• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst

    2023-03-09 05:45:36BinZHU朱斌QiweiLI李其瑋YananGAO高亞楠YanYAN閆妍YiminZHU朱益民andLiXU徐力
    Plasma Science and Technology 2023年1期
    關(guān)鍵詞:朱斌益民

    Bin ZHU(朱斌),Qiwei LI(李其瑋),Yanan GAO(高亞楠),Yan YAN(閆妍),Yimin ZHU(朱益民),? and Li XU(徐力)

    1 Laboratory of Plasma Catalysis,College of Environmental Sciences and Engineering,Dalian Maritime University,Dalian 116026,People’s Republic of China

    2 Novel Energy Materials and Catalysis Research Center,Shanwei Institute of Technology,Shanwei 516600,People’s Republic of China

    Abstract Efficient sterilization by a plasma photocatalytic system(PPS)requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants.Here,we report that a PPS constructed from a needle array corona discharge and Au/TiO2 plasmonic nanocatalyst could remarkably improve the sterilization of Escherichia coli(E.coli)and alleviate formation of the discharge pollutant O3.At 6 kV,the combination of corona discharge and Au/TiO2 achieves sterilization efficiency of 100% within an exposure time of 5 min.At 5 kV and an exposure time of 8 min,the presence of Au/TiO2 improves sterilization efficiency of the corona discharge from 73% to 91% and reduces the O3 concentration from 0.38 to 0.04 ppm,whereas the presence of TiO2 reduces the sterilization efficiency and O3 concentration to 66% and 0.17 ppm,respectively.The Au/TiO2 in the PPS enables a uniform corona discharge,enhances the interaction between plasma, E.coli and nanocatalysts,and suppresses the formation of O3.Further,the Au/TiO2 can be excited by ultraviolet–visible light emitted from the plasma to generate electron–hole pairs,and thus contributes to the formation of reactive radicals and the oxidative inactivation of E.coli.The PPS constructed from a needle array corona discharge and Au-based plasmonic nanocatalyst provides a promising approach for developing high-efficiency sterilization techniques.

    Keywords:plasma photocatalysis,sterilization,corona discharge,Au/TiO2 nanocatalyst,synergetic effect

    1.Introduction

    Nowadays,efficient sterilization techniques are widely required for surface sterilization and air purification[1,2].Conventional sterilization methods(mainly autoclave and chemical disinfectants)commonly suffer from limitations of high temperature and toxicity,and the need for novel approaches is urgent.Consequently,various sterilization techniques(ozone,radiation,plasma,etc)have been studied by researchers[3–5].Among these techniques,cold plasma is one of the most promising approaches for overcoming the sterilization challenge[6,7].Compared with the conventional sterilization methods,cold plasma possesses features of fast response and high reactivity at low temperature(even at room temperature),enabling rapid and efficient sterilization processes without elevated temperatures.

    To date,plasma sterilization has been extensively investigated in the fields of environment and biomedicine,including air and water sterilization[8,9],microbial inactivation[10]and living tissue treatment[11].To achieve highefficiency plasma sterilization,the performances of different plasmas(low-pressure plasmas and atmospheric-pressure plasmas)have been measured,and the mechanisms for plasma sterilization deeply explored[12,13].During the past 50 years,many low-pressure plasma sterilization systems,such as capacitively coupled plasma,inductively coupled plasma and microwave plasma,have been investigated by various groups,and some commercial plasma sterilization setups have been successfully developed[6].More recently,atmospheric-pressure plasmas have drawn increasing attention for sterilization because they can perform at low input power without the need for complex vacuum systems,and possess much wider application fields than low-pressure plasmas[14,15].It has been reported that the inactivation effect of plasma on microorganisms mainly originates from the two aspects:(1)ultraviolet(UV)irradiation from plasma destructs deoxyribonucleic acid and ribonucleic acid of microorganisms;(2)UV irradiation,energetic particles and reactive radicals(such as O and OH)in plasma directly erode microorganisms.Given these sterilization mechanisms,great efforts have been devoted to improve sterilization efficiency by designing and constructing atmospheric-pressure plasma systems[16–18].Nevertheless,plasma sterilization still encounters the challenge of relatively low sterilization efficiency.Furthermore,for plasma sterilization operating in air,the formation of discharge byproducts(such as O3and NOx)is inevitable,which tends to cause secondary pollution during the sterilization process.

    Plasma photocatalysis,which features anin situcombination of discharge and photocatalysis,provides a solution to the challenges of plasma sterilization.A plasma photocatalytic system(PPS)has been intensively investigated for the removal of low-concentration volatile organic compounds(VOCs)from indoor air[19–21].Compared with plasma alone,a PPS can improve sterilization because of the synergistic effect between plasma and photocatalysts.The photocatalysts located in the plasma region act as the reaction sites of surface catalytic reactions,which facilitate the formation of highly reactive species[22,23].The light emitted from the discharge directly contributes to the inactivation of microorganisms.The light can also excite photocatalysts to generate plenty of electron–hole pairs,which benefits the formation of reactive species over the photocatalyst surface and thus boosts sterilization.Further,the presence of photocatalysts in the plasma offers a number of catalytic sites for O3decomposition[24,25].This not only provides plenty of reactive oxygen species for the sterilization,but also suppresses the generation of secondary pollutants.Hence,the problems encountered by plasma sterilization probably are tackled by the PPS.To our knowledge,few works on sterilization in a PPS have been reported.

    In this work,we constructed a PPS by integrating a needle array corona discharge with a highly active Au/TiO2plasmonic nanocatalyst[26–28],and employed the PPS in the sterilization of the typical microorganismE.coli(ATCC 25922).It was demonstrated that the PPS can improve sterilization efficiency and suppress the generation of secondary pollutants relative to the corona discharge.To unravel the enhanced mechanism,optical and electrical diagnoses of the PPS as well as nanocatalyst characterization were performed.

    2.Experiment

    2.1.Plasma reactor

    Figure 1 shows schematic diagrams of the plasma reactor configuration.Briefly,five stainless-steel hollow needles(outer diameter 3 mm,thickness 0.3 mm)fixed on a stainless-steel plate(diameter 37 mm,thickness 0.5 mm)were used as the high-voltage electrodes.Five needles obeyed the following distribution:one needle was located at the center of the plate;the other four needles were distributed around the center needle with a distance from it of 8 mm;the surrounding needles kept the same distance from their neighboring needles.A circular stainless-steel mesh(diameter 30 mm,thickness 0.5 mm)with a hole diameter of 1.4 mm was used as the ground electrode.The high-voltage electrode and ground electrodes were placed into a quartz cylinder(inner diameter 50 mm,thickness 5 mm,height 20 mm)to make the plasma reactor,and the top and bottom of the quartz cylinder were both sealed with a polymethyl methacrylate(PMMA)plate.The distance from the needles of the tip to the mesh(dNM)was changeable(5–12 mm).For the sterilization,E.coliwere coated onto a Petri dish,and the mesh electrode was placed over the Petri dish with 1 mm gap from the mesh surface to theE.coli.The gas was first introduced into the reactor from the upper PMMA plate,then it flowed through the five hollow needles into the discharge region.The plasma can effectively treatE.coliduring the sterilization process due to the small distance between the mesh electrode and theE.coli.

    Figure 1.Schematic diagram of the plasma reactor configuration.

    Figure 2.Schematic diagram of the experimental setup.

    A schematic diagram of the experimental setup is shown in figure 2.The plasma reactor was supplied with a negative(?50 to 0 kV)DC power supply(TRC2025,Dalian Teslaman,China).A micro-ampere meter(C65,Harbin Sadade Electric Technology,China)was connected into the circuit to measure the discharge current,and the voltage was recorded by an oscilloscope(DS2302A,Rigol)equipped with a highvoltage probe(P6015,Tektronix).The discharge photographs were taken by a digital camera(Canon 6D)with an exposure time of 15 s,and the emission spectra were acquired by a spectrometer(Acton SP 2500i,Acton,USA).The camera and spectrometer were all located in a direction perpendicular to the needles.A mass flow controller(MFC D08-4F,Sevenstar Electronics Co.,Ltd,China)was used to control the flow rate of gas introduced into the plasma reactor.Simulated air(20%O2,balance N2)of 100 ml min?1was injected into the plasma reactor through the hollow needles and flowed through the stainless-steel mesh electrode during the discharge(see figure 1).All discharge experiments were performed at atmospheric pressure and a temperature of 27 °C.

    2.2.Nanocatalysts preparation and characterization

    In this work,the Au/TiO2plasmonic nanocatalyst was prepared with a modified impregnation method using TiO2nanocatalyst(Degussa P25,powder)as the support[29].Briefly,an aqueous solution of HAuCl4(2.43×10?2mol l?1)was first impregnated into the TiO2support with a nominal Au loading of 1 wt%.Then,the impregnated sample was aged for 12 h,and washed with the deionized water and aqueous ammonia solution(pH 8)sequentially.Finally,the sample was dried at 80 °C for 6 h to obtain the as-prepared Au/TiO2.To construct the PPS,the nanocatalysts were integrated with the stainless-steel mesh via a dip-coating method[29].First,18 mg of nanocatalyst powder was added to 1 ml of deionized water and sonicated for 20 min.Then the slurry was coated on the mesh,and dried at 150°C for 1 h to obtain the coating.The weight of the coating was 13±2 mg.The PPS integrated with the Au/TiO2is denoted as PPS(Au/TiO2).For comparison,we also constructed a PPS(TiO2)from a combination of TiO2and a needle array corona discharge.

    X-ray photoelectron spectroscopy(XPS;ESCALAB250,Thermo VG,USA)with a monochromatized Al Kα(1486.6 eV)x-ray source operating at 15 kV was applied to measure the surface chemical states of the nanocatalysts.The measurements were performed in the analytical chamber at 10?8Pa after evacuating the samples in the fore-chamber of the XPS spectrometer.The peak of C 1s(284.6 eV)was used to calibrate the binding energies.

    Optical properties of the nanocatalysts were analyzed by ultraviolet–visible diffuse reflectance spectra(UV–vis DRS)using a spectrometer(UV-2600,Shimadzu)in the wavelength range of 200–800 nm.Barium sulfate was used as a background reference.Photoluminescence(PL)spectra were obtained with a spectrophotometer(F-7000,Hitachi,Japan)with a 150 W xenon lamp light source and monochromatic light excitation at 300 nm.

    Scanning electron microscopy(SEM)was performed to obtain the morphology of theE.coli.Before the measurement,theE.colisuspension was first transferred onto a square silicon slice(5 mm×5 mm×0.6 mm)and dried at 37°C for 1 h.Then,the silicon slice was exposed to plasma under different discharge conditions.After exposure,the silicon slice was placed into a phosphate buffer solution of glutaraldehyde for 24 h to immobilize theE.coli.Subsequently,the silicon slice was washed by phosphate buffer saline solution(0.03 mol l?1)and alcohol solution to obtain the desired sample.Finally,the slice was coated with an ultra-thin layer of platinum by ion sputtering and observed with an electron microscope(S-800,Hitachi)and a JSM-7800F field emission SEM operating at 5 kV.

    2.3.Sterilization evaluation

    As illustrated in figure 1,E.colisterilization was performed by locating the mesh electrode over Luria–Bertani(LB)medium in a culture dish.To ensure the intimate interaction of plasma,E.coliand nanocatalysts,the air was introduced into the PPS through the hollow needles.Before the sterilization,E.colisuspension was coated on the surface of the LB medium.Subsequently,E.coliwere sterilized by the plasma.Finally,the sterilizedE.coliwere incubated at 30°C for 24 h with the purpose of evaluating their survival rate.The sterilization efficiency(η)of the PPS was evaluated by counting the colony-forming units(CFUs)(equation(1))

    where CFUexposeddenotes the number of CFUs for bacteria exposed to the plasma,whereas CFUcontrolis the number of CFUs of unexposed bacteria.

    The concentration of O3during the sterilization was also monitored with an O3analyzer(Mini-Hicon,USA)at the outlet of the plasma reactor(see figure 2).

    3.Results and discussion

    3.1.Discharge characteristics

    Figure 3(a)showsI–Vcharacteristic curves of the PPS(Au/TiO2)at variousdNMvalues.It can be seen that the discharge current increases with increasing voltage at differentdNM,and an increase indNMleads to an increase in the discharge current at the same voltage.At the same voltage,the corona discharge with smalldNMfacilitates the achievement of a high discharge current.However,a smalldNMis prone to generate an unstable spark discharge at high discharge voltages.Therefore,we chose a moderatedNMof 8 mm for the sterilization in this work.In figure 3(b),theI–Vcharacteristic curves between the corona discharge and PPS are compared.Moreover,typical discharge photographs for the PPS(Au/TiO2)are illustrated in insets of figure 3(b).The nanocatalysts present in the PPS show an obvious influence on the corona discharge.Compared with the pure corona discharge,the discharge current of the PPS(TiO2)is decreased because the TiO2(semiconductor material)over the mesh electrode suppresses the conduction of discharge current between the needles and the mesh electrode.In contrast,the PPS(Au/TiO2)exhibits a higher discharge current than the pure corona discharge.This is because highly dispersed metallic Au nanoparticles on the TiO2surface facilitate an expansion of plasma over the mesh electrode,leading to an increase in the discharge current at the same discharge voltage.For the PPS(Au/TiO2),the expansion of plasma over the mesh electrode is reflected by the discharge photographs(insets of figure 3(b)).A faint light is observed around the needle tips at a low voltage of 4.1 kV,and the discharge region spreads to the mesh electrode with increasing voltage to 4.8 kV.With further rising voltage to 5.7 kV,the discharge region becomes much brighter,and an obvious expansion of plasma over the mesh electrode can be observed(see inset of figure 3(b)).The discharge characteristic of the PPS(Au/TiO2)could enhance the interaction between plasma,E.coliand Au/TiO2,which would benefit sterilization.Figure 3(c)shows the typical emission spectra of the PPS(Au/TiO2).Emission lines of N2in the UV–vis region are clearly observed,indicating that the corona discharge can directly inactivate theE.coliby UV light.Furthermore,UV–vis light emitted from the plasma would excite the plasmonic nanocatalysts to generate electron–hole pairs,which contribute to the formation of reactive radicals and thus the oxidative inactivation ofE.coli.The gas temperature of the discharge is evaluated via SPECAIR fitting[30,31].In figure 3(d),SPECAIR fitting of the measured N2(C3Пu→B3Пg)spectrum for the PPS(Au/TiO2)is illustrated.The rotational temperature of the PPS(Au/TiO2)is about 310 K at a discharge voltage of 5.9 kV.This suggests that the sterilization effect of the PPS(Au/TiO2)onE.colioriginates from energetic electrons,reactive radicals and light radiation rather than the high temperature.

    Figure 3.(a)I–V characteristics of the PPS(Au/TiO2).(b)I–V characteristics of different corona discharge systems at the same dNM of 8 mm.(c)Emission spectra of the PPS(Au/TiO2).(d)SPECAIR fitting of the measured N2 C3Пu →B3Пg spectrum for the PPS(Au/TiO2)at voltage of 5.9 kV.Insets of(b)are discharge photographs for the PPS(Au/TiO2)at a dNM of 8 mm.

    Figure 4.XPS spectra of Au 4f and O 1s for fresh nanocatalysts before and after the sterilization process.

    Figure 5.UV–vis DRS(a)and PL spectra(b)for the nanocatalysts before and after the sterilization process.The insets in(a)are photographs of the mesh electrodes coated by fresh and used nanocatalysts.The used samples were taken from the PPS after 8 min continuous sterilization.

    3.2.Surface and optical properties of the nanocatalysts

    Table 1.XPS analysis of Au 4f and O 1s based on figure 4.

    To understand the influence of the surface chemical state of the nanocatalysts onE.colisterilization,XPS measurement were performed for the nanocatalysts before and after the sterilization.In figure 4,the Au 4f and O 1s binding energies are deconvoluted,and the contents of metallic Au(Au0)and surface oxygen(OS)are summarized in table 1.The Au/TiO2possesses a high content of Au0(>60 at.%)before and after the sterilization process.This facilitates the expansion of plasma over the mesh electrode[32]and thus the interaction between plasma and Au/TiO2during the discharge.Furthermore,the presence of Au nanoparticles would create numbers of Au|TiO2interfaces to generate highly active oxygen species,thus promoting the oxidative inactivation processes.After the sterilization,the binding energy of Au 4f in the used Au/TiO2exhibits a slight blue shift(see figure 4)because of the formation of oxygen species at Au|TiO2interfaces.Figure 4 also shows that the O 1s spectra for the nanocatalysts are deconvoluted into OSand lattice oxygen(OL).According to table 1,for fresh samples,the introduction of Au nanoparticles onto the TiO2surface makes OScontent increase from 13 at.% to 21 at.%,indicating the favorable formation of OSspecies at Au|TiO2interfaces.This suggests that the PPS(Au/TiO2)would exhibit great advantages over the PPS(TiO2)in the oxidative inactivation ofE.coli.It is worth noting that the samples used possess higher OScontent than the fresh samples,which is probably due to the adsorption of OSon the nanocatalyst surface during the discharge.

    We further measured UV–vis DRS and PL spectra of the nanocatalysts with the purpose of evaluating their response to light emitted from the discharge.Due to the existence of TiO2,strong absorption bands for UV light(wavelength<400 nm)can be observed for all the nanocatalysts(see figure 5(a)).Further,metallic Au nanoparticles in the Au/TiO2can exhibit localized surface plasmon resonance(LSPR)under visible light irradiation[33,34],making an obvious absorption band for the Au/TiO2appear at about 565 nm.This absorption is also evidenced by the extinction features of the nanocatalysts.According to the insets in figure 5(a),the mesh electrodes coated with TiO2and Au/TiO2present as pale white and dark purple coatings,respectively.Figure 5(a)also illustrates that the used Au/TiO2still strongly absorbs visible light,indicating good stability during the sterilization.Actually,the performance of nanocatalysts in photocatalysis is not only related to the generation of electron–hole pairs but also depends on the lifetime of the electron–hole pairs[35].PL spectra of the nanocatalysts show that the electron–hole pairs formed on Au/TiO2possess a much longer lifetime than those of TiO2(see figure 5(b)),since an intense PL peak corresponds to a short electron–hole pair lifetime.Here,the migration of the electrons to Au nanoparticles contributes to the prolonged lifetime of the electron–hole pairs on Au/TiO2[36],which suggests that Au/TiO2can more efficiently drive the oxidative inactivation processes.

    Figure 6.Sterilization efficiency(η)of the PPS(Au/TiO2)as a function of exposure time at different discharge voltages(a)and comparison of corona discharge,PPS(TiO2)and PPS(Au/TiO2)(b)at a voltage of 5 kV and exposure time of 8 min.The insets in(b)are photographs of the unexposed E.coli and the E.coli exposed to corona discharge and PPS.

    3.3.Sterilization evaluation

    Figure 6 shows the sterilization performances of the corona discharge,PPS and Au/TiO2.From figure 6(a),it can be seen that the increase of both discharge voltage and exposure time have positive roles in promoting η of the PPS(Au/TiO2).This is because the increase in voltage and exposure time would enhance the interaction of plasma,E.coliand Au/TiO2.TheE.colican be totally inactivated in the PPS(Au/TiO2)within 5 min at a voltage of 6 kV.However,after 8 min continuous sterilization,the PPS(Au/TiO2)can only obtain an η of 91% and 49% at voltages of 5 kV and 4 kV,respectively.It is noted that total inactivation ofE.colican be achieved by prolonging the exposure time even at relatively low discharge voltages.The PPS(Au/TiO2)can totally sterilize theE.coliwithin 15 min and 30 min at 5 kV and 4 kV,respectively.This suggests that the sterilization efficiency of the PPS(Au/TiO2)could be effectively improved by changing the process conditions(e.g.exposure time,discharge voltage).To demonstrate the synergistic effect between the corona discharge and Au/TiO2,figure 6(a)also shows η of the corona discharge and Au/TiO2.At 6 kV,η for the pure corona discharge increases from 22% to 90% with increasing exposure time from 1 min to 8 min.The Au/TiO2cannot sterilize theE.coliwithout the presence of a discharge.Apparently,the PPS(Au/TiO2)exhibits much better performance than the sum of corona discharge and Au/TiO2,indicating a synergy between the corona discharge and Au/TiO2.To confirm the advantage of the PPS(Au/TiO2)in the sterilization,the performances of corona discharge,PPS(TiO2)and PPS(Au/TiO2)at 5 kV and an exposure time of 8 min are compared in figure 6(b).Under the same conditions,pure discharge,the PPS(TiO2),and PPS(Au/TiO2)show distinct performance in the sterilization.Compared with the unexposedE.coli(insets of figure 6(b)),the corona discharge obtains an η of 73%,while the PPS(Au/TiO2)increases η to 91%.Nevertheless,the PPS(TiO2)only achieves an η of 66%.This implies that the performance of the PPS in the sterilization greatly depends on the nanocatalysts.Figure 6(b)also compares the concentration of O3for different discharge systems in the sterilization process.The corona discharge can generate 0.38 ppm O3,whereas O3concentrations for the PPS(TiO2)and PPS(Au/TiO2)are 0.17 ppm and 0.04 ppm,respectively.This suggests that the presence of nanocatalysts(especially Au/TiO2)in the discharge system could effectively suppress the formation of the secondary pollutant O3.In addition,NOxwas not detected during the sterilization,which might be attributed to the relatively weak discharge intensity of the corona.

    Figure 7.SEM photographs of E.coli:unexposed control(a)and exposed to corona discharge at 6 kV for 2 min(b),4 min(c)and 6 min(d).

    Figure 8.Schematic diagram of the sterilization occurring in the PPS(Au/TiO2).

    3.4.Enhancement of the sterilization mechanism in the PPS(Au/TiO2)

    The application of plasma in the sterilization ofE.colihas been intensively investigated by researchers[37–39].It has mostly been accepted that large numbers of energetic electrons and reactive radicals in the plasma can directly damage and inactivate theE.coli[7].Moreover,the UV light emitted from the discharge would irradiate the surface of theE.coli,which contributes to the sterilization[7,39].The PPS also possesses the above two sterilization routes.As shown in figure 7,at the same discharge voltage,the influence of the PPS(Au/TiO2)on the morphology ofE.coligradually becomes obvious as the exposure time is increased.The energetic electrons and reactive radicals as well as the UV light irradiation cannot effectively damageE.coliwithin a short exposure time(<4 min),and thus the morphology of theE.colishows no obvious change after the sterilization(see figure 7).When the exposure time is increased to 4 min,damage to theE.colican be observed,and ruptures,holes and deformations appear in the SEM photographs.Notably,with increasing the exposure time to 6 min,the interaction between plasma andE.colican be enhanced,and thus the ruptures,holes and deformations can be more clearly observed in figure 7.

    This study demonstrates that the PPS(Au/TiO2)achieves an improved sterilization performance compared with the pure corona discharge,and the enhancement mechanism mainly originates from the interaction between corona discharge and Au/TiO2.A schematic diagram of the sterilization ofE.coliis illustrated in figure 8.From figure 8,it can be seen that the positive effect of the PPS(Au/TiO2)onE.colisterilization lies in the following aspects.First,Au/TiO2in the plasma modulates the discharge characteristics,which facilitates the generation of energetic electrons and radicals[32,40].The Au nanoparticles on the Au/TiO2surface extend the plasma region over the mesh electrode and increase the discharge current(see figure 2(b)).This endows the PPS(Au/TiO2)with a much higher density of energetic electrons and radicals,benefiting the interaction between electrons,radicals andE.coli(see figure 8).In contrast,without the presence of Au nanoparticles,TiO2over the electrode suppresses the increase in the discharge current and the generation of electrons and radicals,and thus leads to reduced sterilization efficiency.Second,the Au/TiO2could absorb UV–vis light emitted from the discharge to allow electron–hole recombination(see figure 5).However,the corona discharge and PPS(TiO2)can only utilize UV light.This suggests that the PPS(Au/TiO2)more efficiently drives the generation of radicals and boosts the oxidative inactivation ofE.coli.Third,the presence of nanocatalysts in plasma can modulate the distribution of products,accelerating the decomposition of undesired O3(see figure 5(b)).In particular,the Au/TiO2creates larger numbers of active Au/TiO2interfaces for O3decomposition[32],which not only provides numerous highly reactive oxygen species for the oxidation inactivation ofE.colibut also suppresses the formation of the secondary pollutant O3.

    4.Conclusion

    A PPS(Au/TiO2)was constructed via the integration of a needle array corona discharge and Au/TiO2plasmonic nanocatalyst with the purpose of promoting sterilization efficiency.The strong synergistic effect between the corona discharge and Au/TiO2enables improved sterilization efficiency as well as a reduced O3concentration compared with the corona discharge and the PPS(TiO2).At 5 kV and an exposure time of 8 min,the presence of Au/TiO2improves the sterilization efficiency of the corona discharge from 73% to 91%,while reducing the O3concentration from 0.38 to 0.04 ppm.The presence of Au/TiO2makes the corona discharge extend over the mesh electrode,and thus enhances the interaction between plasma,E.coliand Au/TiO2.The LSPR effect of Au nanoparticles makes Au/TiO2respond to light within the UV–vis region,enabling the utilization of light emitted from the discharge and thus the efficient formation of reactive radicals via photocatalytic reactions.Further,the Au|TiO2interfaces of the Au/TiO2provide active catalytic sites for the generation of oxidative species and the decomposition of O3during the discharge.Thus,the oxidative inactivation ofE.coliis enhanced and the formation of O3is suppressed in the PPS(Au/TiO2).The improved performance of PPS(Au/TiO2)in the sterilization provides a promising strategy for developing a high-efficiency sterilization technique.

    Acknowledgments

    We gratefully acknowledge financial support from National Natural Science Foundation of China(Nos.52041001,21808024),Natural Science Foundation of Liaoning Province(No.2020-MS-126)and Special Foundation for Key Fields of Colleges and Universities in Guangdong Province(No.2021ZDZX4094).

    猜你喜歡
    朱斌益民
    憋住的屁到哪去了
    “愚公移山”新篇
    “斗雞眼”
    “愚公移山”新篇
    抓人眼球
    呆頭農(nóng)場
    看不見你的臉
    北風吹
    露珠
    勞動節(jié)
    最好的美女福利视频网| 欧美xxxx黑人xx丫x性爽| 久久久色成人| 久久久久久久亚洲中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 99热精品在线国产| 熟妇人妻久久中文字幕3abv| 最好的美女福利视频网| or卡值多少钱| 夜夜夜夜夜久久久久| 亚洲欧美日韩高清在线视频| 亚洲国产精品合色在线| 欧美bdsm另类| 久久久久久国产a免费观看| 久久午夜亚洲精品久久| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文日韩欧美视频| 一级黄色大片毛片| 成年版毛片免费区| 午夜福利在线观看免费完整高清在 | 成人综合一区亚洲| 欧美区成人在线视频| 亚洲真实伦在线观看| 日日撸夜夜添| av视频在线观看入口| av女优亚洲男人天堂| 又爽又黄无遮挡网站| 观看免费一级毛片| 又黄又爽又免费观看的视频| 97碰自拍视频| 国产精品国产三级国产av玫瑰| 岛国在线免费视频观看| 午夜免费激情av| 亚洲一区高清亚洲精品| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 成人国产麻豆网| 成人特级av手机在线观看| videossex国产| 亚洲一区高清亚洲精品| 91在线观看av| 精品人妻偷拍中文字幕| 亚洲18禁久久av| 亚洲欧美日韩卡通动漫| 又爽又黄无遮挡网站| 成人一区二区视频在线观看| 色哟哟哟哟哟哟| 色噜噜av男人的天堂激情| 色哟哟·www| 18禁在线无遮挡免费观看视频 | 成人特级黄色片久久久久久久| 亚洲美女黄片视频| 亚洲自偷自拍三级| av在线播放精品| 精品人妻熟女av久视频| 欧美一级a爱片免费观看看| 免费看光身美女| 寂寞人妻少妇视频99o| 在线观看一区二区三区| 成人国产麻豆网| 欧美+亚洲+日韩+国产| 欧美绝顶高潮抽搐喷水| 国产精品人妻久久久久久| 校园春色视频在线观看| 97超级碰碰碰精品色视频在线观看| 在现免费观看毛片| 男插女下体视频免费在线播放| av在线播放精品| 日本精品一区二区三区蜜桃| 午夜福利在线在线| 国产成人freesex在线 | 久久久精品大字幕| 午夜激情福利司机影院| а√天堂www在线а√下载| 91麻豆精品激情在线观看国产| 夜夜看夜夜爽夜夜摸| 又黄又爽又刺激的免费视频.| 国产真实乱freesex| 国产精品女同一区二区软件| 日韩精品有码人妻一区| 看免费成人av毛片| 一个人看的www免费观看视频| 亚洲人成网站在线观看播放| 免费不卡的大黄色大毛片视频在线观看 | 午夜精品国产一区二区电影 | 狂野欧美白嫩少妇大欣赏| 国产成人91sexporn| 国产亚洲精品久久久久久毛片| 91狼人影院| 亚洲天堂国产精品一区在线| 97超级碰碰碰精品色视频在线观看| 淫秽高清视频在线观看| 国内揄拍国产精品人妻在线| 不卡一级毛片| 婷婷亚洲欧美| 亚洲av中文字字幕乱码综合| 欧美3d第一页| 国产精品久久视频播放| 国产精品一区二区三区四区久久| 两个人的视频大全免费| 久久精品国产亚洲av涩爱 | 高清午夜精品一区二区三区 | 91在线精品国自产拍蜜月| 一区二区三区免费毛片| 亚洲最大成人手机在线| 国产精品嫩草影院av在线观看| 亚洲成人久久爱视频| 性欧美人与动物交配| 老师上课跳d突然被开到最大视频| 美女被艹到高潮喷水动态| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av涩爱 | 成人二区视频| 国产色婷婷99| 欧美激情久久久久久爽电影| 男女啪啪激烈高潮av片| 久久久久久伊人网av| 国产精品女同一区二区软件| 亚洲四区av| 中文字幕精品亚洲无线码一区| 99热这里只有是精品在线观看| 久久精品国产99精品国产亚洲性色| 欧美高清性xxxxhd video| 天堂影院成人在线观看| 观看免费一级毛片| 赤兔流量卡办理| 伦精品一区二区三区| 看十八女毛片水多多多| 国产高潮美女av| 国产成人91sexporn| 18禁在线播放成人免费| 日本黄色片子视频| 精品久久久久久久人妻蜜臀av| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 狂野欧美激情性xxxx在线观看| 亚洲欧美清纯卡通| 日韩大尺度精品在线看网址| 欧美一区二区精品小视频在线| 在线免费观看的www视频| 在线观看午夜福利视频| 真实男女啪啪啪动态图| 三级国产精品欧美在线观看| 床上黄色一级片| 麻豆国产av国片精品| 久久人妻av系列| 黄色一级大片看看| 久久久久久伊人网av| 97热精品久久久久久| 中文字幕免费在线视频6| 亚洲最大成人中文| 最新中文字幕久久久久| 99久久无色码亚洲精品果冻| 老女人水多毛片| 白带黄色成豆腐渣| 日韩中字成人| 卡戴珊不雅视频在线播放| 99热这里只有是精品在线观看| 青春草视频在线免费观看| 欧美三级亚洲精品| 丰满人妻一区二区三区视频av| 69av精品久久久久久| 久久精品国产亚洲网站| 日本一二三区视频观看| 亚洲性夜色夜夜综合| 少妇丰满av| 国内揄拍国产精品人妻在线| avwww免费| 国产精品一及| 亚洲国产欧美人成| 超碰av人人做人人爽久久| 国产精品一区二区三区四区久久| 99久久中文字幕三级久久日本| 97人妻精品一区二区三区麻豆| 国产精品福利在线免费观看| 免费在线观看影片大全网站| 亚洲精品一卡2卡三卡4卡5卡| 狠狠狠狠99中文字幕| 国产欧美日韩精品亚洲av| 亚洲欧美成人综合另类久久久 | 国产精品伦人一区二区| 亚洲成a人片在线一区二区| 成人av在线播放网站| 在现免费观看毛片| 亚洲五月天丁香| 嫩草影院入口| 丝袜美腿在线中文| 成人性生交大片免费视频hd| 成熟少妇高潮喷水视频| 国产精品一区二区免费欧美| 亚洲性久久影院| 老熟妇仑乱视频hdxx| 久久中文看片网| av在线天堂中文字幕| 久久综合国产亚洲精品| 深爱激情五月婷婷| 亚洲精品久久国产高清桃花| 乱系列少妇在线播放| 国产v大片淫在线免费观看| 国产欧美日韩精品一区二区| 亚洲av五月六月丁香网| 一进一出抽搐gif免费好疼| 色噜噜av男人的天堂激情| 亚洲精品粉嫩美女一区| 少妇裸体淫交视频免费看高清| 日本欧美国产在线视频| 色视频www国产| 精品久久久噜噜| 可以在线观看毛片的网站| 国产亚洲精品av在线| av福利片在线观看| 人妻夜夜爽99麻豆av| 美女免费视频网站| 哪里可以看免费的av片| 精品欧美国产一区二区三| 亚洲av电影不卡..在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区免费欧美| 日韩成人伦理影院| 99视频精品全部免费 在线| 久久人人精品亚洲av| 在线免费观看的www视频| 天美传媒精品一区二区| 日韩亚洲欧美综合| 特大巨黑吊av在线直播| 日韩一区二区视频免费看| 又黄又爽又免费观看的视频| 悠悠久久av| 日韩中字成人| 亚洲精品粉嫩美女一区| 午夜精品在线福利| 男人狂女人下面高潮的视频| 乱码一卡2卡4卡精品| 日韩欧美在线乱码| 波野结衣二区三区在线| 日本免费一区二区三区高清不卡| 成人国产麻豆网| 国产黄色小视频在线观看| 欧美成人免费av一区二区三区| 国内精品一区二区在线观看| 日韩欧美精品v在线| 99国产精品一区二区蜜桃av| 亚洲av不卡在线观看| 欧美+日韩+精品| 色在线成人网| 国产精品精品国产色婷婷| 韩国av在线不卡| 波多野结衣巨乳人妻| 国产精品综合久久久久久久免费| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 看片在线看免费视频| 国内精品美女久久久久久| 免费av毛片视频| 午夜免费激情av| 欧美一级a爱片免费观看看| 1000部很黄的大片| 一级毛片电影观看 | 人人妻,人人澡人人爽秒播| 欧美日韩乱码在线| 欧美xxxx性猛交bbbb| 国产高清三级在线| 国产精品1区2区在线观看.| 18禁黄网站禁片免费观看直播| 国产精品日韩av在线免费观看| 99久久精品国产国产毛片| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 日韩三级伦理在线观看| 欧美zozozo另类| 麻豆乱淫一区二区| 亚洲人成网站高清观看| 少妇熟女aⅴ在线视频| 悠悠久久av| 国产精品av视频在线免费观看| 中文字幕熟女人妻在线| 国产精品嫩草影院av在线观看| 精品午夜福利视频在线观看一区| 亚洲三级黄色毛片| 国产极品精品免费视频能看的| 久久久成人免费电影| 欧美zozozo另类| 国产欧美日韩精品一区二区| 女同久久另类99精品国产91| 18禁黄网站禁片免费观看直播| 免费观看人在逋| 蜜桃亚洲精品一区二区三区| 黄色配什么色好看| 香蕉av资源在线| 三级毛片av免费| 日韩,欧美,国产一区二区三区 | 亚洲人成网站在线播| 国产精品乱码一区二三区的特点| avwww免费| 亚洲va在线va天堂va国产| 国产精品一区二区免费欧美| 免费在线观看影片大全网站| 亚洲精品粉嫩美女一区| 国产亚洲欧美98| 日韩,欧美,国产一区二区三区 | 国产在线精品亚洲第一网站| 波野结衣二区三区在线| 国产精品av视频在线免费观看| 最近手机中文字幕大全| 亚洲国产精品久久男人天堂| 亚洲熟妇熟女久久| 国产黄a三级三级三级人| 给我免费播放毛片高清在线观看| 久久人妻av系列| 日韩av不卡免费在线播放| 一夜夜www| 中文在线观看免费www的网站| 一进一出抽搐gif免费好疼| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 黄片wwwwww| 成人鲁丝片一二三区免费| 国产三级中文精品| 51国产日韩欧美| 国产成人精品久久久久久| 精品久久久久久久末码| 亚洲经典国产精华液单| 午夜福利在线观看吧| 国产成人freesex在线 | 国产亚洲精品综合一区在线观看| 狂野欧美激情性xxxx在线观看| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 亚洲在线自拍视频| 国产高清视频在线观看网站| 天堂网av新在线| 丰满人妻一区二区三区视频av| 国产av一区在线观看免费| 成人国产麻豆网| 成熟少妇高潮喷水视频| 最新中文字幕久久久久| 色尼玛亚洲综合影院| 久久精品国产自在天天线| 久久草成人影院| 人人妻人人澡欧美一区二区| 欧美3d第一页| 美女免费视频网站| 精品久久久久久成人av| 99久久精品热视频| 亚洲国产精品国产精品| 香蕉av资源在线| 亚洲国产精品久久男人天堂| 丰满的人妻完整版| 十八禁国产超污无遮挡网站| 国产欧美日韩精品亚洲av| 午夜精品一区二区三区免费看| 色吧在线观看| 精品一区二区三区av网在线观看| 国产一区亚洲一区在线观看| 欧美最黄视频在线播放免费| 九色成人免费人妻av| 99热这里只有是精品50| 床上黄色一级片| 久久久精品大字幕| 国产精品,欧美在线| 日本三级黄在线观看| 一区福利在线观看| av黄色大香蕉| 久久久久久久久大av| 亚洲国产精品国产精品| 久久久久久久久久黄片| 国产综合懂色| 欧美精品国产亚洲| 亚洲av中文字字幕乱码综合| 九九热线精品视视频播放| 亚洲丝袜综合中文字幕| or卡值多少钱| 不卡视频在线观看欧美| 久久6这里有精品| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 成年版毛片免费区| 性色avwww在线观看| 亚洲精品一卡2卡三卡4卡5卡| 天天躁日日操中文字幕| 欧美日韩综合久久久久久| 久久天躁狠狠躁夜夜2o2o| 国产高清不卡午夜福利| 在线观看午夜福利视频| 身体一侧抽搐| 午夜激情福利司机影院| 深夜a级毛片| 如何舔出高潮| 久久婷婷人人爽人人干人人爱| 别揉我奶头 嗯啊视频| 国产伦精品一区二区三区视频9| 久久精品国产鲁丝片午夜精品| 久久久久久伊人网av| 久久久a久久爽久久v久久| 久久久久久久久久黄片| 免费一级毛片在线播放高清视频| 淫秽高清视频在线观看| 精品少妇黑人巨大在线播放 | 麻豆国产97在线/欧美| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 日日摸夜夜添夜夜添av毛片| а√天堂www在线а√下载| 欧美不卡视频在线免费观看| 久久久久九九精品影院| 两个人的视频大全免费| 97超级碰碰碰精品色视频在线观看| 欧美日韩在线观看h| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 国产一区二区在线av高清观看| 中文字幕av在线有码专区| 中文字幕熟女人妻在线| 看免费成人av毛片| 久久久久九九精品影院| 日本免费一区二区三区高清不卡| 啦啦啦啦在线视频资源| 国内揄拍国产精品人妻在线| 久久久久久久亚洲中文字幕| 免费高清视频大片| 尾随美女入室| 色播亚洲综合网| 99视频精品全部免费 在线| 一本一本综合久久| 欧美+亚洲+日韩+国产| 国产69精品久久久久777片| 看非洲黑人一级黄片| 色尼玛亚洲综合影院| 久久久久久久久久黄片| 午夜免费男女啪啪视频观看 | 你懂的网址亚洲精品在线观看 | 男人的好看免费观看在线视频| 国产精品一区二区性色av| 欧美xxxx性猛交bbbb| 国产精品无大码| 亚洲美女搞黄在线观看 | 搡老熟女国产l中国老女人| 最近中文字幕高清免费大全6| 成人高潮视频无遮挡免费网站| 18禁在线播放成人免费| 亚洲在线自拍视频| 香蕉av资源在线| 精品久久久久久久久久久久久| 亚洲一级一片aⅴ在线观看| 成人综合一区亚洲| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩东京热| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 天美传媒精品一区二区| 99视频精品全部免费 在线| 简卡轻食公司| 亚洲精品日韩av片在线观看| 欧美国产日韩亚洲一区| 变态另类丝袜制服| 国产伦一二天堂av在线观看| av卡一久久| 三级国产精品欧美在线观看| 国产69精品久久久久777片| 久久精品夜夜夜夜夜久久蜜豆| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 不卡视频在线观看欧美| 男人的好看免费观看在线视频| 22中文网久久字幕| 精品日产1卡2卡| 久久久久久伊人网av| 成人欧美大片| 日本爱情动作片www.在线观看 | 国产成人aa在线观看| 精品人妻视频免费看| 亚洲一区高清亚洲精品| 日日啪夜夜撸| 国产黄色视频一区二区在线观看 | 久久久久国内视频| 国内精品一区二区在线观看| 午夜亚洲福利在线播放| 中国美白少妇内射xxxbb| 激情 狠狠 欧美| 亚洲中文日韩欧美视频| 男女边吃奶边做爰视频| 欧美潮喷喷水| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 久久人人爽人人爽人人片va| 国产精品亚洲美女久久久| 亚洲精品影视一区二区三区av| 欧美日韩一区二区视频在线观看视频在线 | 九九热线精品视视频播放| 国产精品亚洲美女久久久| 亚洲婷婷狠狠爱综合网| 精品人妻偷拍中文字幕| 亚洲久久久久久中文字幕| 免费高清视频大片| 天天一区二区日本电影三级| 亚洲四区av| 国产精品福利在线免费观看| 国产大屁股一区二区在线视频| 国产一区二区激情短视频| 亚洲最大成人中文| 1024手机看黄色片| 五月伊人婷婷丁香| 亚洲欧美日韩高清在线视频| 男女之事视频高清在线观看| 全区人妻精品视频| videossex国产| 女同久久另类99精品国产91| videossex国产| 亚洲中文字幕一区二区三区有码在线看| 国产中年淑女户外野战色| 一区福利在线观看| 免费一级毛片在线播放高清视频| 免费人成视频x8x8入口观看| 久久热精品热| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区国产精品久久精品| 国语自产精品视频在线第100页| 最近在线观看免费完整版| 久久国产乱子免费精品| 午夜精品一区二区三区免费看| 一个人免费在线观看电影| 免费观看在线日韩| 欧美3d第一页| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 1024手机看黄色片| eeuss影院久久| 免费人成在线观看视频色| 搡老妇女老女人老熟妇| 三级国产精品欧美在线观看| 特大巨黑吊av在线直播| 国产精品一区二区三区四区久久| 亚洲最大成人中文| 成人av在线播放网站| 男女下面进入的视频免费午夜| 国产欧美日韩精品一区二区| 91久久精品国产一区二区成人| 成人毛片a级毛片在线播放| 精品日产1卡2卡| 亚洲内射少妇av| 亚洲av五月六月丁香网| 热99re8久久精品国产| 久久精品国产亚洲av香蕉五月| 国产欧美日韩精品一区二区| 嫩草影院入口| 97碰自拍视频| 国产aⅴ精品一区二区三区波| 久久综合国产亚洲精品| 国产成人精品久久久久久| 中出人妻视频一区二区| 国产国拍精品亚洲av在线观看| 国产毛片a区久久久久| 久久久国产成人免费| 最新中文字幕久久久久| 亚洲中文日韩欧美视频| 18禁裸乳无遮挡免费网站照片| 久久人人精品亚洲av| 天堂网av新在线| 亚洲欧美日韩卡通动漫| 日韩av不卡免费在线播放| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 在线天堂最新版资源| 夜夜夜夜夜久久久久| 日本精品一区二区三区蜜桃| 大香蕉久久网| 可以在线观看的亚洲视频| 日韩欧美一区二区三区在线观看| 搡老熟女国产l中国老女人| 国内精品宾馆在线| 在线观看一区二区三区| 日韩欧美在线乱码| 国产亚洲精品久久久com| eeuss影院久久| 成人精品一区二区免费| 日韩欧美精品免费久久| 国产 一区精品| 国产伦精品一区二区三区四那| 美女内射精品一级片tv| 亚洲精品一区av在线观看| 亚洲在线观看片| 一区二区三区四区激情视频 | 中文字幕熟女人妻在线| 免费观看在线日韩| 中文字幕免费在线视频6| 嫩草影院精品99| 免费观看在线日韩| 欧美另类亚洲清纯唯美| 我要看日韩黄色一级片| 亚洲一区二区三区色噜噜| 欧美高清性xxxxhd video| 亚洲性夜色夜夜综合| av在线蜜桃| 久久精品国产鲁丝片午夜精品| 久久综合国产亚洲精品| 91久久精品电影网| av黄色大香蕉| 91在线精品国自产拍蜜月| 国产三级中文精品| 国产成人a区在线观看| 久久6这里有精品| 91久久精品电影网| 久久99热6这里只有精品| 欧美日本亚洲视频在线播放| 亚洲熟妇中文字幕五十中出| 老女人水多毛片| 色哟哟·www| 色5月婷婷丁香| 久久午夜福利片| 国产高清视频在线播放一区| 夜夜夜夜夜久久久久| www.色视频.com|