劉德民 陳梁 張莉 陸婉玲 劉菲 祁焱雅 姜淮 趙悅 張小波 茹江濤
摘要: 蛇綠混雜巖是研究洋陸轉(zhuǎn)換、板塊構(gòu)造向板內(nèi)構(gòu)造轉(zhuǎn)換過(guò)程的關(guān)鍵證據(jù)。本文以西藏班公湖蛇綠混雜巖中的硅質(zhì)巖為研究對(duì)象,通過(guò)巖石學(xué)以及主量、稀土元素地球化學(xué)特征研究,分析了硅質(zhì)巖成因和沉積環(huán)境。研究區(qū)硅質(zhì)巖呈夾層產(chǎn)出在沙木羅組或斷片產(chǎn)出在玄武巖中,具有隱晶質(zhì)結(jié)構(gòu)、生物碎屑結(jié)構(gòu)和塊狀構(gòu)造,含有晚侏羅世—早白堊世放射蟲。硅質(zhì)巖w(SiO2)為73.80%~90.44%,w (Al2O3)為3.67%~12.33%;MnO/TiO2,F(xiàn)e2O3/SiO2,F(xiàn)e2O3/TiO2和Al2O3/(Al2O3+Fe2O3)分別為0.14~0.91,31.44~141.88,1.83~11.80和0.66~0.96;稀土元素北美頁(yè)巖標(biāo)準(zhǔn)化后顯示平坦型稀土配分模式,δCe值為0.77~2.03,Ce整體呈負(fù)異常特征,δEu值為0.99~2.11,Eu整體呈弱的正異常特征;(La/Yb)N,(La/Ce)N,(La/Lu)N,(La/Sm)N,(Ce/Yb)N和(Gd/Lu)N值分別為0.43~1.12,0.51~1.27,0.44~1.26,0.59~1.12,0.41~2.01和0.82~1.16。硅質(zhì)巖的地球化學(xué)特征指示,班公湖蛇綠混雜巖中伴生的硅質(zhì)巖為生物成因,形成明顯受陸源物質(zhì)的影響,其形成環(huán)境并非典型的大陸邊緣環(huán)境,而是一個(gè)與大陸邊緣有一定距離的大洋盆地到大陸邊緣構(gòu)造環(huán)境。
關(guān)鍵詞 :硅質(zhì)巖;地球化學(xué);形成環(huán)境;蛇綠混雜巖;班公湖;西藏
doi :10.13278/j.cnki.jjuese.20230165
中圖分類號(hào): P588.2;P599
文獻(xiàn)標(biāo)志碼:A
Geological and Geochemical Characteristics and Forming Environments of Siliceous Rocks in the Bangong Lake Ophiolite Mélange, Tibet
Liu Demin1, Chen Liang2, Zhang Li3, Lu Wanling1, Liu Fei1, Qi Yanya1, Jiang Huai1, Zhao Yue1, Zhang Xiaobo1, Ru Jiangtao1
1. School of Earth Sciences,China University of Geosciences, Wuhan 430074, China
2. Huadong Engineering (Fujian) Corporation Limited, Fuzhou 350000, China
3. Library, China University of Geosciences, Wuhan 430074, China
Abstract:
The ophiolite mélange is an ideal laboratory for studying the process of ocean-continent transition and plate tectonics to intracontinental tectonic transition. In this paper, the petrology and geochemical characteristics of major and rare earth elements of siliceous rocks were studied to judge the origin and forming environment of Bangong Lake ophiolite mélange in Tibet. The siliceous rocks occur as intercalated beds in Shamuluo Formation or fault-fragments in basalt, exhibit cryptocrystalline texture, bioclastic texture and massive structure, and contain abundant Late Jurassic-Early Cretaceous radiolarite. They have a SiO2 content of 73.80% to 90.44%, ?and a high Al2O3 content of 3.67% to 12.33%. The ratios of MnO/TiO2, Fe2O3/SiO2, Fe2O3/TiO2, and Al2O3/(Al2O3+Fe2O3) range from 0.14 to 0.91, 31.44 to 141.88, 1.83 to 11.80, and 0.66 to 0.96, respectively. After standardization of rare earth elements in North American shale, it shows a flat rare earth distribution pattern, with Ce showing a negative anomaly overall and Eu showing a weak positive anomaly overall; δCe values is 0.77 to 2.03, δEu value is 0.99 to 2.11. The values of (La/Yb) N, (La/Ce) N, (La/Lu) N, (La/Sm) N, (Ce/Yb) N, and (Gd/Lu) N are 0.43 to 1.12, 0.51 to 1.27, 0.44 to 1.26, 0.59 to 1.12, 0.41 to 2.01, and 0.82 to 1.16, respectively. After standardization, the rare earth element chondrite shows a right-leaning rare earth distribution pattern, with overall Ce showing weak positive anomalies and overall Eu showing negative anomalies. The authors propose that the formation environment of the siliceous rocks is not a typical continental margin, but rather a certain distance from the continental margin between ocean basin and continental margin. In combination with the results of area studies, the formation environment of the Bangong Lake ophiolite mélange is preliminarily identified as a back arc ocean basin environment, which is the product of the northward subduction of the Bangong Lake-Nujiang Ocean basin in the Late Jurassic.
Key words:
siliceous rocks; geochemistry; forming environment; ophiolitic mélange; Bangong Lake; Tibet
0 引言
班公湖蛇綠混雜巖位于班公湖—怒江板塊縫合帶西段,是該構(gòu)造帶中保存較完整的一套蛇綠混雜巖。班公湖—怒江板塊縫合帶是特提斯構(gòu)造域的重要組成,保存了班公湖—怒江特提斯洋形成演化的物質(zhì)記錄,是研究洋陸轉(zhuǎn)換、板塊構(gòu)造向陸內(nèi)構(gòu)造轉(zhuǎn)換過(guò)程的理想窗口。該板塊縫合帶呈近EW向展布于青藏高原中南部,由東向西斷續(xù)發(fā)育丁青、東巧、改則和班公湖等地蛇綠混雜巖,是拉薩地塊和羌塘地塊的分界線,其構(gòu)造屬性還一直存有爭(zhēng)議[1-3]。有學(xué)者認(rèn)為,班公湖—怒江板塊縫合帶為古特提斯和新特提斯之間的中特提斯,構(gòu)成古、新特提斯的轉(zhuǎn)換構(gòu)造域[4-6];也有學(xué)者認(rèn)為,班公湖—怒江洋盆為新特提斯洋的一部分[7]。
硅質(zhì)巖是一類由生物作用、化學(xué)作用和生物化學(xué)作用及某些火山作用所形成的富含SiO2的巖石;雖然其具有相對(duì)簡(jiǎn)單的礦物組成和單一的結(jié)構(gòu)構(gòu)造,但是其成因卻十分復(fù)雜[8]。作為蛇綠混雜巖的組成部分之一,硅質(zhì)巖的化學(xué)成分不僅可以反映巖石的物質(zhì)組成,而且還能夠反映巖石成因、物質(zhì)來(lái)源和其形成的特殊地球化學(xué)域、古構(gòu)造環(huán)境方面的信息。因而硅質(zhì)巖對(duì)研究混雜帶的形成時(shí)代、環(huán)境及成因,反演古洋盆構(gòu)造屬性有著重要意義[9]。雖然班公湖蛇綠混雜巖帶已開展了大量的研究工作,然而對(duì)于研究區(qū)的硅質(zhì)巖還未進(jìn)行較深入的相關(guān)研究。在區(qū)域地質(zhì)礦產(chǎn)調(diào)查基礎(chǔ)上,本文對(duì)發(fā)育在班公湖蛇綠混雜巖中的硅質(zhì)巖進(jìn)行了巖石學(xué)、微古化石以及主量、稀土元素地球化學(xué)特征研究,并結(jié)合區(qū)域地質(zhì)資料, 確定了硅質(zhì)巖的形成時(shí)代,探討其成因和沉積環(huán)境,為判斷班公湖蛇綠混雜巖的形成環(huán)境提供新的約束條件。
1 地質(zhì)概況
研究區(qū)位于青藏高原中南部的班公湖—怒江板塊縫合帶西段的班公湖地區(qū),北鄰南羌塘[CD1]保山地塊,南接岡底斯地塊、日土—那曲地塊(圖1a),是特提斯構(gòu)造域中發(fā)育典型大洋演化直接產(chǎn)物的代表性地區(qū)。班公湖蛇綠混雜巖分布于西藏阿里地區(qū)日土縣北,總體沿班公湖西南岸呈NWW向帶狀展布。研究區(qū)發(fā)育比較完整的中[CD1]新生代海、陸相沉積地層,班公湖—怒江板塊縫合帶較完整地保存了中特提斯洋形成演化的物質(zhì)記錄,代表性的物質(zhì)有硅質(zhì)巖及其他遠(yuǎn)洋深水沉積物,鎂鐵質(zhì)玄武巖(偶見枕狀構(gòu)造),超鎂鐵質(zhì)純橄巖和斜輝橄欖巖(多發(fā)生蛇紋石化和碳酸鹽化)、堆晶輝長(zhǎng)巖等。區(qū)內(nèi)構(gòu)造線主體呈NWW向,并且多被晚期NE向構(gòu)造改造;燕山期花崗巖體主要分布在研究區(qū)西南和東北,巖性主要為二長(zhǎng)花崗巖、花崗閃長(zhǎng)巖和英云閃長(zhǎng)巖;區(qū)內(nèi)地層主要由上三疊統(tǒng)日干配錯(cuò)群,中—下侏羅統(tǒng)木嘎崗日巖群,上侏羅統(tǒng)多仁組、日當(dāng)組,上侏羅統(tǒng)—下白堊統(tǒng)沙木羅組,上白堊統(tǒng)竟柱山組及古近系牛堡組組成(圖1b)。
2 巖石學(xué)特征
研究區(qū)硅質(zhì)巖主要產(chǎn)于蛇綠混雜巖中,通常呈長(zhǎng)幾十厘米—幾米的透鏡體狀產(chǎn)出,與相鄰地質(zhì)體蛇紋石化橄欖巖、玄武巖呈斷層接觸,而部分硅質(zhì)巖呈夾層狀產(chǎn)出在沙木羅組砂巖、板巖中,圍巖邊部均劈理化嚴(yán)重(圖2、3)。硅質(zhì)巖樣品為灰白色、紫紅色、灰白色,中-薄層狀構(gòu)造,顯微鏡下微粒石英及硅質(zhì)物體積分?jǐn)?shù)為70%~80%,黏土礦物體 積分?jǐn)?shù)較多。其中紫紅色硅質(zhì)巖為致密塊狀構(gòu)造,?硅質(zhì)物質(zhì)體積分?jǐn)?shù)較多(80%~90%),鐵質(zhì)物質(zhì)體積分?jǐn)?shù)為1%~2%;生物碎屑隱晶結(jié)構(gòu)、生物碎屑結(jié)構(gòu),主要由放射蟲殼、硅質(zhì)和黏土組成;放射蟲個(gè)數(shù)占比一般為10%~25%,呈圓形—橢圓形,已重新結(jié)晶成硅質(zhì),直徑為0.10~0.35 mm,主要有晚侏羅世的Sethocapsa sp.,Wrangellium sp.,以及早白堊世的Archaeocenosphaera sp.,Thanarla sp.,Pseudodictyomitra sp.,少量為晚侏羅世—早白堊世Praexitus sp. ,Pseudoeucyrtis ?sp.(圖4)。
3 地球化學(xué)特征
3.1 分析方法
本次共分析硅質(zhì)巖7塊,包括蛇綠巖中3塊青灰色硅質(zhì)巖和3塊紫紅色硅質(zhì)巖以及1塊沙木羅組中夾層硅質(zhì)巖(BG7-1)。地球化學(xué)分析所需的樣品首先在野外進(jìn)行了預(yù)處理,挑選出新鮮的巖石碎塊;然后送至自然資源部武漢礦產(chǎn)資源監(jiān)督檢測(cè)中心,經(jīng)過(guò)粗碎、中碎、細(xì)碎等過(guò)程;最后數(shù)粉礦至200目。主量與稀土元素的測(cè)試分析在國(guó)土資源部武漢礦產(chǎn)資源監(jiān)督檢測(cè)中心完成,其中全巖主量元素采用X射線熒光光譜(XRF)分析,稀土元素采用電感耦合等離子體質(zhì)譜儀(ICP-MS)分析。主量元素分析精度優(yōu)于±3%,稀土元素分析精度優(yōu)于±5%。
3.2 分析結(jié)果
3.2.1 主量元素
硅質(zhì)巖主量元素w(SiO2)為73.80%~90.44%,平均值為80.46%,低于純硅質(zhì)巖的w(SiO2)(91.0%~99.8%)[10];w (Al2O3)為3.67%~12.33%,平均值為7.73%;w (Fe2O3)為0.53%~2.69%,平均值為1.50%;w (CaO)為0.18%~3.01%,平均值為1.11%;w (TiO2)為0.15%~0.57%,平均值為0.34%;SiO2/Al2O3,MnO/TiO2,F(xiàn)e2O3/SiO2,Al2O3/SiO2,F(xiàn)e2O3/TiO2和Al2O3/(Al2O3+Fe2O3)分別為6.10~24.64,0.14~0.91,0.01~0.03,0.04~0.16,1.83~11.80和0.67~0.96(表1)。
3.2.2 稀土元素
研究區(qū)硅質(zhì)巖稀土元素總量不高,為47.96×10-6~92.62×10-6,平均值為63.73×10-6(表2)。稀土元素北美頁(yè)巖標(biāo)準(zhǔn)化后δCe值為0.77~2.03,δEu值為0.99~2.11;(La/Yb)N,(La/Ce)N,(La/Lu)N,(La/Sm)N,(Ce/Yb)N和(Gd/Lu)N值分別為0.43~1.12,0.51~1.27,0.44~1.26,0.59~1.12,0.41~2.01和0.82~1.16;稀土元素球粒隕石標(biāo)準(zhǔn)化后δCe值為0.85~2.20,δEu值為0.68~0.79;(La/Yb)N,(La/Ce)N,(La/Lu)N,(La/Sm)N,(Ce/Yb)N和(Gd/Lu)N值分別為3.19~8.30,0.57~1.45,3.11~8.88,2.13~4.08,2.68~13.12和1.07~1.53。
稀土元素北美頁(yè)巖標(biāo)準(zhǔn)化后表現(xiàn)為平坦型稀土配分模式,除1組樣品Ce為明顯的正異常外,其余均呈負(fù)異常特征,Eu整體呈弱的正異常特征,輕、重稀土元素分異不明顯(圖5a);而稀土元素球粒隕石標(biāo)準(zhǔn)化后表現(xiàn)為右傾型稀土配分模式,Ce整體呈弱正異常特征,Eu整體呈負(fù)異常特征,具輕稀土富集、重稀土虧損的特征(圖5b)。
4 討論
發(fā)育在班公湖—怒江縫合帶西段班公湖地區(qū)的硅質(zhì)巖與該帶中的蛇綠巖有著極為密切的關(guān)系。通過(guò)各種元素組合的比值來(lái)討論形成于特殊地質(zhì)背景的硅質(zhì)巖系中硅質(zhì)巖成因、沉積環(huán)境和時(shí)代,同時(shí),還可以從另一個(gè)側(cè)面論證班公湖—怒江縫合帶形成演化的背景及時(shí)代等。
4.1 硅質(zhì)巖成因
硅質(zhì)巖的主量元素Fe、Mn、Al、Ti是判別硅質(zhì)巖成因的重要標(biāo)志,對(duì)于區(qū)分熱液成因硅質(zhì)巖與生物成因硅質(zhì)巖具有重要意義。Fe、Mn的富集主要與熱液參與的熱水沉積作用有關(guān);而Al、Ti的富集則與陸源物質(zhì)的參與有關(guān)[13];Al/(Al+Fe+Mn)值是衡量沉積物中熱液沉積物體積分?jǐn)?shù)的標(biāo)志,Al/(Al+Fe+Mn)值在0.01~0.60之間代表硅質(zhì)巖由純熱液成因向純生物成因過(guò)渡,因而在Al-Fe-Mn三角圖解中,所有熱液成因的硅質(zhì)巖比值均落于圖解富Fe端,生物成因的硅質(zhì)巖比值均落于圖解富Al端[14-15];海相沉積中Al/(AI+Fe+Mn)值以0.4為界,<0.4為熱液成因,>0.4反映碎屑來(lái)源[16]。
從表1中可以看出,研究區(qū)硅質(zhì)巖Al/(Al+Fe+ Mn)值在0.42~0.66之間,平均值為0.51,接近于純生物成因硅質(zhì)巖的比值(0.60)[14-15]。在Al-Fe-Mn判別圖解(圖6a)中,研究區(qū)樣品點(diǎn)均落入生物成因硅質(zhì)巖區(qū)域;在Fe/Ti-Al/(Al+Fe+Mn)圖解(圖6b)中,研究區(qū)樣品主要落入陸源物質(zhì)端元沉積物與生物物質(zhì)端元沉積物所組成的兩條理想混合線之間。由此可見,研究區(qū)放射蟲硅質(zhì)巖屬生物成因,未受熱液活動(dòng)影響,但有大量陸源泥質(zhì)物質(zhì)輸入。
4.2 硅質(zhì)巖沉積環(huán)境
硅質(zhì)巖的沉積環(huán)境決定了其化學(xué)成分的組成以及結(jié)構(gòu),因此硅質(zhì)巖的地球化學(xué)特征可以很好地判別其沉積環(huán)境[15, 17]。
MnO/TiO2可以作為判斷硅質(zhì)巖來(lái)源及沉積古地理位置的重要標(biāo)志,距離大陸較近的大陸邊緣沉積的硅質(zhì)巖MnO/TiO2值偏低,一般小于0.5,而開闊大洋中的硅質(zhì)沉積物的比值則比較高,為0.5~3.5[14]。表1所列研究區(qū)硅巖MnO/TiO2值為0.14~0.91,平均為0.56,表明班公湖硅質(zhì)巖形成接近于大陸邊緣—洋盆的過(guò)渡環(huán)境,更接近大陸邊緣盆地環(huán)境。Murray[17]研究指出,Mn為硅質(zhì)巖形成過(guò)程中分離出來(lái)的,Mn與A1的比值可以判別熱液或生物成因,卻不能反映沉積物的沉積環(huán)境,建議用Al/(A1+Fe)值來(lái)判斷沉積環(huán)境。表1所列本區(qū)硅巖Al/(Al+Fe)值為0.49~0.73,平均為0.58,更接近于大陸邊緣沉積的硅質(zhì)巖。
硅質(zhì)巖中主量元素Al2O3/(Al2O3+Fe2O3)值是判別硅質(zhì)巖形成環(huán)境,特別是區(qū)分洋中脊和大陸邊緣成因的良好指標(biāo)[18]。Murray[17]利用已知沉積環(huán)境的硅質(zhì)巖化學(xué)成分比值作圖圈定了大陸邊緣、大洋盆地和洋中脊硅質(zhì)巖投影圖。班公湖7個(gè)硅質(zhì)巖樣品的Al2O3/(Al2O3+Fe2O3)比值為0.67~0.96,明顯高于洋中脊硅質(zhì)巖(<0.4)和大洋盆地硅質(zhì)巖(0.4~0.7),與大陸邊緣硅質(zhì)巖(0.5~0.9)的重疊區(qū)相當(dāng)[17]。從100 (Fe2O3/SiO2)-100 (Al2O3/SiO2)判別圖(圖7a)和Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)圖解(圖7b)可以看出,研究區(qū)硅質(zhì)巖除2件樣品外,其余均都落在大陸邊緣范圍。
前人[18-19]研究表明,硅質(zhì)巖在受陸源影響的環(huán)境中(大陸邊緣盆地和殘余盆地)形成時(shí)的稀土元素總量(ΣREE)質(zhì)量分?jǐn)?shù)較高,但在遠(yuǎn)離陸源的遠(yuǎn)洋或深海盆地中則與沉積速率有關(guān),沉積速率越高,硅質(zhì)巖在海水中吸附的稀土元素總量就越少。(La/Yb)N也與形成環(huán)境有關(guān),和稀土元素總量的趨勢(shì)一致。在主要受陸源影響的環(huán)境中,輕稀土富集比較明顯((La/Yb)N=1.49~1.74)。而在遠(yuǎn)洋和深海盆地中,輕稀土元素卻明顯虧損((La/Yb)N為0.7左右)。如果大陸邊緣地區(qū)受陸源、沉積速率、火山熱液等因素的影響,輕稀土虧損程度介于前二者之間。硅質(zhì)巖中的(La/Ce)N與之相反,大陸邊緣的(La/Ce)N值為0.5~1.5,大洋盆地的為1.0~2.5,洋中脊的為3.5。硅質(zhì)巖中的Ce異常受介質(zhì)性質(zhì)、陸源供給、沉積速率影響[15, 17-19]。
對(duì)于研究區(qū)硅質(zhì)巖樣品,經(jīng)北美頁(yè)巖標(biāo)準(zhǔn)化的稀土模式配分圖(圖4a)表現(xiàn)為基本無(wú)Ce異?;蛉魿e異常的平坦譜型圖,而經(jīng)球粒隕石標(biāo)準(zhǔn)化的稀土 模式配分圖(圖4b)則表現(xiàn)為輕稀土富集并有較為?明顯負(fù)Eu異常的右傾譜型圖,其與大陸邊緣環(huán)境形成的硅質(zhì)巖的相關(guān)譜型圖吻合度較高[20]。研究區(qū)硅質(zhì)巖稀土元素總量質(zhì)量分?jǐn)?shù)總體偏低,在(47.96~92.62)×10-6之間,平均值為63.73×10-6,總體反映班公湖地區(qū)晚侏羅世—早白堊世硅質(zhì)巖受陸緣影響,也不是沉積速率低的遠(yuǎn)洋環(huán)境。稀土元素經(jīng)北美頁(yè)巖標(biāo)準(zhǔn)化后,其中3件硅質(zhì)巖的樣品輕、重稀土分異較明顯,(La/Yb)N =0.43~0.69(<0.7);其他4個(gè)樣品(La/Yb)N值為0.72~1.12;而稀土元素經(jīng)球粒隕石標(biāo)準(zhǔn)化后,7個(gè)樣品(La/Yb)N 為3.19~8.30。稀土元素經(jīng)北美頁(yè)巖標(biāo)準(zhǔn)化后,(La/Ce)N =0.51~1.27,稀土元素經(jīng)球粒隕石標(biāo)準(zhǔn)化后,7個(gè)樣品(La/Ce)N 值為0.57~1.45。
上述稀土元素指標(biāo)以及經(jīng)北美頁(yè)巖、球粒隕石標(biāo)準(zhǔn)化后的特征表明,硅質(zhì)巖的形成有陸源物質(zhì)的參與,并與大陸邊緣環(huán)境關(guān)系密切,但并不完全吻合,尚與大陸邊緣環(huán)境存在一定的距離。結(jié)合硅質(zhì)巖中含有大量放射蟲化石,整體指示其可能形成于大洋盆地向大陸邊緣盆地轉(zhuǎn)化的構(gòu)造環(huán)境。
4.3 硅質(zhì)巖形成時(shí)代與洋(盆)演化
由于班公湖地區(qū)特提斯洋(盆)初始擴(kuò)張時(shí)的沉積記錄保存較少,并且由于后期構(gòu)造改造作用強(qiáng)烈,關(guān)于特提斯洋(盆)的演化過(guò)程和特征爭(zhēng)議較大。王希斌等[21]根據(jù)班公湖蛇綠巖熔巖夾層中放射蟲硅質(zhì)巖時(shí)代認(rèn)為班公湖—怒江特提斯洋形成于中侏羅世—晚侏羅世;西藏自治區(qū)地質(zhì)礦產(chǎn)局[22]發(fā)現(xiàn)班公湖—怒江板塊縫合帶西段蛇綠巖中硅質(zhì)巖放射蟲時(shí)代為中、晚侏羅世—早白堊世,部分延至晚白堊世早期;劉文等[23]認(rèn)為班公湖地區(qū)在晚三疊世晚期—早侏羅世早期開始形成于洋中脊相對(duì)擴(kuò)張的構(gòu)造環(huán)境;宋揚(yáng)等[24]認(rèn)為班公湖地區(qū)早白堊世仍具有一定規(guī)模的洋盆,其閉合時(shí)間應(yīng)晚于約109 Ma,而晚白堊世班公湖—怒江洋盆進(jìn)入閉合后的隆升造山階段。邱瑞照等[25]根據(jù)該帶中段改則地區(qū)舍瑪拉溝輝長(zhǎng)巖全巖Sm-Nd法定年認(rèn)為該區(qū)新特提斯洋于早侏羅世開啟;曲曉明等[6]對(duì)班公湖地區(qū)蛇綠混雜巖帶中的輝長(zhǎng)巖鋯石進(jìn)行 U-Pb測(cè)年得到(181.9±2.6)和(184.4±4.4) Ma兩組年齡,認(rèn)為班公湖地區(qū)班公湖—怒江洋打開時(shí)間為早侏羅世晚期,擴(kuò)張到中侏羅世早期((176.2±9.0) Ma)已經(jīng)成為一個(gè)成熟的大洋;史仁燈[26]研究班公湖SSZ型蛇綠巖中的輝長(zhǎng)巖SHRIMP鋯石U-Pb年代為中侏羅世(177~162 Ma),認(rèn)為班公湖—怒江洋在班公湖地區(qū)于中侏羅世開始由擴(kuò)張轉(zhuǎn)化為俯沖消減。鄭有業(yè)等[27]對(duì)獅泉河帶內(nèi)的兩種閃長(zhǎng)巖墻的SHRIMP鋯石U-Pb定年為(165.0±1.7)和(163.35±0.75) Ma,認(rèn)為可能代表獅泉河帶開始由擴(kuò)張轉(zhuǎn)換為俯沖的年齡。張玉修[28]研究拉果錯(cuò)SSZ型蛇綠巖中的斜長(zhǎng)花崗巖鋯石U-Pb協(xié)和年齡為166 Ma,隨后對(duì)改則地區(qū)的島弧類巖石做了詳細(xì)研究,認(rèn)為班公湖—怒江縫合帶向北俯沖的年齡均為157 Ma;曲曉明等[29]通過(guò)研究班公湖地區(qū)火成巖年代學(xué)時(shí)提出,班公湖地區(qū)存在至少包括日土和獅泉河—改則2條蛇綠巖帶,認(rèn)為班公湖特提斯洋應(yīng)該在晚侏羅世(約166 Ma)沿日土俯沖帶向北俯沖,而沿獅泉河—改則向南俯沖發(fā)生在早白堊世(約134 Ma)。以上研究結(jié)果表明,班公湖特提斯洋盆的擴(kuò)張時(shí)期應(yīng)該為早侏羅世,晚侏羅世開始俯沖,俯沖過(guò)程持續(xù)到早白堊世,其遠(yuǎn)程效應(yīng)導(dǎo)致了華北板塊中部構(gòu)造體制的轉(zhuǎn)換[30]。
本次工作有1件硅質(zhì)巖樣品采自混雜帶沙木羅組中,該樣品呈夾層產(chǎn)出。沙木羅組形成時(shí)代為晚侏羅世—早白堊世[31],因此,可以推測(cè)該硅質(zhì)巖也形成于晚侏羅世—早白堊世。另6件硅質(zhì)巖樣品均采自蛇綠混雜巖中,與鎂鐵質(zhì)玄武巖、輝長(zhǎng)巖等相伴產(chǎn)出;前人[32-33]在班公湖蛇綠混雜巖中獲得與硅質(zhì)巖相伴生的玄武巖和輝長(zhǎng)巖U-Pb鋯石同位素年齡分別為163和129 Ma,另本次工作采集的硅質(zhì)巖中放射蟲所確定的時(shí)代為晚侏羅世—早白堊世。上述研究表明,班公湖蛇綠混雜巖中硅質(zhì)巖成巖時(shí)代為晚侏羅世—早白堊世。硅質(zhì)巖沉積一直持續(xù)到早白堊世晚期,指示班公湖地區(qū)在早白堊晚期世還是海(洋)盆,并沒(méi)有完全閉合,蛇綠巖于早白堊世晚期也沒(méi)有完全構(gòu)造就位。結(jié)合對(duì)硅質(zhì)巖形成環(huán)境的分析認(rèn)為其形成于大陸邊緣沉積環(huán)境,可以推測(cè)班公湖地區(qū)特提斯洋于早侏羅世已經(jīng)打開,晚侏羅世早期開始由擴(kuò)張轉(zhuǎn)換為俯沖消減[34],俯沖過(guò)程一直持續(xù)到早白堊世,在早白堊晚期仍處于洋盆環(huán)境。
5 結(jié)論
1)研究區(qū)的硅質(zhì)巖作為班公湖蛇綠混雜巖的重要組成部分,與變質(zhì)橄欖巖、鎂鐵質(zhì)—超鎂鐵質(zhì)巖、鎂鐵質(zhì)玄武巖相伴產(chǎn)出。硅質(zhì)巖呈夾層或透鏡狀斷片產(chǎn)于沙木羅組砂巖或玄武巖中,含有大量晚侏羅世—早白堊世放射蟲化石,硅質(zhì)巖形成于晚侏羅世—早白堊世。
2)班公湖蛇綠混雜巖帶中的硅質(zhì)巖主要為生物成因,其形成受陸源物質(zhì)影響較大,其形成于與大陸邊緣有一定距離的大洋盆地。
致謝:中國(guó)地質(zhì)大學(xué)(武漢)馮慶來(lái)教授對(duì)硅質(zhì)巖中放射蟲化石進(jìn)行了鑒定,中國(guó)地質(zhì)大學(xué)(武漢)阿里區(qū)調(diào)隊(duì)所有野外工作人員對(duì)本次研究給予了大力支持,在此表示衷心感謝!
參考文獻(xiàn)(References) :
[1] ?郭鐵鷹,粱定益,張宜智.西藏阿里地質(zhì)[M]. 武漢: 中國(guó)地質(zhì)大學(xué)出版社,1991.
Guo Tieying, Liang Dingyi, Zhang Yizhi. Ali Geology in Tibet [M]. Wuhan: China University of Geosciences Publishing House,1991.
[2] ?任紀(jì)舜,肖黎薇.1∶25萬(wàn)地質(zhì)填圖進(jìn)一步揭開了青藏高原大地構(gòu)造的神秘面紗[J]. 地質(zhì)通報(bào),2004,23(1): 1-11.
Ren Jishun,Xiao Liwei. The 1∶250000 Geological Mapping Further Unveils the Mysterious Veil of the Tectonic Structure of the Qinghai Tibet Plateau[J]. Geological Bulletin,2004,23(1): 1-11.
[3] ?Chen S S, Shi R D, Zou H B, et al. Late Triassic Island-Arc-Back-Arc Basin Development Along the Bangong-Nujiang Suture Zone(Central Tibet):Geological,Geochemical and Chronological Evidence from Volcanic Rocks[J]. Lithos,2015,230:30-45.
[4] ?黃汲清,陳炳蔚. 中國(guó)及鄰區(qū)特提斯海的演化[M]. 北京: 地質(zhì)出版社,1987.
Huang Jiqing, Chen Bingwei. The Evolution of the Tethys Sea in China and Its Neighboring Regions [M]. Beijing: Geological Publishing House,1987.
[5] ?李德威.青藏高原及鄰區(qū)三階段構(gòu)造演化與成礦演化[J]. 地球科學(xué): 中國(guó)地質(zhì)大學(xué)學(xué)報(bào),2008,33(6): 723-742.
Li Dewei. Three Stage Tectonic Evolution and Mineralization Evolution of the Qinghai Tibet Plateau and Adjacent Areas[J]. Earth Science: Journal of China University of Geosciences,2008,33(6): 723-742.
[6] ?曲曉明,辛洪波,趙元藝,等. 西藏班公湖中特提斯洋盆的打開時(shí)間: 鎂鐵質(zhì)蛇綠巖地球化學(xué)與鋯石U-Pb LA-ICP-MS 定年結(jié)果[J]. 地學(xué)前緣,2010,17(3): 53-63.
Qu Xiaoming, Xin Hongbo, ZhaoYuanyi, et al. Opening Time of Bangong Lake Middle Tethys Oceanic Basin of the Tibet Plateau: Constraints from Petro-Geochemistry and Zircon U-Pb LA-ICP-MS Dating of Mafic Ophiolites[J]. Earth Science Frontiers,2010,17(3): 53-63.
[7] ?史仁燈,楊經(jīng)綏,許志琴,等. 西藏班公湖蛇綠混雜巖中玻安巖系火山巖的發(fā)現(xiàn)及構(gòu)造意義[J]. 科學(xué)通報(bào),2004,49(12): 1179-1184.
Shi Rendeng,Yang Jinsui,Xu Zhiqin,et al. Discovery and Tectonic Significance of the Volcanic Rocks of the Bonite Series in the Ophiolitic Mélange of Bangong Lake, Tibet[J]. Science Bulletin,2004,49(12): 1179-1184.
[8] ?陳慶松,楊潤(rùn)柏,劉德民,等. 滇東北會(huì)澤燈影組硅質(zhì)巖成因及沉積環(huán)境:來(lái)自巖石學(xué)和地球化學(xué)證據(jù)[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2019,49(5):1327-1337.
Chen Qingsong,Yang Runbai,Liu Demin,et al.Petrogenesis and Sedimentary Environment of Cherts of Dengying Formation in Huize County,Northeastern Yunnan: Evidence from Petrology and Geochemistry[J].Journal of Jilin University (Earth Science Edition),2019,49(5): 1327-1337.
[9] ?徐夢(mèng)婧,李才,吳彥旺,等. 西藏果芒錯(cuò)蛇綠混雜巖中硅質(zhì)巖的地球化學(xué)特征及其形成環(huán)境[J]. 地質(zhì)通報(bào),2014,33(7): 1061-1066.
Xu Mengjing, Li Cai, Wu Yanwang, et al. Geochemical Characteristics and Sedimentary Environments of Siliceous Rocks in Guomangco Ophiolitic Mélange of Tibet[J].Geological Bulletin of China,2014,33(7): 1061-1066.
[10] ?Murray R W, Brink M R B T, Gerlach D C, et al. Rare Earth,Major,and Trace Element Composition of Monterey and DSDP Chertand Associated Host Sediment:Assessing the Influence of Chemicalfractionation During Diagenesis[J].Geochimica et Cosmochimica Acta,1992,56(7):2657-2671.
[11] ?Haskin L A,Haskin M A,F(xiàn)rey F A,et al. Relative and Absolute Terrestrial Abundances of the Rare Earths[C]//Ahrens L H. Origin and Distribution of the Elements.Pergamon:Oxford,1968:889-912.
[12] ?Sun S S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42(1):313-345.
[13] ?Duhig N O. Cambrian Microbian and Silica Geltexturesin Silica Iron Exhalites from the Mount Windsor Volcanic Belt Australian: Their Petrography Chemistry and Origin[J]. Economic Geology,1992,87(3): 764-768.
[14] ?Adachi M,Yamamoto K,Sugisaki R. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific, Their Geological Significance as Indication of Ocean Ridge Activity[J]. Sedimentary Geology,1986,47: 125-148.
[15] ?Yamamoto K. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes[J].Sedimentary Geology,1987,52(1/2):65-108.
[16] ?Bostorm K. Genesis of Fenromanganese Deposits Diagnosticcriteria for Recent and Old Deposits[C]//Rona P A. Hydrothermal Processes at Seafloors Spreading Centers. New York:Plenum Press,1983:473-483.
[17] ?Murray R W. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications[J]. Sedimentary Geology,1994,90: 213-232.
[18] ?Murray R W, Buchholtz M R, Gerlach D C, et al. Rare Earth, and Trace Element Composition of Monterey and DSDP Chert and Associated Host Sediment: Assessing the Influence of Chemical Fractionation During Diagenesis[J]. Geochimica et Cosmochimica Acta,1992,56: 2657-2671.
[19] ?Bostrom K, Peterson M N. Origin of Aluminum-Poor Ferromanganoan Sediments in Areas of High Heat Flow on East Paccific Rise[J]. Marine Geology,1969,7(5): 424-447.
[20] ?Armstrolng H A, Owen A W, Floyd J D. Rare Earth Geochemistry of Arening Cherts from the Ballantrae Ophiolited and Leadhills Imbricate Zone, Southern Scotland: Implications for Origin and Significance to the Caledonian Orogeny[J]. Journal of the Geological Society,1999,156(3): 549-560.
[21] ?王希斌,鮑佩聲,鄧萬(wàn)明,等. 喜馬拉雅巖石圈構(gòu)造演化西藏蛇綠巖[M]. 北京: 地質(zhì)出版社,1987.
Wang Xibin, Bao Peisheng, Deng Wanming, et al. Himalayan Lithosphere Tectonic Evolution Tibet Ophiolite [M]. Beijing: Geological Publishing House,1987.
[22] ?西藏自治區(qū)地質(zhì)礦產(chǎn)局.西藏自治區(qū)區(qū)域地質(zhì)志[M]. 北京: 地質(zhì)出版社,1993.
Bureau of Geology and Mineral Resources of Tibet Autonomous Region. Regional Geological Records of Tibet Autonomous Region[M]. Beijing: Geological Publishing House,1993.
[23] ?劉文,尹顯科,吳建亮,等. 班公湖—怒江結(jié)合帶西段沙木羅組底礫巖的新發(fā)現(xiàn)及地質(zhì)意義[J]. 地質(zhì)通報(bào),2019,38(4):484-493.
Liu Wen,Yin Xianke,Wu Jianliang,et al. The Discovery of Qushenla Formation Argillaceous Cherts in the Western Part of the Bangong Co-Nujiang Suture Zone,Tibet and Its Significance[J].Geological Bulletin of China,2019,38(4):484-493.
[24] ?宋揚(yáng),曾慶高,劉海永,等. 班公湖—怒江洋形成演化新視角:兼論西藏中部古[CD1]新特提斯轉(zhuǎn)換[J]. 巖石學(xué)報(bào),2019,35(3): 625-641.
Song Yang,Zeng Qinggao,Liu Haiyong, et al. An Innovative Perspective for the Evolution of Bangong-Nujiang Ocean:Also Discussing the Paleo-and Neo-Tethys Conversion[J].Acta Petrologica Sinica,2019,35(3): 625-641.
[25] ?邱瑞照,周肅,鄧晉福,等.西藏班公湖—怒江西段舍馬拉溝蛇綠巖中輝長(zhǎng)巖年齡測(cè)定:兼論班公湖—怒江蛇綠巖帶形成時(shí)代[J].中國(guó)地質(zhì),2004,31(3):262-268.
Qiu Ruizhao,Zhou Su,Deng Jinfu,et al. Dating of Gabbro in the Shemalagou Ophiolite in the Western Segment of the Bangong Co-Nujinag Ophioloted Belt, Tibet-With a Aiscussion of the Age of the Bangong Co-Nujiang Ophiolite Belt[J]. Geology in China,2004,31(3):262-268.
[26] ?史仁燈.班公湖SSZ型蛇綠巖年齡對(duì)班—怒洋時(shí)限的制約[J]. 科學(xué)通報(bào),2007,52(2): 223-227.
Shi Rendeng. Constraints of the SSZ Type Ophiolite Age in Bangong Lake on the Bangong-Nujiang Oceanic Time Limit[J]. Science Bulletin,2007,52(2): 223-227.
[27] ?鄭有業(yè),許榮科,馬國(guó)桃,等.鋯石 SHRIMP 測(cè)年對(duì)獅泉河蛇綠巖形成和俯沖的時(shí)間約束[J].巖石學(xué)報(bào),2006,22(4): 895-904.
Zheng Youye, Xu Rongke, Ma Guotao, et al. Ages of Generation and Subduction of Shiquan River Ophiolite: Restriction from SHRIMP Zircon Dating[J]. Acta Petrologica Sinica,2006,22(4): 895-904.
[28] ?張玉修.班公湖—怒江縫合帶中西段構(gòu)造演化[D]. 廣州: 中國(guó)科學(xué)院研究生院,2007.
Zhang Yuxiu.Tectonic Evolution of the Central and Western Sections of the Bangong Lake-Nujiang Suture Zone [D]. Guangzhou: Chinese Academy of Sciences Graduate School,2007.
[29] ?曲曉明,王瑞江,辛洪波,等. 西藏西部與班公湖特提斯洋盆俯沖相關(guān)的火成巖年代學(xué)和地球化學(xué)[J]. 地球化學(xué),2009,38(6): 523-535.
Qu Xiaoming,Wang Ruijiang,Xin Hongbo,et al. Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plated Along the Bangong Lake Arc Zone, the Western Tibetan Plateau[J]. Geochemica,2009,38(6): 523-535.
[30] ?衛(wèi)彥升,馮志強(qiáng),閆濤,等. 華北板塊中部中生代構(gòu)造演化:以山西為例[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(4):1127-1152.
Wei Yansheng,F(xiàn)eng Zhiqiang,Yan Tao,et al. Mesozoic Tectonic Evolution of Central North Chia Craton: A Case Study from Shanxi Province[J]. Journal of Jilin Unversity (Eath Science Edition), 2022,52(4): 1127-1152.
[31] ?鄧金火,袁振國(guó),余江,等. 班公湖—怒江結(jié)合帶西段沙木羅組底礫巖的新發(fā)現(xiàn)及地質(zhì)意義[J]. 地質(zhì)論評(píng),2017,63(2): 302-310.
Deng Jinhuo,Yuan Zhenguo,Yu Jiang,et al. New Discovery of the Basal Conglomerate in the Upper Jurassic-Lower Cretaceous Shamuluo Formation in Western Part of Bangong Lake-Nujiang River Suture Zone and Its Geological Significance[J]. Geologica Rview,2017,63(2): 302-310.
[32] ?周濤,陳超,梁桑,等. 西藏班公湖蛇綠混雜巖中火山巖鋯石U-Pb 年代學(xué)及地球化學(xué)特征[J]. 大地構(gòu)造與成礦學(xué),2014,38(1): 157-167.
Zhou Tao, Chen Chao, Liang Sang, et al. Zircon U-Pb Geochronology and Geochemical Characteristics of Volcanic Rocks in the Ophiolite Mélange at the Bangong Lake[J]. Tibet Geotectonica et Metallogenia,2014,38(1): 157-167.
[33] ?梁桑,周濤,李德威,等. 班公湖中特提斯洋向南俯沖的時(shí)限:來(lái)自SSZ型輝長(zhǎng)巖的制約[J]. 大地構(gòu)造與成礦學(xué),2017,41(5): 989-1000.
Liang Sang, Zhou Tao, Li Dewei, et al. Timing of Southward Subduction of Meso-Tethys in Bangong Lake: Constraints from Supra-Subduction Zone (SSZ)-Type Gabbro[J]. Geotectonica et Metallogenia,2017,41(5): 989-1000.
[34] ?彭勃,趙拓飛,李寶龍,等. 西藏拉薩地塊阿翁錯(cuò)北二長(zhǎng)花崗巖成因:鋯石U-Pb 年代學(xué)、巖石地球化學(xué)及Hf同位素制約[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(5): 1594-1609.
Peng Bo, Zhao Tuofei, Li Baolong, et al. Petrogenesis of the Monzonitic Granited from the North Awengcuo of Lhasa Terrane, Tibet:Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotopic Composition[J]. Journal of Jilin Unversity (Eath Science Edition), 2022,52(5): 1594-1609.
收稿日期: 2023-07-06
作者簡(jiǎn)介: ?劉德民(1975—),男,副教授,博士,主要從事構(gòu)造地質(zhì)學(xué)與地?zé)岬刭|(zhì)學(xué)方面的教學(xué)和研究,E-mail:5guc@163.com
基金項(xiàng)目: ?中國(guó)地質(zhì)調(diào)查局項(xiàng)目(1212011121246);中國(guó)電建華東院項(xiàng)目(20233060244);中國(guó)地質(zhì)大學(xué)(武漢)研究生聯(lián)合培養(yǎng)實(shí)踐基地建設(shè)項(xiàng)目(YJC2021506)
Supported by the Project of China Geological Survey (1212011121246),the Hydropower Project of Huadong Institute of China Power Construction (202330602446) and the Project of China University of Geosciences (Wuhan) Graduate Joint Training Practice Base Construction (YJC2021506)
吉林大學(xué)學(xué)報(bào)(地球科學(xué)版)2023年6期