洲最大成人手机在线| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 51国产日韩欧美| 国产高清视频在线观看网站| 久久99精品国语久久久| 免费看光身美女| 如何舔出高潮| or卡值多少钱| 久久精品熟女亚洲av麻豆精品 | 成人亚洲精品av一区二区| 永久网站在线| 高清视频免费观看一区二区 | 免费观看在线日韩| 亚洲av电影在线观看一区二区三区 | 免费av观看视频| 欧美丝袜亚洲另类| 99九九线精品视频在线观看视频| 黄片wwwwww| 日韩,欧美,国产一区二区三区 | av免费在线看不卡| 亚洲中文字幕日韩| 大又大粗又爽又黄少妇毛片口| 久久精品久久精品一区二区三区| 男人舔奶头视频| 人人妻人人澡人人爽人人夜夜 | 少妇的逼好多水| 日韩av不卡免费在线播放| 久久久久久久久久成人| 精品久久久久久久久久久久久| 一本一本综合久久| 国产精品久久久久久av不卡| 国产国拍精品亚洲av在线观看| 亚洲成人中文字幕在线播放| 亚洲电影在线观看av| 亚洲国产日韩欧美精品在线观看| 啦啦啦啦在线视频资源| 亚洲va在线va天堂va国产| 欧美激情在线99| 成人漫画全彩无遮挡| 国产成人免费观看mmmm| 久久久亚洲精品成人影院| 国产亚洲精品av在线| 国产91av在线免费观看| 丰满乱子伦码专区| 美女国产视频在线观看| 少妇被粗大猛烈的视频| 夫妻性生交免费视频一级片| 国产在线男女| 国产精品伦人一区二区| 亚洲av成人av| 高清日韩中文字幕在线| 亚洲av日韩在线播放| 久久久久久久久久久免费av| 午夜免费男女啪啪视频观看| 天堂影院成人在线观看| 99在线视频只有这里精品首页| 老司机影院成人| 久久精品久久久久久久性| 一个人看视频在线观看www免费| 亚洲欧美成人综合另类久久久 | 亚洲图色成人| 91精品伊人久久大香线蕉| 久久婷婷人人爽人人干人人爱| 欧美bdsm另类| 国产成人福利小说| 欧美成人一区二区免费高清观看| 亚洲四区av| 能在线免费观看的黄片| 久久久久性生活片| 亚洲国产精品国产精品| 看片在线看免费视频| 色综合色国产| 中文天堂在线官网| 久久这里只有精品中国| 国产欧美另类精品又又久久亚洲欧美| 日本av手机在线免费观看| 美女cb高潮喷水在线观看| 韩国av在线不卡| 亚洲精品乱码久久久v下载方式| 国产又色又爽无遮挡免| 最近中文字幕2019免费版| 久久精品人妻少妇| 搡女人真爽免费视频火全软件| 亚洲内射少妇av| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩无卡精品| 亚洲自偷自拍三级| 观看美女的网站| 2021少妇久久久久久久久久久| 中文字幕免费在线视频6| 国产探花在线观看一区二区| 久久久久久久久久成人| av.在线天堂| 美女cb高潮喷水在线观看| 欧美一区二区国产精品久久精品| 搡老妇女老女人老熟妇| 亚洲五月天丁香| 国产淫片久久久久久久久| 亚洲av电影不卡..在线观看| 国产精品人妻久久久久久| 精品酒店卫生间| 亚洲欧美精品专区久久| 国产精品人妻久久久影院| 一区二区三区四区激情视频| 最近2019中文字幕mv第一页| av黄色大香蕉| 国内精品一区二区在线观看| 欧美日本亚洲视频在线播放| 久久婷婷人人爽人人干人人爱| 久久久精品欧美日韩精品| 亚洲国产精品成人久久小说| 亚洲精品一区蜜桃| 特级一级黄色大片| 三级国产精品欧美在线观看| 国产精品久久久久久精品电影| 18禁在线播放成人免费| 男人的好看免费观看在线视频| 国产乱来视频区| 精品99又大又爽又粗少妇毛片| 国产91av在线免费观看| 亚洲成av人片在线播放无| 亚洲电影在线观看av| 少妇被粗大猛烈的视频| 听说在线观看完整版免费高清| 99久久精品国产国产毛片| 国产v大片淫在线免费观看| 99热精品在线国产| 国产高清不卡午夜福利| 亚洲成人精品中文字幕电影| 国产av不卡久久| 日韩av在线大香蕉| 日韩 亚洲 欧美在线| 丝袜喷水一区| 免费av不卡在线播放| 亚洲精品久久久久久婷婷小说 | 狂野欧美激情性xxxx在线观看| 亚洲五月天丁香| 又爽又黄无遮挡网站| 波多野结衣巨乳人妻| 亚洲中文字幕日韩| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜爱| 久久精品国产亚洲网站| 国产精品麻豆人妻色哟哟久久 | 国产白丝娇喘喷水9色精品| 黄片无遮挡物在线观看| 国产亚洲最大av| 亚洲国产色片| 啦啦啦韩国在线观看视频| 99视频精品全部免费 在线| av免费观看日本| 深爱激情五月婷婷| 久久国内精品自在自线图片| 中文在线观看免费www的网站| 99久久九九国产精品国产免费| 成人国产麻豆网| 日本免费a在线| 热99re8久久精品国产| 十八禁国产超污无遮挡网站| 欧美最新免费一区二区三区| 看非洲黑人一级黄片| 精品免费久久久久久久清纯| 午夜免费激情av| 久久久国产成人免费| av黄色大香蕉| 欧美不卡视频在线免费观看| 黄片无遮挡物在线观看| 国产精品精品国产色婷婷| 久久久色成人| 精品人妻一区二区三区麻豆| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆| 校园人妻丝袜中文字幕| 少妇人妻一区二区三区视频| 久久久久精品久久久久真实原创| 舔av片在线| 在线免费十八禁| 国产精品电影一区二区三区| 日韩欧美 国产精品| 又粗又硬又长又爽又黄的视频| 久久久色成人| 国产色婷婷99| 三级男女做爰猛烈吃奶摸视频| 男人舔女人下体高潮全视频| 一级毛片我不卡| 又黄又爽又刺激的免费视频.| 国产精品一区二区在线观看99 | 欧美区成人在线视频| 亚洲伊人久久精品综合 | 国产在线一区二区三区精 | 久久99热这里只有精品18| 日本免费a在线| 日本黄色片子视频| 搞女人的毛片| 亚洲乱码一区二区免费版| 久久精品影院6| 成人性生交大片免费视频hd| 免费人成在线观看视频色| 夜夜看夜夜爽夜夜摸| 久久亚洲精品不卡| 精品久久久久久久末码| 亚洲在线自拍视频| 色综合色国产| 国产精品久久久久久精品电影| 午夜亚洲福利在线播放| 一级av片app| 国产精品国产高清国产av| 精品一区二区免费观看| 日日干狠狠操夜夜爽| 久久久久久久久久久丰满| av天堂中文字幕网| 久久99热这里只有精品18| 亚洲欧美清纯卡通| 午夜久久久久精精品| 亚洲成色77777| 97超视频在线观看视频| 一级毛片我不卡| 美女被艹到高潮喷水动态| 成人毛片a级毛片在线播放| 美女国产视频在线观看| 美女黄网站色视频| 在线观看美女被高潮喷水网站| 特大巨黑吊av在线直播| 国产白丝娇喘喷水9色精品| 在线观看av片永久免费下载| 国产视频首页在线观看| 如何舔出高潮| 精品熟女少妇av免费看| 国产一区二区在线av高清观看| 韩国av在线不卡| 日韩国内少妇激情av| 久久这里只有精品中国| 91精品伊人久久大香线蕉| 乱码一卡2卡4卡精品| 人体艺术视频欧美日本| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 精品国内亚洲2022精品成人| 精品不卡国产一区二区三区| 国产一区二区在线av高清观看| 久久精品国产亚洲网站| 国产精品国产高清国产av| 亚洲av福利一区| 一本一本综合久久| 看黄色毛片网站| 久久国产乱子免费精品| 色播亚洲综合网| 男女那种视频在线观看| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 免费看日本二区| 精品不卡国产一区二区三区| 亚州av有码| 午夜爱爱视频在线播放| 中文资源天堂在线| www日本黄色视频网| 一区二区三区乱码不卡18| 啦啦啦韩国在线观看视频| 国产精品福利在线免费观看| 女人十人毛片免费观看3o分钟| 国产色爽女视频免费观看| 寂寞人妻少妇视频99o| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 天堂中文最新版在线下载 | 又爽又黄无遮挡网站| 日本黄色视频三级网站网址| 麻豆国产97在线/欧美| 色视频www国产| av福利片在线观看| 国产成人福利小说| 免费在线观看成人毛片| 国产毛片a区久久久久| 熟女电影av网| 久久久久国产网址| 婷婷色综合大香蕉| 日韩强制内射视频| 免费看日本二区| ponron亚洲| 男女边吃奶边做爰视频| 老司机福利观看| 国产精品久久久久久久电影| a级毛片免费高清观看在线播放| 亚洲国产成人一精品久久久| 看免费成人av毛片| 久久久欧美国产精品| 最近最新中文字幕大全电影3| 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 午夜精品国产一区二区电影 | 精华霜和精华液先用哪个| 欧美性猛交╳xxx乱大交人| 国产久久久一区二区三区| 永久网站在线| 99九九线精品视频在线观看视频| av黄色大香蕉| 欧美又色又爽又黄视频| 亚洲五月天丁香| 麻豆一二三区av精品| 少妇被粗大猛烈的视频| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 欧美激情国产日韩精品一区| 日韩欧美三级三区| 韩国av在线不卡| 精品不卡国产一区二区三区| 一级二级三级毛片免费看| 九九爱精品视频在线观看| 精品熟女少妇av免费看| 观看美女的网站| 成人综合一区亚洲| 免费看a级黄色片| 一本久久精品| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 韩国av在线不卡| 欧美日韩一区二区视频在线观看视频在线 | 婷婷色麻豆天堂久久 | 国产伦在线观看视频一区| 久久久久久久久大av| 建设人人有责人人尽责人人享有的 | 99在线视频只有这里精品首页| 亚洲人成网站在线观看播放| 日本wwww免费看| 建设人人有责人人尽责人人享有的 | 国产视频内射| 成年版毛片免费区| 亚洲欧洲日产国产| 国产91av在线免费观看| 久久久久久九九精品二区国产| 久久韩国三级中文字幕| 国产免费又黄又爽又色| 国产真实伦视频高清在线观看| 一本久久精品| 欧美激情久久久久久爽电影| 色综合站精品国产| 99热这里只有精品一区| 男女啪啪激烈高潮av片| 性色avwww在线观看| 国产精品不卡视频一区二区| 亚洲伊人久久精品综合 | 亚洲人成网站在线观看播放| 欧美日韩在线观看h| av卡一久久| 高清视频免费观看一区二区 | 精品久久久久久久久亚洲| 色播亚洲综合网| 91精品一卡2卡3卡4卡| 国产男人的电影天堂91| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 久久99蜜桃精品久久| 综合色av麻豆| 国产色爽女视频免费观看| 五月伊人婷婷丁香| 能在线免费观看的黄片| 一个人看的www免费观看视频| 国产视频首页在线观看| 日本三级黄在线观看| 村上凉子中文字幕在线| 国产亚洲精品久久久com| 伦精品一区二区三区| 麻豆国产97在线/欧美| 国产一级毛片在线| 午夜福利高清视频| 性色avwww在线观看| 人妻制服诱惑在线中文字幕| 听说在线观看完整版免费高清| 国产淫语在线视频| 亚洲综合色惰| 中文字幕免费在线视频6| 黄片无遮挡物在线观看| 国产片特级美女逼逼视频| 三级男女做爰猛烈吃奶摸视频| 天美传媒精品一区二区| 亚洲丝袜综合中文字幕| 国产成人91sexporn| 国产精品国产三级国产专区5o | 一区二区三区免费毛片| 不卡视频在线观看欧美| 中文字幕熟女人妻在线| 精品人妻一区二区三区麻豆| 少妇被粗大猛烈的视频| 青春草国产在线视频| av在线蜜桃| 岛国在线免费视频观看| 国产在线男女| 中文精品一卡2卡3卡4更新| 黄色欧美视频在线观看| 九九在线视频观看精品| 观看美女的网站| 国产又色又爽无遮挡免| 国产精品一区二区三区四区久久| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 国产精品久久久久久av不卡| 日韩国内少妇激情av| 偷拍熟女少妇极品色| 国产亚洲精品av在线| 日韩强制内射视频| 亚洲丝袜综合中文字幕| 久久亚洲精品不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品熟女亚洲av麻豆精品 | 美女被艹到高潮喷水动态| 亚洲av免费在线观看| 丝袜喷水一区| 国产精品久久久久久精品电影| 久热久热在线精品观看| 日本与韩国留学比较| 国产精品国产三级国产专区5o | 久久精品国产亚洲网站| 国产高潮美女av| 午夜福利在线观看吧| 国产伦一二天堂av在线观看| 国产精品三级大全| 欧美丝袜亚洲另类| av天堂中文字幕网| 一二三四中文在线观看免费高清| 18+在线观看网站| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 亚洲精品色激情综合| 久久久久久久久久久丰满| 欧美日韩精品成人综合77777| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看| 丝袜美腿在线中文| 日韩成人伦理影院| 欧美精品国产亚洲| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品日韩av片在线观看| 久久精品久久久久久久性| 亚洲乱码一区二区免费版| 秋霞在线观看毛片| 1000部很黄的大片| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在| 国产精品熟女久久久久浪| 看免费成人av毛片| 床上黄色一级片| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 18禁在线无遮挡免费观看视频| 国产成人精品一,二区| 久久精品久久久久久噜噜老黄 | 国产精品福利在线免费观看| 建设人人有责人人尽责人人享有的 | 日韩视频在线欧美| 国产私拍福利视频在线观看| 又黄又爽又刺激的免费视频.| 美女黄网站色视频| 最近最新中文字幕大全电影3| 国产成人91sexporn| 中文字幕免费在线视频6| 久久国产乱子免费精品| 好男人在线观看高清免费视频| 国产成人精品久久久久久| 午夜免费激情av| 精品国产一区二区三区久久久樱花 | 国产伦精品一区二区三区视频9| 欧美另类亚洲清纯唯美| 亚洲美女视频黄频| 久热久热在线精品观看| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 精品人妻视频免费看| 亚洲欧美精品综合久久99| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 日韩欧美 国产精品| 乱系列少妇在线播放| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说 | av福利片在线观看| 欧美xxxx黑人xx丫x性爽| 国产av码专区亚洲av| 一边摸一边抽搐一进一小说| 熟女电影av网| 亚洲av免费高清在线观看| 成人毛片60女人毛片免费| 日韩av在线大香蕉| 老司机影院毛片| 少妇裸体淫交视频免费看高清| 日韩,欧美,国产一区二区三区 | 看免费成人av毛片| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 乱人视频在线观看| 久久亚洲国产成人精品v| 91在线精品国自产拍蜜月| 国产伦在线观看视频一区| 天美传媒精品一区二区| 欧美不卡视频在线免费观看| 亚洲国产精品成人综合色| 国产午夜精品一二区理论片| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品 | 欧美bdsm另类| 亚洲精品乱码久久久v下载方式| 97超视频在线观看视频| 久久精品熟女亚洲av麻豆精品 | 美女黄网站色视频| 国产探花在线观看一区二区| 国产一区二区亚洲精品在线观看| 99久久精品一区二区三区| 听说在线观看完整版免费高清| 亚洲人成网站高清观看| 亚洲国产欧美人成| 内射极品少妇av片p| 性插视频无遮挡在线免费观看| 九九在线视频观看精品| 精品久久久久久久久av| 97超碰精品成人国产| 久久99热这里只频精品6学生 | 99热网站在线观看| 级片在线观看| 国产av不卡久久| 啦啦啦韩国在线观看视频| 激情 狠狠 欧美| 看免费成人av毛片| 性色avwww在线观看| 国产免费一级a男人的天堂| 国产麻豆成人av免费视频| 日韩精品青青久久久久久| 1024手机看黄色片| av在线观看视频网站免费| 久久草成人影院| 国产伦精品一区二区三区视频9| 一级爰片在线观看| 男女国产视频网站| 色5月婷婷丁香| 嫩草影院新地址| 网址你懂的国产日韩在线| 日本一二三区视频观看| 男女啪啪激烈高潮av片| 一级av片app| 国产私拍福利视频在线观看| 国产淫语在线视频| 国产精品精品国产色婷婷| 色综合色国产| 一本一本综合久久| 自拍偷自拍亚洲精品老妇| 亚洲图色成人| 高清av免费在线| 欧美激情国产日韩精品一区| 国产片特级美女逼逼视频| 天天躁夜夜躁狠狠久久av| 成年免费大片在线观看| 亚洲av成人精品一二三区| 中文字幕免费在线视频6| 国产一区亚洲一区在线观看| 国产午夜精品一二区理论片| 女人十人毛片免费观看3o分钟|